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ABSTRACT 

 

 

 

Current formal models of real-time workloads were designed within the 

context of uniprocessor real-time systems; hence, they are often not able to 

accurately represent salient features of multiprocessor real-time systems.  

Researchers have recently attempted to overcome this shortcoming by applying 

workload models from Divisible Load Theory (DLT) to real-time systems. The 

resulting theory, referred to as Real-time Divisible Load Theory (RT-DLT), holds 

great promise for modeling an emergent class of massively parallel real-time 

workloads.  However, the theory needs strong formal foundations before it can be 

widely used for the design and analysis of real-time systems. The goal of this thesis 

is to obtain such formal foundations, by generalizing and extending recent results and 

concepts from multiprocessor real-time scheduling theory. To achieve this, recent 

results from traditional multiprocessor scheduling theory were used to provide 

satisfactory explanations to some apparently anomalous observations that were 

previously made upon applying DLT to real-time systems. Further generalization of 

the RT-DLT model was then considered: this generalization assumes that processors 

become available at different instants of time.  Two important problems for this 

model were solved: determining the minimum number of processors needed to 

complete a job by its deadline; and determining the earliest completion time for a job 

upon a given cluster of such processors. For the first problem, an optimal algorithm 

called MINPROCS was developed to compute the minimum number of processors 

that ensure each job completes by its deadline. For the second problem, a Linear 

Programming (LP) based solution called MIN-ξ was formulated to compute the 

earliest completion time upon given number of processors.  Through formal proofs 

and extensive simulations both algorithms have been shown to improve the non-

optimal approximate algorithms previously used to solve these problems. 
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ABSTRAK 

 

 

 

 Model formal bagi beban kerja masa nyata asalnya direkabentuk dalam konteks 

sistem masa-nyata satu pemproses. Model ini kadangkala gagal mewakilkan secara 

tepat ciri-ciri sistem masa-nyata pemproses berbilang.  Masalah ini cuba diatasi oleh 

para penyelidik dengan mengaplikasikan model beban kerja yang digunakan di 

dalam Teori Pembahagian Beban (DLT) kepada sistem masa nyata. Hasil aplikasi ini 

dikenali sebagai Teori Pembahagian Beban Masa Nyata (RT-DLT). Teori ini 

menunjukkan potensi yang meyakinkan bagi memodelkan beban kerja masa nyata 

selari dalam kelas besar.  Walaubagaimanapun, sebelum teori ini boleh digunakan 

dalam merekabentuk dan analisis sistem masa nyata, ia memerlukan asas formal 

yang kukuh. Tujuan kajian tesis ini adalah untuk menghasilkan asas formal yang 

dimaksudkan dengan memperluaskan hasil kajian terkini dan menggunakan konsep 

dari teori sistem masa nyata pemproses berbilang.  Untuk mencapai tujuan ini, hasil 

kajian terkini daripada teori penjadualan sistem masa nyata pemproses berbilang 

digunakan bagi menerangkan pemerhatian yang luar-biasa apabila Teori 

Pembahagian Beban diaplikasikan kepada sistem masa nyata.  Tesis ini seterusnya 

mengkaji model Teori Pembahagian Beban Masa Nyata apabila berlaku keadaan di 

mana masa sedia pemproses-pemproses di dalam kluster adalah berbeza-beza.  Dua 

masalah utama berjaya diselesaikan dalam kajian ini: menentukan bilangan minimum 

pemproses yang diperlukan untuk menyiapkan beban kerja sebelum sampai masa 

tamat; menentukan masa yang paling awal bagi menyiapkan sesuatu beban kerja. 

Bagi masalah pertama, satu algoritma optimal dinamakan MINPROCS telah 

dihasilkan. Dan untuk masalah kedua satu penyelesaian berasaskan Pengaturcaraan 

Lelurus yang dinamakan MIN-ξ telah direkabentuk. Melalui pembuktian formal dan 

beberapa siri simulasi, telah dibuktikan bahawa kedua-dua penyelesaian adalah 

optimal dan sekaligus algoritma yang sebelumnya digunakan untuk menyelesaikan 

masalah yang sama diperbaiki. 
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CHAPTER 1 
 

 

 

 

INTRODUCTION  
 

 

 

 

1.1 Overview 

 
Real-time computer application systems are systems in which the correctness 

of a computation depends upon both the logical and temporal properties of the result 

of the computation. Temporal constraints of real-time systems are commonly 

specified as deadlines within which activities should complete execution. For hard-

real-time systems, meeting timing constraints is crucially important – failure to do so 

may cause critical failures and in some cases cause hazard to human life (Buttazzo, 

2004).  In soft-real-time systems, by contrast, the consequences of an occasional 

missed deadline are not as severe (Buttazzo et al., 2005).   Given the central 

importance of meeting timing constraints in hard-real-time systems, such systems 

typically require guarantees prior to deployment – e.g., during system design time – 

that they will indeed always meet their timing constraints during run-time.  This 

thesis is primarily concerned with hard-real-time systems. 

 

Real-time computing will continue to play a crucial role in our society, as 

there are an increasing number of complex systems that needs computer control. 

Many next-generation computing applications such as automated manufacturing 

systems, defense systems (e.g. smart bombs, automotive, avionics and spacecraft 

control systems), high speed and multimedia communication systems, have 

significant real-time components (Liu, 2000; Buttazzo, 2004). 
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Such real-time application systems demand complex and significantly 

increased functionality and it is becoming unreasonable to expect to implement them 

upon uniprocessor platforms. Consequently, these systems are increasingly coming 

to be implemented upon multiprocessor platforms, with complex synchronization, 

data-sharing and parallelism requirements.  

 

Formal models for representing real-time workloads have traditionally been 

designed for the modeling of processes that are expected to execute in uniprocessor 

environments. As real-time application systems increasingly come to be 

implemented upon multiprocessor environments, these same models have been used 

to model the multiprocessor task systems.  However, these traditional models fail to 

capture some important characteristics of multiprocessor real-time systems; 

furthermore, they may impose additional restrictions (“additional" in the sense of 

being mandated by the limitations of the model rather than the inherent 

characteristics of the platform) upon system design and implementation.  

 

One particular restriction that has been extended from uniprocessor models to 

multiprocessor ones is that each task may execute upon at most one processor at each 

instant in time. In other words, they do not allow task parallel execution.  However, 

this is overly restrictive for many current multiprocessor platforms; to further 

exacerbate matters, this restriction is in fact one significant causal factor of much of 

the complexity of multiprocessor scheduling. Indeed, as Liu (1969) pointed out, “the 

simple fact that a [job] can use only one processor even when several processors are 

free at the same time adds a surprising amount of difficulty to the scheduling of 

multiple processors."  Certainly, the next generation of embedded and real-time 

systems will demand parallel execution.   

 

Recently, some researchers have studied extensions to the workload models 

traditionally used in real-time scheduling theory, to allow for the possibility that a 

single job may execute simultaneously on multiple processors.  One of the more 

promising approaches in this respect has been the recent work of Lin et al. (2006a, 

2006b, 2007a, 2007b, 2007c), that applies Divisible Load Theory (DLT) to 

multiprocessor real-time systems. The resulting theory is referred to as Real-time 

Divisible Load Theory (RT-DLT).  
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1.2 Research Problem and Motivations  
 

Real-time Divisible Load Theory (RT-DLT) holds great promise for 

modeling an emergent class of massively parallel real-time workloads.  However, the 

theory needs strong formal foundations before it can be widely used for the design 

and analysis of hard real-time safety-critical applications. In this thesis, we address 

the general problem of obtaining such formal foundations, by generalizing and 

extending recent results and concepts from multiprocessor real-time scheduling 

theory. Within this general problem, here are some of the specific issues we address: 

 

i. Prior research in RT-DLT has reported some apparently anomalous findings, in 

the sense that these findings are somewhat counter-intuitive when compared to 

results from “regular” (i.e., non-real-time) DLT.  What explains these 

(previously-identified) apparent anomalies in RT-DLT? 

 

ii. When the processors in a multiprocessor platform all become available at the 

same instant in time, the issue of scheduling a real-time divisible workload on 

such platforms is pretty well understood.  However, the reality in many 

multiprocessor environments is that all the processors do not become available 

to a given workload at the same instant (perhaps because some of the 

processors are also being used for other purposes).  How does one extend RT-

DLT to render it applicable to the scheduling of real-time workloads upon 

platforms in which all the processors are not made available simultaneously? 

Specifically we address two important problems: 

 
• Given a divisible job ( , , )i i i ia dτ σ=  and varying processor ready-times 

1 2 3, , ,...r r r what is the minimum number of processors needed to meet a 

job’s deadline? 

 

• Given a divisible job ( , , )i i i ia dτ σ=  and n (identical) processors with 

varying ready-times 1 2, ,..., nr r r  upon which to execute it, what is the 

earliest time at which the job iτ can complete execution? 
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1.3 Research Objectives 
 

As stated above, the goal of this thesis is to develop strong formal 

foundations that enable the application of RT-DLT for the design and analysis of 

multiprocessor hard real-time systems. To achieve this goal, we must build 

theoretical foundations and accurate simulation environments for experimenting 

with, and explaining the behavior of, hard real-time DLT systems.  Some of the 

specific objectives that we have identified as needing to be accomplished in order to 

achieve this goal are as follows: 

 

i. To investigate the application of Divisible Load Theory (DLT) models to real-

time workloads, in order to obtain a deep and detailed understanding of the 

behavior of such systems.   

 

ii. To theoretically explain the apparent anomalies of Real-time Divisible Load 

Theory (RT-DLT). 

 

iii. To extend RT-DLT so that they are able to handle cluster and workload models 

that are as general as possible. Specifically, we hope that these extensions will 

be applicable to platforms in which all processors do not become available 

simultaneously. 

 

iv. To build efficient scheduling algorithms that will compute the exact minimum 

number of  processors that must be assigned to a job in order to guarantee that 

it meets its deadline — on clusters in which all processors are not 

simultaneously available.  

 
 

v. To develop efficient scheduling algorithms that minimize the completion time 

of a given divisible job upon a specified number of processors — on clusters in 

which all processors are not simultaneously available.  
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1.4 Scope of Research 
 

In this thesis, we focus upon a particular formal model of real-time workloads 

that is very widely used in real-time and embedded systems design and 

implementation.  In this model, it is assumed that there are certain basic units of 

work, known as jobs that need to be executed.  Such jobs are generated by recurring 

processes known as periodic or sporadic tasks – each such task represents a piece of 

straight-line code embedded within a potentially infinite loop.  This workload model 

is described in greater detail in Chapter 2. 

 

There are several kinds of timing constraints considered in the real-time 

scheduling literature; in this thesis, we restrict our attention for the most part to just 

one of these kinds of constraints – meeting deadlines of jobs.  

 

With respect to system resources, we will focus for the most part on 

minimizing the number of processors used.  (Although other system resources, such 

as network bandwidth, energy, etc. are also important, optimization with respect to 

these resources does not lie within the scope of this thesis.) 

 

Several different network topologies, such as stars, meshes, and trees, have 

been studied in DLT.  We restrict our attention to the single-level tree topology, 

since this is one of the simpler models but nevertheless appears to contain most of 

the important issues that arise when DLT is extended to apply to real-time 

workloads. 
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1.5 Research Methodology 

 
We conducted this research in six major phases, as shown in Figure 1.1. The 

six phases are: Literature Review, Analysis and Problem Formulations, Algorithms 

Design, Algorithms Implementation, Algorithms Evaluations and Documentation.  

Each of these phases will be described in greater detail in the following pages. 

 

 

Literature Review

Analysis and Problem 
Formulations

Algorithms Design

Algorithms Implementation

Algorithms Evaluation

Documentations
 

 

 
 Figure 1.1 Conducted phases in this research 
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i. Literature Review 

 

We performed literature review on various topics related to the research 

conducted in this thesis. The topic includes:  

• State of the art of Real-time Systems 

• State of the art of Real-time scheduling theory 

• Current findings on Divisible Load Theory (DLT) 

• Current findings on Real-time Divisible Load Theory (RT-DLT) 

 

 

ii. Analysis and Problem Formulations 

 

In this phase, we studied the applicability of DLT to multiprocessor scheduling 

of real-time systems. Specifically we analyzed series of work on RT-DLT (Lin 

et al., 2006a, 2006b, 2007a, 2007b, 2007c) and formulated three important 

problems arises upon these works. We explain these formulations in Chapter 3, 4 

and 5 accordingly. 

 

 

iii. Algorithms Design 

 

As stated earlier, we formulated three significant problems detected from the 

work of Lin et al. (2006a, 2006b, 2007a, 2007b, and 2007c).  For the first 

problem, we used existing scheduling theory to explain an anomalous 

observation of Lin et al. (2006a, 2006b, 2007a) when they first applied DLT to 

real-time multiprocessor scheduling.  For the second problem, we designed an 

efficient algorithm to compute the minimum number of processors needed for a 

job to meet its deadline. To develop this algorithm, we used the first principle of 

RT-DLT found in Lin et al. (2006a, 2006b, and 2007a). And for the third 

problem, we formed a Linear Programming-based algorithm to compute the 

minimum completion time of a job execution. We present each detail design in 

Chapter 3, 4 and 5 respectively. 
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iv. Algorithms Implementation 

 

In this phase, we developed series of simulations to compare the degree of 

improvement of our proposed algorithms to prior existing ones. For the second 

problem, we implemented the algorithm using C++ and for the third problem we 

developed the simulation programs using MATLAB.  

 

 

v. Algorithms Evaluation 

 

We evaluated our proposed algorithms by analyzing the results produced by our 

simulation programs. We compared the results produced by our algorithm with 

the ones produced by previous algorithms. In all comparisons, our algorithms 

showed significant improvement over pre-existing ones.  We also provide 

lemmas and proofs to support our results and discussion in this thesis. 

 

We conducted phase 3, 4 and 5 in three cycles for the three problems 

formulated.  

 

 

vi. Documentations 
 

Finally each contribution reported in this thesis was documented in technical 

publications.  A list of papers published in the proceedings of conferences and 

journals are listed in Appendix A. The final and complete documentation is 

compiled in this thesis. 
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1.6 Thesis Organization 
 

This thesis is organized into six chapters. Figure 1.2 shows the flow of the 

thesis organization; descriptions are given in the following pages. 

 

CHAPTER 1

Introduction

CHAPTER 2

Literature Review

CHAPTER 3

Deadline-based 
Scheduling of Divisible 

Real-time Loads

CHAPTER 5

A Linear Programming 
Approach for Scheduling 
Divisible Real-time Loads

CHAPTER 6

Conclusion and 
Future Work

CHAPTER 4

Scheduling Divisible Real-time 
Loads on Cluster with Varying 

Processor Start Times

 
 

Figure 1.2 Thesis organization 

 

 

This thesis explores two important research areas: Real-time Systems and 

Divisible Load Theory. In Chapter 2, we present some background information and 

review some of the prior results on real-time systems.  The first part describes the 

basic concepts of real-time systems.  We then briefly review some fundamental 
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results concerning real-time multiprocessor scheduling.  The discussion mainly 

focuses on global multiprocessor scheduling with the Earliest Deadline First (EDF) 

scheduling algorithm.  This chapter also discusses in greater detail the concept of 

Divisible Load Theory (DLT) and the application of this theory to multiprocessor 

scheduling of real-time systems, referred to as RT-DLT.  We review some of the 

prior work done in RT-DLT, which we extend as part of this thesis. 

 

In Chapter 3, we will report our first contribution presented in this thesis.  We 

describe the initial work of Lin et al. (2006a, 2006b and 2007a) and their apparently 

anomalous findings with respect to a scheduling framework integrating DLT and 

EDF.  We then present our results that provide a theoretical analysis to some of these 

anomalies. 

 

In Chapter 4, we describe our study on scheduling problems in RT-DLT 

when applied to clusters in which different processors become available at different 

time-instants.  We present an algorithm that efficiently determines the minimum 

number of processors that are required to meet a job’s deadline. We then describe 

and discuss simulation results evaluating the proposed algorithm, and comparing it to 

previously-proposed heuristics for solving the same problem. 

 

We have proposed a Linear Programming (LP) based approach to efficiently 

determine the earliest completion time for the job on a given processors which may 

become available at different times. This LP based approach is described in Chapter 

5. We then present extensive experimental simulations to evaluate this LP based 

approach and consequently show how this approach significantly improves on the 

heuristic approximations that were the only techniques previously known for solving 

these problems. 

 

Finally, we conclude our work and suggest directions for future research in 

Chapter 6. 
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CHAPTER 2 
 

 

 

 

LITERATURE REVIEW 
 

 

 

 

2.1 Introduction 
 

In the previous chapter, we mentioned that the goal of our research is to 

further study the application of Divisible Load Theory (DLT) to the real-time 

systems workloads (henceforth, we referred as RT-DLT).  In this chapter, we present 

some background information and review some of the prior results on real-time 

systems.  The basic concepts of real-time systems will be presented in section 2.2.   

 

In section 2.3, we will briefly review some fundamental results concerning 

real-time multiprocessor scheduling. The discussion will mainly focus on global 

multiprocessor scheduling with the Earliest Deadline First (EDF) scheduling 

algorithm.  In section 2.4, we review recent works concerning parallel execution 

upon multiprocessor real-time systems. Specifically, we review the fundamental 

concepts of DLT and current findings on RT-DLT. 
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2.2 Real-time Systems 

 
In designing a real-time system, there are three important components that 

must be specified: Workload Models, Platform Models and Scheduling Algorithm. 

This section will briefly explain the basic terms and concepts used to describe these 

components. 

 

 

2.2.1 Real-time Workload  
 

Real-time workloads are assumed to be comprised of basic units of execution 

known as jobs.  Each job, ( , , )i i i iJ a c d=  is characterized by an arrival time 0ia ≥ , 

an execution requirement 0ic > , and a relative deadline 0id > , and has the 

following interpretation: The job must execute for ic  time units over the time 

interval [ , )i i ia a d+ . Other parameters associated with a job are the start time is and 

the completion time if .  Figure 2.1 shows typical parameters of a real-time job. 

 

 

 

ia is if id

ic

 
 

Figure 2.1: Typical parameters of a real-time job 

 

 

Jobs are classified as being preemptive or non-preemptive.  A preemptive job 

that is executing may have its execution interrupted at any instant in time and 

resumed later, at no cost or penalty; by contrast, the entire execution of a non-
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preemptive job must occur in one contiguous time-interval of length ic . In this 

thesis, we are primarily concerned with the scheduling of preemptive jobs. 

 

In real-time systems, it is generally assumed that these jobs are generated by 

recurring tasks. Each such recurring task is assumed to model a piece of straight-line 

code embedded within a potentially infinite loop, with each iteration through the loop 

being modeled by a single job.  Over time, a recurring taskτ , initiates a real-time 

instance I, where I denotes a finite or infinite collection of jobs 1 2{ , ,...}I J J= . Task 

model is a format and rules for specifying a task system. For every execution of the 

system, recurring task iτ  will generate a collection of real-time jobs.  Several 

recurring tasks can be composed together into a recurring task system 

1 2{ , ,... }mτ τ τ τ= . 

 

Among widely used task models is the periodic task model (Liu and Layland, 

1973). In this model, a periodic task iτ is specified by a three tuple ( , , )i i ie pφ , where 

iφ is the offset of the first job generated by iτ  from start system time; ie is the worst-

case execution time (WCET) of any job generated by iτ ; and ip  is the period or 

inter-arrival time between successive jobs of iτ .  

 

The set of jobs generated by a periodic task iτ with worst-case possible 

execution times is: 

 

( ) {( , , ), ( , , 2 ), ( 2 , , 3 ),...}
defP

i i i i i i i i i i i i i i iWCET e p p e p p e pJ τ φ φ φ φ φ φ= + + + + +  

 

 

Example 2.1: Consider a periodic task 1 2{ (0, 4,8), (10,5,15)}τ τ τ= = = . The set of 

jobs generated by 1τ  and 2τ  with worst-case execution times are: 

 

1( ) {(0,4,8), (8,4,16), (16,4,24),...}P

WCETJ τ =  

2( ) {(10,5,15), (25,5, 40), (40,5,55),...}P

WCETJ τ =  
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Figure 2.2 depicts the arrivals and executions of jobs generated by two 

periodic task described in Example 2.1. 

 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

1 (0, 4,8)τ =

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

2 (10,5,15)τ =

 
 

Figure 2.2: Example of arrivals and executions of jobs generated by periodic tasks 

1 (0,4,8)τ =  and 2 (10,5,15)τ = . 

 

 

The sporadic task model (Mok, 1983, Baruah et al., 1990) is another 

commonly used formal model for representing recurring real-time task systems. In 

the sporadic task model, a task ( , , )i i i iC D Tτ =  is characterized by a worst-case 

execution requirement iC , a (relative) deadline iD , and a minimum inter-arrival 

separation iT , also known as period. Such a sporadic task generates an infinite 

sequence of jobs, with successive job-arrivals separated by at least iT  time units.  

 

Each job has a worst-case execution requirement equal to iC  and a deadline 

that occurs at iD  time units after its arrival time.  A sporadic task system is 

comprised of several such sporadic tasks. Let τ  denote a system of such sporadic 

tasks: 1 2{ , ,..., }mτ τ τ τ=  with ( , , )i i i iC D Tτ =  for all i ,1 i m≤ ≤ . Task system τ  is 

said to be a constrained deadline sporadic task system if it is guaranteed that each 

task iτ τ∈  has its relative deadline parameter no larger than its period: i iD P≤  for all 

iτ τ∈ . 
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Example 2.2: Consider a sporadic task 1 2{ (2,4,6), (3,9,12)}τ τ τ= = = . Since the 

sporadic task model specifies a minimum, rather than an exact, separation between 

the arrivals of successive jobs of each task, each sporadic task may generate 

infinitely many different sets of jobs.  One such possible set of jobs generated by 1τ  

and 2τ  with worst-case execution times are: 

 

1( ) {(0,2, 4), (6, 2,10), (12, 2,16),...}S

WCETJ τ =  

2( ) {(0,3,9), (12,3, 21), (24,3,33),...}S

WCETJ τ =  

 

 

Figure 2.3 depicts the arrivals and executions of jobs generated by two 

sporadic task described in Example 2.2. 

 

 

 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

1 (2,4,6)τ =

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

2 (3,9,12)τ =

 
 

 

Figure 2.3: Example of arrivals and executions of jobs generated by sporadic tasks 

1 (2,4,6)τ =  and 2 (3,9,12)τ = . 
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Additional task properties that we would like to define, as we will use in later 

chapters are the notions of Utilization and Density.  

 

 

Utilization The utilization iU  of a task iτ  is the ratio of its execution requirement to 

its period: 

( ) i
i

i

CU
T

τ =                                       (2.1) 

 

 

The total utilization  ( )sumU τ  and the largest utilization  max ( )U τ  of a task 

system τ  are defined as follows: 

 

( ) ( )
i

def

sum iU U
τ τ

τ τ
∈

= ∑      (2.2) 

 

max ( ) max ( )
i

def

iU U
τ τ

τ τ
∈

=      (2.3) 

 

 

Density The density δ of a task iτ  is the ratio of its execution requirement to the 

smallest of its relative deadline and its period: 

 

 

( )
min( , )

i
i

i i

C
D T

δ τ =      (2.4) 
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The total density ( )sumδ τ  and the largest density max ( )δ τ  of a task system τ  

are defined as follows: 

 

( ) ( )
i

def

sum i
τ τ

δ τ δ τ
∈

= ∑      (2.5) 

 

max ( ) max ( )
i

def

iτ τ
δ τ δ τ

∈
=      (2.6) 

 

 

One of the fundamental assumptions in these task models is that a job may be 

executing on at most one processor at each instant in time. In other words, parallel 

execution is not permitted. Keeping this in mind, now we will define the platform 

models in the following section. 

 

 

 

2.2.2 Platform Model 

 
Real-time scheduling theory has traditionally focused upon scheduling real-

time workloads on uniprocessor platforms.  In such platforms, there is only a single 

processor upon which the entire real-time workload is to execute.  More recently, 

attention has been given to multiprocessor platforms, comprised of several 

processors.  Typically, the letter P is used to denote processor(s).  If a platform has n  

processors, the platform is denoted as 1 2, ,..., nP P P . 

 

An identical multiprocessor platform is a platform in which all the processors 

have the same capabilities and speed; more specifically, each processor is identical in 

terms of architecture, cache size and speed, I/O and resource access, and the access 

time to shared memory (Uniform Memory Access (UMA)).  
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Figure 2.4 shows a high-level illustration of a possible layout of an identical 

multiprocessor platform.  All processors are connected at the bus level. This type of 

multiprocessor is commonly referred to as a symmetric shared-memory 

multiprocessor (SMP), also known as tightly-coupled multiprocessor systems. On the 

other hand, loosely-coupled multiprocessor systems, also known as clusters, are 

comprised of multiple standalone computers interconnected via a high speed 

communication system such as Gigabit Ethernet. A Linux Beowulf cluster is an 

example of a loosely-coupled multiprocessor system.  

 

 

Processor
P1

Cache

Processor-Memory Interconnect (e.g. Bus)

Processor
P2

Cache

Processor
Pn

Cache

Shared Memory

 
 

Figure 2.4: The layout of a symmetric shared-memory multiprocessor (SMP) 

platform. 

 

 
A multiprocessor platform is called heterogeneous if each processor has 

different capabilities. Heterogeneous multiprocessors may be further classified into 

uniform and unrelated multiprocessors. The classification can be made in terms of 

execution speed of each processor.  

 

 Recall that, a task is a computation that is executed by the processor(s). When 

a single processor has to execute a set of tasks, or the number of tasks to be executed 

is greater than the number of processors in the processing platform, one need to 
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decide which task to be assigned to these processors.  The set of rules for these 

assigning activities is known as scheduling algorithm (Cottet et al., 2002). We will 

describe this concept in greater detail, in the following section. 

 

 

 

2.2.3 Scheduling Algorithms 

 
Generally, a scheduling algorithm is a set of rules that allocates processor 

time to tasks. In real-time systems, processor-allocation strategies are driven by the 

need to meet timing constraints. A formal definition of a uniprocessor schedule for 

real-time task systems is given as follows: 

 

Definition (from, (Buttazzo, 2004)): Given a set of m tasks, 1 2{ , ,..., }mτ τ τ τ= , a 

schedule is an assignment of tasks to processor, so that each task is executed until 

completion.  More formally, a schedule can be defined as a function :S + → such 

that 1 2, ,t t t+∀ ∈ ∃ such that 1 2[ , )t t t∈  and 1 2' [ , )t t t∀ ∈ ( ) ( ')S t S t= . In other words, 

( )S t is an integer step function and ( )S t i= , with 0i > , means that task iτ  is 

executing at time t, while ( ) 0S t = means that the processor is idle. 

 

Before we further describe the scheduling approaches, we define some terms 

commonly used in describing properties of real-time scheduling algorithms. 

 

• Feasibility. A schedule is said to be feasible if all tasks are completed 

according to set of specified constraints. 

 

• Schedulability. A set of tasks is said to be schedulable if there exists at least 

one algorithm that can produce a feasible schedule. 

 

• Optimality. A scheduling algorithm is said to be an optimal if the algorithm 

is able to produce a feasible schedule for any schedulable task set. 
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In uniprocessor scheduling, jobs will need to be organized and executed over 

a single processor, as illustrated in Figure 2.5.  Arriving jobs will be stored in a job 

queue, and wait until the processor is ready for next execution.  A scheduling 

algorithm, will select a job from the jobs queue, based on the scheduling policy used.  

For example, in the Earliest Deadline First (EDF) scheduling algorithm, the 

scheduler will choose a job with the nearest deadline.  In other words, the job with 

the smallest deadline has the highest priority for the next execution.  In some 

scheduling algorithm, preemption1 is allowed, where the current job execution will 

be stop, allowing a job with higher priority be executed, and the preempted job will 

resume execution in other point of time.  This kind of scheduling is illustrated in 

Figure 2.6. 

 

 

 

 
 

Figure 2.5: Uniprocessor scheduling 

 

 

 

 

 
 

Figure 2.6: Uniprocessor scheduling with preemption 

 

 

 

                                                 
1 Preemption is allowed in a system that permits interruption at any point of task execution.  
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On the other hand, in multiprocessor systems, the scheduler will organize and 

execute tasks over a set of processors. Two kinds of scheduling are defined for 

multiprocessor systems – one is known as global scheduling (Baker and Baruah, 

2008) and the other is called partitioned scheduling (Baker and Baruah, 2008).  

 

As illustrated in Figure 2.7, in global scheduling, arriving jobs will be placed 

in the global jobs queue.  Then the global scheduler will organize which job to 

execute on each processor at each instant of time. In partitioned scheduling (see 

Figure 2.8) tasks will first be assigned to processors by a partitioning algorithm, and 

the generated jobs of each task are subsequently placed on the local job queue.  Then, 

a uniprocessor scheduling is used to schedule jobs to each processor.  

 

Multiprocessor
Scheduler
(Global)

P1

Jobs QueueArrival Jobs P2

Pn

. . .

 
 

Figure 2.7: A multiprocessor global scheduling 

 

 

Uniprocessor
Scheduler P1

Jobs Queue

Arrival
Jobs Partitioning

Algorithm

Uniprocessor
Scheduler P2

Jobs Queue

Uniprocessor
Scheduler Pn

Jobs Queue

… …

 
 

Figure 2.8: A multiprocessor partitioned scheduling 
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Scheduling in multiprocessor systems is more complex than in uniprocessor 

systems.  Although it seems, having more processors provides the advantages in 

executing more jobs at each instant of time, but the organization and synchronization 

adds more complexity to the scheduling algorithms.  These challenges have created a 

significant attention to multiprocessor scheduling research.  We now review some of 

the important results concerning the real-time multiprocessor scheduling in the 

following section. 

 

 

 

2.3 Real-time Multiprocessor Scheduling and EDF 
 

Real-time scheduling is an important area of research in real-time computing 

as scheduling theory addresses the problem of meeting the specified timing 

requirements of the system (Stankovic and Ramamritham, 1985). Among the 

scheduling algorithms studied in real-time systems are: Earliest Deadline First (EDF) 

(Liu and Layland, 1973), Rate Monotonic (Liu and Layland, 1973; Baruah and 

Goossens, 2003), Deadline Monotonic (Leung and Whitehead, 1982), Least Laxity 

First (Dertouzous and Mok, 1989), Pfair-based algorithms (Baruah et al., 1996; 

Baruah et al., 1995) and Earliest Deadline with Zero Laxity (Cirinei and Baker, 

2007; Baker et al., 2008). 

 

Since our work is related to EDF, this section reviews the prior fundamental 

results obtained in EDF scheduling. EDF is a priority-driven scheduling algorithm 

that schedules the arriving tasks according to their deadlines. Specifically, tasks with 

the earlier deadlines have highest priority to be executed as soon as processors 

become available.  EDF is known to be an excellent scheduling algorithm for 

uniprocessor platforms under a wide variety of conditions. For preemptive systems 

of independent jobs, it has been shown (Dertouzos, 1974) to be optimal in the sense 

that if any scheduling algorithm can schedule a given system to meet all deadlines, 

then EDF, too, will meet all deadlines for this system.  
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Figure 2.9 depicts an example of an EDF schedule on a uniprocessor 

platform, with a set of three tasks 1 (0,1,3)τ = , 2 (0, 4,10)τ = and 3 (2, 2,4)τ = . Both 

task 1τ and task 2τ arrived at t=0, and 1τ  is executed first, since it has an earlier 

deadline.  At t=1, 2τ begins its execution after 1τ completes. When 3τ arrives at t=3, 

2τ  is preempted and resumes execution when 3τ completes at t=4. In this example 

all tasks meet their respective deadlines. 

 

 

 
 

Figure 2.9: Example of an EDF schedule on uniprocessor platforms. Up arrows 

depicts job arrivals, and down arrows depicts job deadlines. 

 

 

For non-preemptive systems, the EDF can be a non-optimal algorithm (Jeffay 

et al., 1991).  Consider the same set of 3 tasks 1τ , 2τ , 3τ  and the same job arrivals as in 

Figure 2.7.  Figure 2.10 shows that these jobs can be scheduled non-preemptively to 

meet all deadlines. Figure 2.11 exhibits that non-preemptive EDF fails to produce a 

feasible schedule.  
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Figure 2.10: Feasible schedule exists for a non-preemptive system 

 

 

 

 
 

Figure 2.11: EDF schedule in a non-preemptive system. Task 2τ gets executed first 

since 2 3A A< , and 3τ can only begin its execution when 2τ completes at t=4, thus 

failing to meet its deadline. 

 

 

 For multiprocessor platforms, EDF is not quite as good an algorithm as it is 

on uniprocessors. Sufficient conditions and bounds have been obtained for using 

EDF for scheduling upon multiprocessors. One of the more important results 

concerning preemptive EDF multiprocessor scheduling was proved by Philips et al 

(1997).  
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Theorem 2.1 (from (Philips et al., 1997; Philips et al., 2002)) If a real-time 

instance is feasible on m processors, then the same instance will be scheduled to 

meet all deadlines by EDF on m processors in which the individual processors are 

1(2 )
m

−  times as fast as in the original system. 

 

 

Goossens et al. (2003) extended the above conditions for periodic task 

systems on identical multiprocessor platforms. 

 

 

Theorem 2.2 (from (Goossens et al., 2003)) Periodic task system τ  is scheduled to 

meet all deadlines by EDF on an identical multiprocessor platform comprised of m 

unit-capacity processors, provided: 

 

 max( ) ( 1) ( )sumU m m Uτ τ≤ − −  (2.7) 

 
 

For non-preemptive multiprocessor system, Baruah (2006) presented 

sufficient conditions for determining whether a given periodic task system will meet 

all deadlines if scheduled non-preemptively upon a multiprocessor platform using the 

EDF algorithm. 

 

 

Theorem 2.4 (from (Baruah, 2006)) Any task system τ satisfying the following 

condition, will successfully scheduled by Non-preemptive EDF to meet all deadlines: 

 

 max( ) ( 1) ( )sumV m m Vτ τ≤ − − ×  (2.8) 

 

Where, 

 

 
max

( )( , )
max(0, ( ) ( ))

def
i

i
i

ev
p e

ττ τ
τ τ

=
−

 (2.9) 
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 ( ) ( , )
i

def

sum iV V
τ τ

τ τ τ
∈

= ∑  (2.10) 

 

 

           max ( ) max ( , )
i

def

iV V
τ τ

τ τ τ
∈

=                (2.11) 

 

 

Above, we have seen several sufficient conditions and schedulability bounds 

introduced in various investigation of EDF multiprocessor scheduling. However, it is 

also important to be aware that there exist task systems with very low utilization that 

are not EDF-schedulable on multiprocessor platforms. This phenomenon of task 

systems having low utilization but being not schedulable on a multiprocessor system 

is sometimes known as Dhall’s effect (Dhall and Liu, 1978). We describe Dhall’s 

effect through the following example. 

 

 

Example 2.1 Consider a platform with two processors, 1 2{ , }P P P= and a task system 

( , , )i i i iA E Dτ = = { 1 (0,1,50)τ = , 2 (0,1,50)τ = , 3 (0,100,100)τ = }.  

 

 

 

 
 

 

Figure 2.12: An example of Dhall’s effect. EDF fails to schedule a task system with 

utilization 1.04 on two processors. 
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Figure 2.13: An example of two processors platform and a task systems that are 

schedulable by other scheduling strategies but not schedulable by EDF. 

 

 

 Another situation that is also meaningful to help us understand the behavior 

of multiprocessor real-time system is that scheduling anomalies can happen in 

multiprocessor scheduling.   For instance, Graham (1976) has observed that 

anomalous results may occur, where increasing the number of processors, reducing 

the execution times, or weakening precedence constraints, can render a schedulable 

systems unschedulable. 

 

We would also like to recall a fundamental restriction we mentioned in the 

earlier chapter. In multiprocessor real-time scheduling, a single job may execute 

upon at most one processor at any instant in time, even if there are several idle 

processors available. Perhaps, this restriction makes the scheduling in multiprocessor 

significantly more complex. Recall that,  as Liu observed (Liu, 1969), “The simple 

fact that a task can use only one processor even when several processors are free at 

the same time adds a surprising amount of difficulty to the scheduling of 

multiprocessors.” Undoubtedly, the next generation of embedded and real-time 

systems will demand parallel execution. Looking at this significant need, recently, 

some researchers have studied extensions to the traditional workload models, to 

allow for the possibility that a single job may execute simultaneously on multiple 

processors.  We briefly review some of these works in the following section. 
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2.4 Parallel Execution upon Multiprocessor Real-time Systems 

 
Attempting to address the difficulty in multiprocessor scheduling, some 

researchers have studied extensions to the workload models traditionally used in real-

time scheduling theory, to allow for the possibility that a single job may execute 

simultaneously on multiple processors. We briefly review a few significant work 

respects to this attempt. 

 

 

2.4.1 Dynamic Scheduling Algorithm 
 

Manimaran and Murthy (1998) proposed a dynamic algorithm for non-

preemptive scheduling of real-time tasks upon multiprocessor systems.  In this work, 

they introduced an extra notion of a real-time task. Specifically each task iτ  is 

aperiodic and is characterized by its arrival time ( ia ), ready time ( ir ), worst case 

computation time ( j
ic ) and deadline ( id ).  j

ic  is the worst case computation time of 

iT  which is the upper bound on the computation time, when run on thj processors in 

parallel where 1 j N≤ ≤ . There are four significant differences of Manimaran and 

Murthy’s work to what we proposed in this thesis: 

 

• They work with aperiodic task model. 

• When a task is parallelized, all its parallel subtasks (split tasks) have to start 

at the same time in order to synchronize their executions. 

• They equally split a task to thj processors (maximum degree of parallelization 

permitted that satisfy j
ic ) 

• Manimaran and Murthy algorithm is a variant of myopic algorithm proposed 

by Ramamritham et al. (1990). The myopic algorithm is a heuristic search 

algorithm that schedules dynamically arriving real-time tasks with resource 

constraints. 
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2.4.2 Work Limited Parallelism  
 

Similarly, Collete et al. (2007, 2008), investigated global scheduling of 

implicit deadline sporadic task systems with work-limited job parallelism upon 

identical parallel machines. In other words, they allow jobs to be executed on 

different processors at the very same instant.  

 

In this work, they considered a sporadic task system. Recall that, in sporadic 

task model, a task ( , , )i i i iC D Tτ =  is characterized by a worst-case execution 

requirement iC , a (relative) deadline iD , and a minimum inter-arrival separation iT , 

also known as period.  For a task iτ  and m identical processors, they provide an m-

tuple of real numbers ( ),1 ,2 ,, ,...
def

i i i i mγ γ γΓ = to model job parallelism, with the 

interpretation that a job of iτ  that executes for t  time units on j  processors 

completes ,i j tγ ×  units of execution. They observed that, full parallelism, which 

corresponds to the case where (1,2,..., )i mΓ = is not realistic. That is if full 

parallelism is allowed, the multiprocessor scheduling problem is equivalent to the 

uniprocessor one.  

 

Collete et al. assumed that a work-limited job parallelism with the following 

definition: 

 

Definition (from Collete et al., 2007, 2008): The job parallelism is said to be work-

limited if and only if for all iΓ we have: 

, '

,

'1 , 1 ' , i j

i j

ji n j j m
j

γ
γ

∀ ≤ ≤ ∀ ≤ < ≤ >  

 

One major difference of Collete et al.’s approach compared to our work is 

that they assumed an m-tuple of real numbers is given to guide them in splitting a 

job.  
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2.4.3 Maximum Workload Derivative First with Fragment 

Elimination (MWF-FE) 
 

Another significant work is by Lee et al. (2003).  They proposed an algorithm 

called “Maximum Workload derivative First with Fragment Elimination” (MWF-

FE) for the on-line scheduling problem. This algorithm utilizes the property of 

scalable tasks for on-line and real-time scheduling.  They assumed tasks are scalable 

if their computation time can be decreased (up to some limit) as more processors are 

assigned to their execution. They also defined the total amount of processors time 

devoted to the execution of a scalable task as the workload of the task. They 

assumed, as the number of processors allocated to a scalable task increases, its 

computation time decreases but its workload increases because of parallel execution 

overhead, such as contention, communication, and unbalanced load distribution. 

 

In Lee et al. algorithm, the total workload of all scheduled tasks is reduced by 

managing processors allocated to the tasks as few as possible without missing their 

deadlines. As a result, the processors in the system have lesser load to execute the 

scheduled tasks and can execute more newly arriving tasks before their deadlines. 

They also defined available processors due to their next allocation assignment as 

fragmented workload and need to eliminate it by allocating more processors to 

previously scheduled tasks. As more processors are allocated to a task, its 

computation is completed sooner. Figure 2.14 depicts the idea of minimizing total 

workload and eliminating a fragmented workload. 

 
 

Figure 2.14: (a) Minimizing total workload and (b) eliminating a fragmented 

workload (Lee et al., 2003)  
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2.4.4 Divisible Load Theory (DLT) 
 

In a series of papers (2006a, 2006b, 2007a, 2007b, 2007c) Lin et al. have 

extended the Divisible Load Theory known as DLT (Bharadwaj et al., 2003) to real-

time workloads. Since this thesis extends the work of Lin et al. (2006a, 2006b, 

2007a, 2007b, 2007c),  we will briefly review the fundamental and some current 

findings of DLT in this section. 

 

“Divisible load theory offers a tractable and realistic approach to scheduling 

that allows integrated modeling of computation and communication in parallel and 

distributed computing systems” (Robertazzi, 2003). DLT involves the study of an 

optimal distribution strategy that distributes loads among a collection of processors 

that link to each other via a network (Bharadwaj et al., 1996).  DLT thus seeks 

optimal strategies to split divisible loads into chunks/ fractions and send them to the 

processing nodes with the goal of minimizing the overall completion time (the 

“makespan”).  

 

Loads in DLT can be arbitrarily divided into pieces and distributed among the 

processors and links in a network system. An arbitrarily divisible load is a load that 

can be arbitrarily partitioned into any number of load fractions. Applications that 

have this kind of load are to be found in bioinformatics (e.g protein sequence 

analysis and simulation of cellular micro physiology), high energy and particle 

physics (e.g the CMS –Compact Muon Solenoid– and ATLAS –Atoroidal LHC 

Apparatus– projects), Kalman filtering (Sohn et al., 1998), image processing 

(Bharadwaj and Ranganath, 2002; Xiaolin et al., 2003), database searching 

(Drozdwoski, 1997) and multimedia processing (Balafoutis et al., 2003). It is 

assumed that there are no precedence relations among the distributed loads or to 

other loads.  

 

Most of the studies done in DLT research involve developing mechanisms for 

the efficient distribution and allocation of a given load to processors over a network 

such that all the processors complete processing their assigned sub-loads at the same 

time – this is sometimes referred to as the optimality principle in DLT.  
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Intuitively, the optimality principle yields a schedule with minimum 

makespan because any schedule that is not compliant with this principle can be 

improved by transferring some load from busy processors to idle ones when  some 

processors are idle while others are still busy (Bharadwaj et al., 1996). Optimal 

strategies for the distribution of loads have been obtained for several network 

topologies including linear daisy chains (Robertazzi, 1993), star network 

(Drozdowski and Wolniewicz, 2006), and bus and tree networks (Sohn and 

Robertazzi, 1993; Bharadwaj et al., 2000; Barlas and Bharadwaj, 2004).  

 

There have been further studies in terms of load distribution policies for two 

and three dimensional meshes (Drozdowski and Glazek, 1999) and hypercubes 

(Piriyakumar and Murthy, 1998).  In (Sohn and Robertazzi, 1998a, 1998b) the 

concept of time varying processor speed and link speed are introduced. There also 

have been study on multi-installment sequential scheduling (Bharadwaj et al., 1995; 

Barlas and Bharadwaj, 2000; Glazek, 2003; Drozdowski and Lawenda, 2005) and 

Multi-round algorithms (Yang et al., 2003; Marchal et al., 2005; Yang and Casanova, 

2005). Note that none of these deal with real-time workloads. 
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Figure 2.15: Single-Level Tree Network ∑ 
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We will briefly explain the concept of DLT using the single-level tree network.  

We chose to focus on this network topology due to its wide applicability in real-time 

systems (due to its applicability, earlier work on RT-DLT, such as the work of Lin et 

al. (2006a, 2006b, 2007a, 2007b, 2007c)) were also modeled using this network 

model). Greater details of DLT can be found in Bharadwaj et al. (1996).   

 

As illustrated in Figure 2.15, a single-level tree network, denoted as ∑, 

consists of (n+1) processors and N  links. The root processor P0 is connected to the 

child processors 1 2, ,..., nP P P via links 1 2, ,..., nL L L . The root processor divides the total 

load into ( 1n + ) fractions, denoted as 0 1 2, , ,..., nα α α α . 0P  will keep its own 

fraction 0α and distribute the remaining fractions to the child processors 1 2, ,..., nP P P  

in the sequence1, 2,..., n . Each processor will begin execution when it completes 

receiving its load fraction. 
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P1
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P3

Pn

0 0 cpw Tα
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Figure 2.16: Timing Diagram: Single-Level Tree Network with Front-End 
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In the DLT literature, strategies have been proposed to deal with processors 

both with and without front-end processing capabilities. In the case of processors 

with front end processing capabilities, it is assumed that some of the processors in 

the network are equipped with co-processors so that they are able to process their 

assigned load and communicate simultaneously. Figure 2.16 shows an example of 

timing diagram of communication and computation done in a single-level tree 

network with front-end processing capabilities.  Note that, the root processor P0 

starts its own computation of fraction 0α while sending the remaining fractions to the 

child processors.  

 

In clusters without front-end processing capabilities, processors can only 

compute or communicate at any given instant in time. Figure 2.17 depicts an 

example of timing diagram of communication and computation done in a single-level 

tree network without front-end processing capabilities.  In this network, the root 

processor 
0P  will only start its own computation of fraction 0α  after it has finished 

sending the other fractions to the child processors.  

 

In most DLT literature, the following notations (Bharadwaj et al., 1996) are 

used: 

Time taken by processor  to compute a given load
Time taken by a standard processor to compute the same load

i
i

Pw =  

 

Time taken to process a unit load by the standard processorcpT =  

 

Time taken by link  to compute a given load
Time taken by a standard processor to compute the same load

i
i

Lz =  

 

Time taken to communicate a unit load on a standard linkcmT =  
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Figure 2.17: Timing Diagram: Single-Level Tree Network without Front-End 

  

 

 

2.4.5 Real-time Divisible Load Theory (RT-DLT) 
 

The promising strategy of DLT has recently attracted the attention of the 

Real-time system research community.  Lin, Lu, Deogun, and Goddard (2007a, 

2007b, 2007c, 2007d, and 2007e) have applied results from Divisible Load Theory 

(DLT) to the scheduling of arbitrarily divisible real-time workloads upon 

multiprocessor. To the best of our knowledge, these are among the earliest attempts 

to study the application of DLT to real-time computing system.  Among other results, 

they obtained elegant solutions to the following two problems: 

 

i. Given a divisible job and a specified number of processors upon 

which it may execute, determine how this job should be divided 

among the assigned processors in order to minimize the time at which 

it completes execution. 

 

ii. Given a divisible real-time job, determine the minimum number of 

processors that must be assigned to this job in order to ensure that it 

complete by its deadline. 
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In the initial work of Lin et al (2006a, 2006b, 2007a), they investigated the 

use of DLT to enhance the quality of service (QoS) and provide performance 

guarantees in cluster computing environments.  The main contributions made in this 

work were in providing the first formal definitions of RT-DLT, and in proposing a 

scheduling framework integrating DLT and EDF (Earliest Deadline First) 

scheduling. They conducted series of extensive simulation experiments and based 

upon the outcome of these experiments, they made some anomaly observations 

which, they note, seem to disagree with previously-published results in conventional 

(non real-time) DLT.   

 

Lin et al. (2007b) further extended their work on RT-DLT. They studied a 

problem where if the required number of processors to process a job are not available 

and the job waits for some currently running jobs to finish and free additional 

processors. This essentially causes a waste of processing power as some processors 

are idle within the waiting period.  They refer this problem as Inserted Idle Times 

(IITs) problem. They proposed a new real-time divisible load scheduling approach 

that utilizes IITs. Two contributions were made in this work. First, they mapped a 

cluster with different processor available times to a heterogeneous cluster of “virtual 

processors” which may each have different processing capabilities but all of which 

are assumed to be available simultaneously. A DLT heterogeneous model is then 

applied to guide task partitioning, to derive a task execution time function and to 

approximate the minimum number of processors required to meet a task deadline. 

Second, they proved that executing the partitioned subtasks in the homogenous 

cluster at different processor available times leads to completion times no later than 

the estimates. This result is then applied to develop a new divisible load scheduling 

algorithm that uses IITs and provides real-time guarantees. 

 

Using the same motivation in (2006a, 2006b, 2007a, 2007b), Lin et al. 

(2007c) proposed another strategy to further make use of IITs.  They claimed that 

when certain conditions hold, the enhanced algorithm can optimally partition and 

schedule jobs to fully utilize IITs.  Two contributions are made in this work. First, 

they proposed a new partitioning approach to fully utilize IITs and investigated its 

applicability constraints. Second, they integrated this with their previous work 

(2006a, 2006b, 2007a, 2007b) and proposed a new real-time scheduling algorithm. 
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2.4.6 Extending Real-time Divisible Load Theory (RT-DLT) 
 

We investigated the anomaly observations found in Lin et al. (2006a, 2006b, 

2007a) and provide theoretical explanation using recent results from real-time 

multiprocessor scheduling theory. We presented this work in greater detail in 

Chapter 3.  We also studied the work of Lin et al. (2007b, 2007c) and observed that 

their scheduling algorithms are inefficient. Thus, we proposed two alternatives 

algorithms that significantly improved the previous algorithms by Lin et al. (2007b, 

2007c). We presented these works in Chapter 4 and Chapter 5.  Figure 2.18 depicts 

the research roadmap of our work in extending RT-DLT of Lin et al. (2006a, 2006b, 

2007a, 2007b, 2007c). 
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Figure 2.18: Research Roadmap 
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CHAPTER 3 
 

 

 

 

DEADLINE-BASED SCHEDULING OF  

DIVISIBLE REAL-TIME LOADS 
 

 

 

 

 
3.1 Introduction 
 

The previous chapter highlighted the shortcomings of the traditional 

workload models used in the real-time multiprocessor scheduling.  We have also 

briefly introduced some of the approaches that had been proposed to address these 

difficulties. Among the significant approaches is the application of DLT to real-time 

workloads.  In this chapter, we will report our first extension of the initial work of 

Lin et al. (2006a, 2006b, 2007a).  Lin et al. (2006a, 2006b, 2007a) proposed a 

scheduling framework integrating DLT and EDF. They conducted a series of 

extensive simulation experiments comparing the proposed framework with other 

approaches.  Based upon the outcome of these experiments, they made some 

observations which, they note, seems to disagree with previously-published results in 

conventional (non real-time) DLT. Our results here provide a theoretical analysis of 

some of these observations, and thereby help identify the kinds of systems for which 

these observations hold. 
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The remainder of this chapter is organized as follows.  In Section 3.2, we 

discuss the overall picture of how Lin et al. (2006a, 2006b, 2007a) applied DLT to 

real-time workloads, and their apparently anomalous observations.  In Section 3.3 we 

present our analysis and theoretical explanation by using some fundamental theories 

of real-time scheduling. We conclude this chapter in Section 3.4. 

 

 

 

3.2 Application of DLT to Real-time workloads 
 

Now let us recall the fundamental definitions used in RT-DLT: 

 

Task Model 

Each divisible job iJ  is characterized by a 3-tuple ( , , )i i iA Dσ , where 0iA ≥  is the 

arrival time of the job, 0iσ >  is the total load size of the job, and 0iD >  is its 

relative deadline, indicating that it must complete execution by time-instant i iA D+ .  

 

System Model 

The computing cluster used in DLT is comprised of a head node denoted 0P , which is 

connected via a switch to n processing nodes denoted 1 2, ,..., nP P P . All processing 

nodes have the same computational power, and all the links from the head to the 

processing nodes have the same bandwidth.   

 

Assumptions 

 

• The head node does not participate in the computation – its role is to accept or 

reject incoming jobs, execute the scheduling algorithm, divide the workload and 

distribute data chunks to the processing nodes.  

 

• Data transmission does not occur in parallel: at any time, the head node may be 

sending data to at most one processing node. However, computation in different 

processing nodes may proceed in parallel to each other. 
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• The head node, and each processing node, is non-preemptive. In other words, the 

head node completes the dividing and distribution of one job's workload before 

considering the next job, and each processing node completes executing one job's 

chunk before moving on to the chunk of any other job that may have been 

assigned to it. 

 

• Different jobs are assumed to be independent of one another; hence, there is no 

need for processing nodes to communicate with each other. 

 

 

 

According to DLT, linear models are used to represent transmission and 

processing times (Bharadwaj et al., 2003). The computation time of a load of size iσ  

is equal to i mCσ × , while the processing time is equal to i pCσ × , where mC is a cost 

function for transmitting a unit workload and pC is a cost function for processing a 

unit workload.  For the kinds of applications considered in (2006a, 2006b, 2007a) the 

output data is just a short message and is assumed to take negligible time to 

communicate.  To summarize, a computing cluster in DLT is characterized by a 3-

tuple ( , , )p mn C C where n denotes the number of processing nodes, and pC and 

mC denote the amount of time taken to process and transmit a unit of work, 

respectively. For a given computing cluster, let β  be defined as follows: 

 

 

                         
( )

def
p

p m

C
C C

β =
+

                                                                    (3.1) 
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3.2.1 Scheduling Frameworks 

 
To evaluate the applicability of DLT for real-time workloads, Lin et al. 

(2006a, 2006b, 2007a) proposed a set of scheduling frameworks combining 

scheduling algorithms, node assignment strategies, and task partitioning strategies.  

Figure 3.1 depicts an abstraction of these frameworks.  

 

 

 

Jobs Queue

Selected Job

Arrival Jobs

Scheduling Strategy

Partitioning Strategy Switch

Partitioned Job

P1

P2

P3

Pn

P0

Ji=(Ai, i, Di)

Node Assignment Strategy

 
 

 

Figure 3.1: The abstraction of RT-DLT framework.  

 

 

As shown in Figure 3.1, each arrival jobs ( , , )i i i iJ A Dσ=  will be placed in 

the Jobs Queue. The Scheduling Strategy decide the execution order, the Node 

Assignment Strategy compute the number of processors needed for a task execution 

and Partitioning Strategy distribute a job into subtasks and send each subtask to each 

processors via a switch. 
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3.2.1.1 Scheduling Algorithms 
 

The scheduling algorithms investigated in the framework are: 

 

• First-in First-out (FIFO) Jobs are considered by the head node in the 

order in which they arrive: job ( , , )i i i iJ A Dσ=  is considered before 

( , , )k k k kJ A Dσ=  if i kA A< (ties broken arbitrarily). Observe that FIFO is 

not really a “real-time" strategy, in the sense that it does not take into 

account the temporal constraints on the system. 

 

• Earliest Deadline First (EDF) Jobs are considered by the head node in 

the order of their (absolute) deadlines: if jobs ( , , )i i i iJ A Dσ=  and 

( , , )k k k kJ A Dσ= are both awaiting service and the head node chooses iJ , 

then i i k kA D A D+ < + (ties broken arbitrarily). 

 

• Maximum Workload-derivative First (MWF) This algorithm (Lee et 

al., 2003) is evidently one that is used extensively in conventional (non 

real-time) DLT; since (Lin et al., 2006a, 2006b, 2007a) concluded that 

this is not particularly suited for real-time computing; we will not discuss 

it further in this chapter. 

 

 

3.2.1.2 Node Assignment Strategies 
 

The scheduling algorithm (discussed above) is used to determine which waiting 

job is next considered for dispatch by the head node. In addition, the head node is 

responsible for determining how many processing nodes to assign to this selected job 

--- this is the responsibility of the node assignment strategy.  
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The node assignment strategies considered by Lin et al. (2006a, 2006b, 2007a) 

are: 

 

• All nodes (AN). All n processing nodes in the cluster are assigned to one 

single job currently selected by the head node. This strategy thus tries to 

finish the current task as early as possible, and then continue with other 

waiting jobs. 

 

• Minimum nodes (MN). A job is assigned the minimum number minn  of 

processing nodes needed in order to complete prior to its deadline, thereby 

saving the remaining processors for other jobs. 

 

In essence, AN tends to treat the cluster as a uniprocessor platform, as one task 

is assigned to all available processors.  In contrast, MN attempts to maximize the 

degree of parallelism in processing the workload by assigning the fewest possible 

processors to each job, and a larger number of jobs can be processed simultaneously 

in parallel. 

 

 

3.2.1.3 Partitioning Strategies 
 

After selecting the next job to execute and the number of processing nodes to 

assign to it, the head node next determines how to partition the job's workload among 

the assigned processors. A naive approach may be to partition the workload equally 

among the assigned processing nodes -- this is referred to as the Equal Partitioning 

Rule (EPR). However, EPR is provably non-optimal for clusters in which the 

communication cost mC is non-zero. Instead, Lin et al. (2006a, 2006b, 2007a) derived 

a superior partitioning strategy, the Optimal Partitioning Rule (OPR).  
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Figure 3.2: Timing diagram for EPR-based partitioning 

 

 

Figure 3.2 illustrates the time diagram produced by the EPR-based 

partitioning.  This diagram shows the cost functions: the data transmission time on 

each link and the data processing time on each processing node. The data 

transmission time on each link is defined as /mC nσ  and the data processing time on 

each node is defined as /pC nσ , where σ  is the workload size, mC is the cost of 

transmitting a unit workload, pC  is the cost of processing a unit workload and n is 

the total number of processing nodes allocated to the workload. By analyzing this 

time diagram the workload execution time is defined as: 

 

              ( , ) p
m

C
n C

n
σ

ξ σ σ= +   (3.2) 

 

 

The time diagram produced by the OPR-based partitioning strategy is shown 

in Figure 3.3. In DLT it is known that the completion time of a job on a given set of 

processing nodes is minimized if all the processing nodes complete their execution of 

the job at the same instant. OPR is based upon this DLT optimality principle. 
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Figure 3.3: Timing diagram for OPR-based partitioning 

 

 

For a given divisible workload ( , , )i i iA Dσ and a given number of processing 

nodes n, let jα denote the fraction of the load assigned to the j'th processing node, 

0 1jα< ≤ , 
1

1n
jj

α
=

=∑ , mC is the cost of transmitting a unit workload and pC  is the 

cost of processing a unit workload. Thus, we will have the following cost function: 

the data transmission time on thj link is j mCα σ  and the data processing time on 

thj node is j mCα σ . Using the DLT optimality principle, the workload execution time 

can be defined as follows: 

 

 

 

1 1

1 2 2

1 2 3 3

( , )

( )

( )

...

m p

m p

m p

n C C

C C

C C

ξ σ α σ α σ

α α σ α σ

α α α σ α σ

= +

= + +

= + + +   

 1 2( ... )n m n pC Cα α α σ α σ= + + + +  (3.3) 
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Lin et al. (2006a, 2006b, 2007a) then show that an application of the 

optimality principle results in the following values for the 
iα  's: 

 

1
1
1 n

βα
β
−

=
−

  (3.4) 

 
1

1,
j

jα β α−=  for j > 1  (3.5) 

 

 

The job execution time is also defined as: 

 

1( , ) ( )
1 p mnn C Cβξ σ σ

β
−

= +
−

  (3.6) 

 

Assuming a job has a start time s , where s A≥ , then to meet the job’s deadline, it is 
necessary that: 
 
 

( , )s n A Dξ σ+ ≤ +   (3.7) 

 

 
Using the equation (3.5), Lin et al. (2006a, 2006b, 2007a) derived the minimum 

number of processors minn  needed to complete this job by its deadline: 

 

 min ln
ln

n γ
β

⎡ ⎤
= ⎢ ⎥
⎢ ⎥

 (3.8) 

 
 

Where, 1 mC
A D s
σγ = −
+ −

and β  is as defined in equation (3.1). 
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To further understand the application of DLT to real-time cluster-based scheduling, 

Lin et al. (2006a, 2006b, 2007a) also derived the time function and minn  for EPR-

based partitioning. Recall that the job execution time is defined as 

( , ) p
m

C
n C

n
σ

ξ σ σ= + . Assuming that a job has a start time is , then the task 

completion time is ( ) ( , )iC n s nξ σ= + , then to meet the job’s deadline, it is 

necessary that ( )C n A D≤ + . That is: 

 

              p
m

C
s C A D

n
σ

σ+ + ≤ +   (3.9) 

 
Thus,  
 
 

              p

m

C
n

A D s C
σ

σ
≤

+ − −
  (3.10) 

 
 
Using the equation (3.9), Lin et al. (2006a, 2006b, 2007a) derived the minimum 

number of processors minn  needed to complete this job by its deadline as: 

 

              min p

m

C
n

A D s C
σ

σ
⎡ ⎤

= ⎢ ⎥+ − −⎢ ⎥
  (3.11) 
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3.2.2 An Apparent Anomaly  
 

Using the scheduling framework described above, Lin et al. (2006a, 2006b, 

2007a) generated 10 scheduling algorithms: EDF-OPR-MN, EDF-OPR-AN, EDF-

EPR-MN, EDF-EPR-AN, FIFO-OPR-MN, FIFO-OPR-AN, FIFO-EPR-MN, FIFO-

EPR-AN, MWF-OPR-MN and MWF-EPR-MN.  Based upon extensive simulations 

over a wide range of system parameters, Lin et al. (2006a, 2006b and 2007a) 

concluded that the EDF-OPR-AN combination performs the best from among the 10 

different combinations they evaluated. It is reasonable that EDF be the scheduling 

algorithm in the optimal combination since it is the only “real-time" cognizant 

scheduling algorithm among the three considered. Similarly, it is not surprising that 

OPR be the optimal workload partitioning strategy, given that the other strategy 

evaluated in the simulation experiments – EPR – is provably inferior. 

 

However, they found the conclusion that the AN node-assignment strategy is 

superior to the MN strategy somewhat surprising, since prior published results from 

conventional DLT strongly indicate that MN assigning the minimum number of 

processing nodes per job and -- hence maximizing parallelism – is a superior strategy 

to AN.  

 

 

 

3.3 A Comparison of EDF-OPR-AN and EDF-OPR-MN 
 

As stated in the previous section, Lin et al. (2006a, 2006b, 2007a) were 

somewhat surprised to observe that EDF-OPR-AN seems to perform better than 

EDF-OPR-MN for real-time systems. In this section, we attempt to explain these 

apparently anomalous findings. Observe that the AN strategy, by assigning all the 

processing nodes to a single job at each instant in time, reduces to a variant to 

uniprocessor EDF, while the MN strategy, which attempts to maximize inter-job 

parallelism, more closely resembles multiprocessor EDF. Hence it behooves us to 

first review known results concerning uniprocessor and multiprocessor EDF, which 

we do in Section 3.3.1 below.   
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In Section 3.3.2, we take a closer look at the role played by the head node. 

Regardless of the node assignment strategy used, each job must first be processed by 

the head node. If a significant fraction of the time taken to process a job is spent at 

the head node, then the overall processing of the job is more likely to resemble the 

uniprocessor scheduling of the head node bottleneck. We identify conditions under 

which such a bottleneck occurs, thereby identifying conditions in which EDF-OPR-

AN is a particularly appropriate scheduling framework.  

 

In Section 3.3.3, we study conditions under which the head node is not a 

bottleneck. Under such conditions, the tradeoff between the AN and MN strategies is 

highlighted by considering the cost of executing a job under both strategies, where 

the cost is defined to be the product of the number of processors used and the total 

execution time. We will see that the AN strategy has a greater cost per job. But, it 

will turn out that the conditions that result in the head node not becoming a 

bottleneck are also responsible for ensuring that the cost of the AN strategy does not 

exceed the cost of the MN strategy by too much. This fact, in conjunction with the 

well-known superior behavior of uniprocessor EDF as compared to multiprocessor 

EDF, results in EDF-OPR-AN once again performing better than EDF-OPR-MN. 

 

 

 

3.3.1 Uniprocessor and multiprocessor EDF Scheduling of 

 “traditional” jobs 
 

With respect to traditional (as opposed to divisible) workloads, as we 

mentioned in the earlier chapter, EDF is known to be an excellent scheduling 

algorithm for uniprocessor platforms under a wide variety of conditions. For 

preemptive systems of independent jobs, it has been shown (Dertouzos, 1974) to be 

optimal in the sense that if any scheduling algorithm can schedule a given system to 

meet all deadlines, then EDF, too, will meet all deadlines for this system.  
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For non-preemptive systems, too, it has been shown (Jeffay, Stanat and 

Martel, 1991) to be optimal under specific well defined conditions. Furthermore, 

efficient tests have been designed for determining whether given systems are 

successfully scheduled or not, by both preemptive and non-preemptive uniprocessor 

EDF.  

 

For multiprocessor platforms, EDF is not quite as good an algorithm. It is 

provably not optimal for scheduling collections of independent jobs. Recall, for 

instance, Theorem 2.1 in Chapter 2: any system of independent jobs for which a 

schedule meeting all deadlines exists on an m-processor platform can be scheduled to 

meet all deadlines by EDF on an m-processor platform in which each processor is 

12
m

⎛ ⎞−⎜ ⎟
⎝ ⎠

 times as fast. This bound is known to be tight, in the sense that systems have 

been identified that are feasible on m-processor platforms but which EDF fails to 

successfully schedule on m-processor platforms in which the individual processors 

are less 12
m

⎛ ⎞−⎜ ⎟
⎝ ⎠

 that times as fast. Similarly pessimistic results are known for EDF-

scheduling on multiprocessor platforms in which different processors have different 

speeds of computing capacities, as well as for non-preemptive scheduling.  

 

A further known fact (Baker and Baruah, 2007) concerning multiprocessor 

EDF scheduling will prove useful to us. Let us recall the density of a (traditional) job 

( , , )i i i ij A C D=  to be the ratio of its execution requirement to its relative 

deadline ( ) ( / )i i ij C Dδ = , and the system density of a system of jobs to be the largest 

density of any job in the system. It has been observed that the larger the system 

density, the poorer the performance of multiprocessor EDF tends to be in scheduling 

that system of jobs. More specifically, it has been observed (Baruah et. al, 1991) that 

the Effective Processor Utilization (EPU) --- the fraction of the computing capacity 

of the computing platform that is guaranteed to be devoted to executing jobs that do 

meet their deadlines --- tends to decrease with increasing system density, when 

multiprocessor EDF is the scheduling algorithm used. 
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3.3.2 When the head node is a bottleneck 
 

We now return to the divisible load model. Depending on the node-

assignment strategy used, multiple jobs may be executing simultaneously. However, 

each job iJ , with workload iσ  must first be processed by the head node. Now all that 

the head node does is distributing the workload to the processing nodes. But since it 

does so sequentially, the amount of time needed to complete this data distribution is 

equal to ( )i mCσ × .  

 

It therefore follows that ( )i mCσ × is a lower bound on the amount of time 

taken by the bottleneck head node to process a job of workload size iσ , regardless of 

which node assignment strategy is used. This leads to the following observation: 

 

 

Observation 1 For a given sequence of divisible jobs 1{( , , )}i i i iA Dσ ≥  to be 

schedulable under any node assignment strategy, it is necessary that the sequence of 

traditional jobs 1{ ( , , )}i i m i iA C Dσ ≥= ×  , be schedulable on a uniprocessor.  

 

 

Equation 3.6 gives the amount of time ( )nξ  needed to execute a job with workload 

σ  upon n processors under the OPR partitioning strategy. Using the definition of β  

in (Equation 3.1) in Equation 3.6, we obtained: 
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Since mC denotes the rate at which data is transmitted from the head node to 

the processing nodes, mCσ  represents a lower bound on the amount of time needed 

to complete execution of a job of sizeσ . Equation 3.12 above tells us that the 

amount of time taken to complete the execution of a job when assigned n processing 

nodes is equal to this lower bound, inflated by a factor 1
(1 )nβ−

.  Hence if 1
(1 )nβ−

 

is very small, then the time taken to complete the execution of this job is very close 

to the lower bound. Keeping this observation in mind, it become our interest to 

evaluate the behavior of EDF-OPR-AN.  

 

In this strategy, at each instant in time all N processing nodes are devoted to 

executing one job – the one currently selected by the head node. Hence the duration 

of time devoted to executing a job of workload size σ is equal 

to ( ) (1/ (1 ))n
mCσ β× − , and no other jobs get executed at all during this time. This 

leads to Observation 2 below: 

 

 

Observation 2 For a given sequence of divisible jobs 1{( , , )}i i i iA Dσ ≥  to be 

schedulable under the EDF-OPR-AN strategy, it is sufficient that the sequence of 

traditional jobs 1{ ( , (1/ (1 ), )}n
i i m i iA C Dσ β ≥= × × − , be schedulable on a 

uniprocessor. 

 

 

Recall that in DLT, a platform (also known as a computing cluster) is 

characterized by the 3-tuple ( , , )p mn C C , with n denoting the number of processing 

nodes in the cluster and Cp and Cm denoting the amount of time taken to process and 

transmit a unit of work, respectively. On the basic of Observations 1 and 2, we can 

identify certain computing clusters upon which EDF-OPR-AN is likely to perform 

particularly well in comparison to other node-assignment strategies. 
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Lemma 1 EDF-OPR-AN is a particularly appropriate scheduling framework for 

computing clusters in which 

n

p

p m

C

C C+

⎛ ⎞
⎜ ⎟
⎝ ⎠

 is small. 

 

 

Proof: We will show that the sufficient condition of Observation 2 is very close to 

the necessary condition of Observation 1 when 
n

p

p m

C

C C+

⎛ ⎞
⎜ ⎟
⎝ ⎠

is small. Indeed, observe 

that p

p m

def C

C C
β =

+

⎛ ⎞
⎜ ⎟
⎝ ⎠

. Hence, 1
(1 )nβ−

 decreases with decreasing
n

p

p m

C

C C+

⎛ ⎞
⎜ ⎟
⎝ ⎠

, becoming 

arbitrarily close to 1 as 
n

p

p m

C

C C+

⎛ ⎞
⎜ ⎟
⎝ ⎠

becomes arbitrarily small. And for values of 

1
(1 )nβ−

 close to 1, the traditional jobs referred to in the statement of Observation 2 

become almost identical to the ones in the statement of Observation 1.   
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Since schedulability of the jobs in the statement of Observation 1 is necessary 

for the DLT system to be schedulable, it follows that the sufficient condition for 

EDF-OPR-AN is close to the necessary condition, and hence EDF-OPR-AN is close 

to optimal.  

 

To understand the implications of Lemma 1, let us consider computing 

clusters in which p mC C (i.e., pC  is a lot smaller than mC ) or p mC C≈  (i.e., the 

values of pC  and mC  are of comparable magnitude). We note that these seem 

reasonable scenarios since: 

 

i) Data-transmission rates in computing clusters are typically far slower than 

processing rates, rather than the other way around. 

 

ii) For the types of DLT systems considered by Lin et al. (2006a, 2006b, 2007a), 

recall that it is assumed that a linear model is used to represent processing 

cost – the processing time for a workload of size x  is assumed to equal 

px C× . Under such an assumption, it follows that the processing algorithm 

that is being implemented, and executed upon the processing nodes, is a 

linear-time algorithm. This argument rules out the possibility that the 

algorithm being implemented has such a high computational complexity that 

data-transmission costs are actually dominated by processing costs. 

 

iii) And finally, even for those rare example clusters in which pC  is 

currently mC , technological trends (as exemplified by Moore's Law) are 

such that pC  tends to decrease at a far greater rate than mC . As a 

consequence, it is highly likely that pC  will become mC≈  in the not-too-

distant future even for these clusters. 
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For instance if p mC C≤ , it follows that 0.5β ≤ . Table 3.1 bounds the factor 

by which the execution requirement of each job gets inflated beyond its lower bound, 

according to Observation 2: 

 

 

Table 3.1: Bound on Inflation Factor 

n BOUND ON INFLATION FACTOR 

3 

4 

5 

10 

1.15 

1.07 

1.03 

1.001 

 

 

 

As the table above indicates, for a computing cluster with 5 processing 

nodes ( 5)n = , the execution requirement of each traditional job to which each 

divisible job may be considered mapped is within 3% of its lower bound, when EDF-

OPR-AN is the scheduling framework used. For n = 10 the inflation factor is 

negligible – less than one-tenth of one percent. Based upon these numbers and the 

known optimality of uniprocessor EDF (Jeffay et al., 1991), we may conclude that 

for computing clusters with p mC C≈  and 5n ≥ , EDF-OPR-AN offers near-optimal 

performance. 

 

 

 

3.3.3 When the head node is not a bottleneck 
 

As stated in Section 3.1.2, Lin et al. (2006a, 2006b, 2007a) were somewhat 

surprised to observe that, contrary to expectations (based upon results from 

conventional DLT), the EDF-OPR-AN strategy seems to perform better than the 

EDF-OPR-MN strategy for real-time systems. In Section 3.2.2 above, we provided 

part of the explanation for the apparent anomaly identified by Lin et al. (2006a, 
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2006b, 2007a), by identifying certain conditions in which EDF-OPR-AN is a 

particularly appropriate scheduling framework.  

 

We now examine the situation when these conditions are not satisfied. For 

these situations, we obtain a different set of reasons to explain EDF-OPR-AN's 

superior behavior. Now, the major difference between an “AN”(all nodes) and “MN” 

(minimum number of nodes) strategy is highlighted by the cost of executing a job, 

where the cost is defined to be the product of the number of processors used and the 

total execution time: 

 

   

 
( ) ( )

1m n

x n n n
nC

ξ

σ
β

= ×

= ×
−

 (3.13) 

 
Although Equation 3.8 showed that increasing the number n of processing 

nodes assigned to a job decreases the time ( )nξ  needed to execute it, Equation 3.13 

above illustrates that the cost ( )x n of executing a job increases with increasing n. 

Consequently, an “MN” strategy incurs lower overall cost by minimizing the number 

of processing nodes assigned to a job, as compared to an “AN” strategy. For 

example, we would expect an “MN" strategy to use a smaller fraction of the 

computing capacity of the cluster as compared to an “AN” strategy, in order to 

actually execute any particular job.  

 

Contrasted against this greater efficiency of the “MN” strategy is the well-

known superior performance of uniprocessor EDF as opposed to multiprocessor 

EDF.  As explained in Section 3.2.1, uniprocessor EDF is characterized by a 

significantly greater Effective Processor Utilization (EPU) than multiprocessor EDF. 

Since EDF-OPR-AN reduces to uniprocessor EDF while EDF-OPR-MN reduces to 

multiprocessor EDF, the tradeoff is that while EDF-OPR-MN incurs lower costs in 

actually executing a job, the fraction of the platform capacity that is used for such 

execution is also correspondingly lower than for EDF-OPR-AN. 
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In the remainder of this section, we compare the relative effects of these two 

factors, and use this comparison to explain the apparently anomalous empirical 

observations of Lin et al. (2006a, 2006b, 2007a). 

 

 

Table 3.2: Cost, for selected values of β and n (assuming 1mCσ = ). 

n β 

 0.75 0.8 0.9 0.95 0.99 0.999 

1 4.00 5.00 10.00 20.00 100.00 1000.00 

3 5.19 6.15 11.07 21.03 101.01 1001.00 

4 5.85 6.78 11.63 21.56 101.51 1001.50 

5 6.56 7.44 12.21 22.10 102.02 1002.00 

10 10.60 11.20 15.35 24.92 104.58 1004.51 

 

 

 

§1. The relative cost. The case of interest is when p mC C (since otherwise the 

results in Section 3.2.2 provide adequate explanation for EDF-OPR-AN's superior 

performance). By the definition of β (Equation 1), it follows that 1β → . Table 3.2 

lists some values of 
1 n

n

β−
for different values of n, for some values of β  close to 

one. The critical observation is that for largeβ , the cost does not increase by a large 

factor with increasing n. For instance, in a cluster with 10 processing nodes 

and 0.99β = , an all-nodes strategy cannot inflate the cost of a job by a factor greater 

than 1.05. Even when β  is as low as 0.9, the inflation is bounded from above by a 

1.54 factor. While the inflation in cost is greater for smallerβ , for example, for 

0.75β = and 10n =  the inflation is 10.6 / 4 2.7≈ . Recall that for such smaller β  the 

headnode bottleneck is the dominating effect: for 0.75β =  and 10n = , the inflation 

factor 1
(1 )nβ−

of Observation 2 is a mere 1.05%.  
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These observations are formalized in the following: 

 

 

Observation 3 For computing clusters with a large value for β , the cost inflation 

experienced by jobs executed under an AN strategy is small. 

 

 

As we will see next, this slight inflation in total cost tends to be more than 

offset by the decrease in Effective Processor Utilization (EPU) experienced by EDF-

OPR-MN vis-à-vis EDF-OPR-AN.  

 

 

§2. The EPU effect. With respect to any node-assignment strategy, we define a 

mapping from each divisible job to a “traditional” (non-divisible) job as follows. 

Suppose that the node-assignment strategy assigns a job ( , , )i i iA Dσ  to in processing 

nodes. Ignoring for the moment the bottleneck head node, from the perspective of the 

processing nodes we can look upon this assignment as transforming the divisible job 

into a traditional job ( , (1 (1 ), )in
i i m iA C Dσ β× × − on a single processor, this single 

processor being a virtual one obtained from the in  processing nodes, and that exists 

only for the duration of the job's execution.  

 

Since EDF-OPR-MN assigns the minimum possible number of processing 

nodes to each job, it is likely that these jobs will complete very close to their 

deadlines. More specifically, consider a job ( , , )i i i iJ A Dσ= . The number of 

processors minn  assigned to this job under the EDF-OPR-MN combination of 

strategies is such that min(1 )n
iσ β− is relatively large compared to iD . Recalling 

(Section 3.2.1) that the ratio of the execution requirement of a traditional job to its 

relative deadline parameter is called its density, this immediately yields Observation 

4 below: 
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Observation 4 Under EDF-OPR-MN scheduling, divisible jobs tend to be mapped 

on to traditional jobs of high density. 

 

 

As stated in Section 3.2.1, it has been observed that multiprocessor EDF on 

traditional jobs exhibits poor Effective Processor Utilization (EPU) on high-density 

systems: 

 

 

Observation 5 The scheduling component (i.e., EDF) of the EDF-OPR-MN 

scheduling framework exhibits poor performance, in the sense that it is unable to 

make effective use of a significant fraction of the computing capacity of the platform. 

 

 

Recall that we had identified a tradeoff of increased cost versus poorer EPU. 

Observations 3 and 5 provide estimates for comparing these two effects, yielding the 

following lemma: 

 

 

Lemma 2 For computing clusters with largeβ, EDF-OPR-MN is a poor scheduling 

framework compared to EDF-OPR-AN. 

 

 

Proof: Observation 3 above asserts that the cost inflation suffered by individual jobs 

is relatively small under the EDF-OPR-MN strategy upon such computing clusters, 

while Observation 5 states that the loss of EPU is high. Taken together, these two 

factors yield the lemma. 
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3.4 Summary 
 

In this chapter, we have taken a close theoretical look at the kind of real-time 

divisible loads studied by Lin et al. (2006a, 2006b and 2007a). Using recent results 

from “traditional” multiprocessor scheduling theory, we have provided satisfactory 

explanations for the apparently anomalous observation reported that an “all nodes” 

(AN) node-assignment strategy appears to significantly out-perform a “minimum 

number of nodes" (MN) strategy in the scheduling of real-time divisible workloads.  
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CHAPTER 4 
 

 

 

 

SCHEDULING DIVISIBLE REAL-TIME LOADS  

ON CLUSTER WITH  

VARYING PROCESSOR START TIMES 
 

 

 

 

 

4.1 Introduction 
 
 

We have described the foundations of the initial work on RT-DLT (Lin et al., 

2006a, 2006b, 2007a) in the previous chapters. While scheduling a particular 

divisible job, Lin et al. (2006a, 2006b, 2007a) assumed in this initial work that all the 

processors under consideration are simultaneously available to the job.  Later, Lin et 

al. (2007b, 2007c) extended their work on RT-DLT to address the problem of 

distributing arbitrarily parallelizable real-time workloads among processors which 

become available at different instants in the future. They proposed an approximation 

algorithm to determine the smallest number of processors needed to complete the 

divisible job by its deadline. We consider the same problem in this chapter, and 

improve upon their results by providing with an efficient algorithm for solving this 

problem.  
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In the following section, we will describe in greater detail the issues that 

motivate consideration of this problem.  In Section 4.3 and 4.4, we discuss the prior 

approaches that have been proposed for solving it.  In Section 4.5, we present our 

efficient algorithm. We performed a series of simulations to compare the 

performance of these algorithms; we discuss the results of these experiments in 

Section 4.6. Finally we, conclude this work in Section 4.7. 
 

 

 

4.2 Motivation 
 

The initial work on RT-DLT assumed that all the processors to be allocated to 

the divisible job are simultaneously available. However, this is often not the case 

since some processors may have been allocated to previously-admitted (and 

scheduled) jobs — such processors will only become available once the jobs to 

which they have been allocated have completed execution upon them. When 

scheduling a given job, if a sufficient number of processors are available then the 

processors are allocated and the job is started. But if the required number of 

processors are not available, prior techniques required that the job be delayed until 

currently running jobs have finished and freed up an adequate number of additional 

processors. This causes a waste of computing capacity since some processors are idle 

even though there are waiting jobs; in the real-time context, such wastage can lead to 

missed deadlines.  

 

In an attempt to lessen the deleterious effects of such waste on overall system 

performance, Lin et al. extended RT-DLT in (2007b, 2007c) to be applicable in a 

more general framework, in which each processor only becomes available to the job 

at a specified instant in the future.  Their approach was to model such a cluster as a 

heterogeneous cluster, comprised of processors that are all available immediately, 

but have different computing capacities.   
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In this manner, they transformed the problem of different ready times for the 

processors to one of identical ready times but different computing capacities, which 

they subsequently solved (approximately) by extending the strategies that had 

previously been used for the analysis of homogeneous clusters. 

 

In this chapter, we study the problem of determining the minimum number of 

processors that must be assigned to a job in order to guarantee that it meets its 

deadline, on clusters in which all processors are not simultaneously available. We 

provide efficient solutions to this problem, thereby improving on the approximate 

solutions of Lin et al. (2007b, 2007c). Our approach is very different from the 

approach of Lin et al. (2007b, 2007c), in that we have chosen to directly work with 

identical processors and different ready times (rather than first transforming to the 

heterogeneous cluster model). 

 

 

 

4.3 Foundation 
 

4.3.1 Processor Ready Times 
 

As we mentioned earlier, the initial work on RT-DLT assumed that all 

processors are simultaneously made available to a job.  In recent work of Lin et al. 

(2007b, 2007c), they further extend this model to allow for the possibility that all the 

processors are not immediately available. In this extended model, at any instant in 

time at which the head-node is determining whether to accept an incoming job or not 

(and if so, how to divide the job and allocate the pieces to the processors), there is a 

vector 1 2, ,... nr r r of positive real numbers, with ir , called the ready time of iP , 

denoting the earliest time-instant (at or after the present) at which the i’th processing 

node   becomes available. In this chapter, we retain the assumption made by Lin et al. 

(2007b, 2007c) that iP  can only participate in data transmission and/ or computation 

of the job currently under consideration at or after time-instant ir .   
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Since this work extends the work of Lin et al. (2007b, 2007c), we briefly 

review some of the results from the previous chapter. We start out with the simpler 

model — all processor have the same ready time, and then proceed to the more 

challenging model in which different processors become available at different times 

in the future. 

 

 

 

4.3.2 Processors with Equal Ready Times  
 

In (Lin et al., 2006a, 2006b, 2007a), it is assumed that all the processors, 

upon which a particular job will be distributed by the head node, are available for 

that job over the entire time-interval between the instant that the head-node initiates 

data transfer to any one of these nodes, and the instant that it completes execution 

upon all the nodes. Under this model of processor availability, it is known that the 

completion time of a job on a given set of processing nodes is minimized if all the 

processing nodes complete their execution of the job at the same instant.  

 

This makes intuitive sense – if some processing node completes before the 

others for a given distribution of the job’s workload, then a different distribution of 

the workload that transfers some of the assigned work from the remaining processing 

node to this one would have an earlier completion time. Figure 4.1 depicts the data 

transmission and execution time diagram when processors have equal ready times. 
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Figure 4.1: Data transmission and execution time diagram when processors 

have equal ready times 

 

 

 

For a given job ( ), ,A Dσ  and a given number of processing nodes n, let 

iσ α×  denote the amount of the load of the job that is assigned to the j’th processing 

node, 1 j n≤ ≤ .  Since data-transmission occurs sequentially, the i’th node iP  can 

only receive data after the previous ( )1i −  nodes have completed receiving their data. 

Hence, each iP  receives its data over the interval )1

1 1
,i i

m j m ij j
C Cα σ α σ−

= =
⎡
⎣ ∑ ∑  and 

therefore completes execution at time-instant
1

i
m j p ij

C Cα σ α σ
=

+∑ .  
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By the optimality principle, iP  and 1iP+  complete execution at the same time-

instant. We therefore have: 
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That is, the fractions 1 2, ,..., nα α α  form a geometric series; furthermore, this series 

sums to one. Using the standard formula for the sum of an n-term geometric series, 

we require that 

 

 
1(1 ) 1
1

nα β
β
−

=
−  

   

 1
1
1 n

βα
β

⎛ ⎞−
≡ = ⎜ ⎟−⎝ ⎠

 (4.1) 

 

Letting ( , )nξ σ  denote the time-instant at which the job completes execution, and 

observing that this completion time is given by the sum of the data-transmission and 

processing times on iP , we have 

 

 1 1( , ) m pn C Cξ σ α σ α σ= +
 

 1( , ) ( )
1 m pnn C Cβξ σ σ

β
−

≡ = +
−

 (4.2) 
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4.3.3 Processors with Different Ready Times  
 

The derivations in Section 4.2.2 above all assume that all n processors are 

immediately available. In (2007b, 2007c), Lin et al. allow for the possibility that all 

the processors are not immediately available. To determine the completion time of a 

job upon a given number of processors in this more general setting, Lin et al. (2007b, 

2007c) adopt a heuristic approach that aims to partition a job so that the allocated 

processors could start at different times but finish computation (almost) 

simultaneously.  

 

To achieve this, they first map the given homogenous cluster with different 

processor available times 1 2, ,... nr r r  (with 1i i ir r+≤ ∀ ) into a heterogeneous model 

where all n assigned nodes become available simultaneously at the time-instant rn, 

but different processors may have different computing capacities. Intuitively 

speaking, the 'i th  processor has its computing capacity inflated to account for the 

reality that it is able to execute over the interval [ri ,rn) as well. Figure 4.2 depicts the 

data transmission and execution time diagram when processors have different ready 

times. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Data transmission and execution time diagram when processors 

have different ready times 
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In (Lin et al., 2007b, 2007c), this heterogeneity is modeled by associating a 

different constant
piC  with each processor 

iP , with the interpretation that it takes 

piC time to complete one unit of work on the processor 
iP . The formula for 

determining
piC , as given in (Lin et al., 2007b, 2007c), is 

 

 ( , ) ,
( , )pi

n i

nC
n r r
ξ σ

ξ σ
=

+ −
 (4.3) 

 

 

where ( , )nξ σ denotes the completion time if all processors are immediately 

available in the original (homogenous) cluster— see Equation 4.2. In (Lin et al., 

2007b, 2007c), these Cpi values are used to derive formulas for computing the 

fractions of the workload that are to be allocated to each heterogeneous processor 

such that all processors complete at approximately the same time, and for computing 

this completion-time. These formulas are further discussed below in Section 4.4. 

 

 

 

4.4 Determining the required minimum number of processors  
 

When allocating resources in order to meet a divisible job’s deadline, a 

scheduling algorithm must know the minimum amount of resources required by the 

job. Previous work by Lin et al. described how to compute this when all the 

processors are simultaneously allocated to a job (Lin et al., 2006a, 2007b, 2007a), 

and when processors can be allocated to a job at different times (Lin et al., 2007b).  

When all the processors are allocated simultaneously, recall that the completion time 

is given by Equation 4.2.  The minimum number of processors needed is easily 

computed from Equation 4.2, by setting this completion time to the job’s deadline (A 

+ D) in Equation 4.2, and making “n” — the number of processors — the variable. 

(Since the number of processors is necessary integral, it is actually the ceiling of this 

value that is the minimum number of processors.)  
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When the processors have different ready times, using this same approach to 

determine the minimum number of processors needed is more challenging. Recall 

that the approach given in (Lin et al., 2007b) approximates the completion time of a 

job on a given number of processors by first transforming the cluster to a 

heterogeneous cluster in which all processors are available simultaneously but each 

processor may have a different computing capacity — these computing capacities are 

defined according to Equation 4.3. Using these computing capacities (the Cpi’s), it is 

easy to derive an expression for the exact completion time on such a heterogeneous 

platform (which, Lin et al. (2007b, 2007c) asserts, is an approximation of the 

completion time on the original homogeneous system with different processor ready 

times). Such a formula for the completion time on a heterogeneous platform is given 

in Lin et al. (2007b, (Equation 6)). 

 

However, it is difficult to use this (approximate) completion-time formula to 

determine the minimum number of processors needed, for the following reason. In 

order to compute the right-hand side of Equation 4.3, we must already know the 

number of processors being used (since both ( , )nξ σ  and 
nr  depend upon this 

number). Thus, there is a circularity of reasoning going on here — the number of 

processors actually used must be known in order to compute the minimum number of 

processors needed.  

 

We have been informed (in a personal email communication from the 

authors) that this dilemma is tackled in Lin et al. (2007b) by iterating over the 

possible values of n – n = 1,2,…, until the minimum number of processors computed 

using that particular value of n is equal to the value used in computing the right-hand 

side of Equation 4.3. The approach in (Lin et al., 2007b) further approximates the 

behavior of the heterogeneous system by a homogeneous system with the same 

number of processors — (Lin et al., 2007b (Equations 9 and 10)) — when computing 

the minimum number of processors needed. In essence, they are determining the 

number of processors needed to meet the job’s deadline assuming that all the 

processors become available at time-instant rn, where rn is the ready time of the n’th 

processor for some n guessed to be no smaller than the minimum number of 

processors needed.  
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As formally proved in Lin et al. (2007b), such an approximation is a safe one, 

in that while it may overestimate the number of processors needed, it is guaranteed to 

not underestimate it and hence deadlines are guaranteed to be met. However, it is not 

difficult to construct scenarios in which the degree of pessimism, as measured by the 

ratio of the actual minimum number of processors needed and the number computed 

by this approach, is arbitrarily large. 

 

 

 

4.5 Computing the exact required minimum processors 
 

We have adopted an altogether different approach to circumvent this 

circularity of reasoning. Rather than first deriving a formula for computing the 

completion time on a given number of processors and then using this formula to 

determine the minimum number of processors needed to meet a deadline, we instead 

compute the minimum number of processors directly, from first principles. Our 

approach is presented in pseudo-code form in Figure 4.3. 

 

The general idea is as follows. Starting out with no processors, we will 

repeatedly add processors until we have either added enough to complete the job 

(line 3 in the pseudo-code), or we determine that it is not possible to complete this 

job by its deadline (line 4 in the pseudo-code). We now discuss the pseudo-code in 

greater detail. We are given the size of the workload ( )σ , the amount of time 

between the current instant and the deadline ( )Δ , the cluster parameters 
pC  and 

mC , 

and the processor ready times 1 2, ,... nr r r  in sorted order. We will determine the 

minimum number of processors needed ( minn ), the shares allocated to each processor 

(the 
iα ’s), and the time at which each processor will begin receiving data from the 

head node 0P (the is ’s).  
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____________________________________________________________________ 

MINPROCS( ,σ Δ ) 

1  1 1; 0; 1s r alloc i← ← ←  

2  while (true) do 

3   if ( 1alloc ≥ ) break end if 

4   if ( is ≥ Δ ) break end if 

5   ( ) ( ( ))i i m ps C Cα σ← Δ− ÷ × +  

6   1 1max( , ( ))i i i i ms r s Cα σ+ +← + × ×  

7   ialloc alloc α← +  

8   1i i← +  

end while 

9  if ( 1alloc ≥ ) then success!! 

10   minn i←  

else cannot meet the deadline, regardless of the number of processors used 

11   minn ←∞   

end if 

____________________________________________________________________ 

Figure 4.3: Computing nmin 

 

 

The pseudo-code uses two additional variables — alloc, denoting the fraction 

of the workload that has already been allocated, and i, indicating that Pi is being 

considered. The main body of the pseudo-code is an infinite while loop, from which 

the only exist is be one of two break statements. The break in line 3 indicates that 

we have allocated the entire job, while executing the break in line 4 means that we 

need to execute beyond the deadline (i.e., there are not enough processors with ready 

times prior to this job’s deadline for us to be able to meet its deadline).  
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If neither break statement executes, we compute
iα , the fraction of the job 

that is allocated to processor Pi. The value is computed by observing that allocating a 

fraction 
iα  of the load require this node to be receiving data for m iC α σ  time units 

and then executing this data for p iC α σ  time units. In keeping with the optimality 

rule, we would like to have this processor complete execution at the job deadline 

(i.e., at time-instantΔ ); since iP  may only begin receiving data at time-instant is , we 

require that i m i p is C Cα σ α σ+ + = Δ , from which we derive the value of iα  given in 

line 5.  

 

Once iP ’s share is computed, we can compute the time at which 1iP+  may 

begin execution. This is the later of its ready time and the time at which iP  has 

finished receiving data (and the head-node is thus able to commence data-

transmission to 1iP+ ). This computation of 1is +  is done in line 6. Lines 7 and 8 update 

the values of the fraction of the workload that has already been allocated, and the 

index of the processor to be considered next. 

 

 

Properties. It should be evident that the schedule generated by this algorithm is both 

correct — the job will indeed complete by its deadline on the computed number of 

processors, according to the schedule that is implicitly determined by the algorithm, 

and optimal — the number of processors used is the minimum possible. Making 

reasonable assumptions on the problem representation (e.g., that the processor ready 

times are provided in sorted order), it is also evident that the run-time of this 

algorithm is linear in the number of processors used. Hence, since the output of such 

an algorithm must explicitly include the processor shares (the iα ’s) in order to be 

useful for actual scheduling and dispatching, it is asymptotically optimal from the 

perspective of run-time computational complexity. 
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4.6 Simulation Results 
 

We have conducted extensive simulation experiments to estimate the degree 

by which our optimal algorithm outperforms the non-optimal approach of (Lin et al., 

2007b). In this section, we describe these experiments, present some of the results, 

and draw some conclusions regarding under which conditions it is most beneficial to 

adopt our approach in preference to the one in (Lin et al., 2007b). 

 

The outcomes of our experiments are plotted in Figure 4.4 through Figure 

4.11.  For greater detail, we also present the results data in Table 4.1 through Table 

4.8.  All the graphs plot the minimum number of processors ( minn ) needed to 

complete a given real-time workload by its specified deadline, when this minimum 

number of processors is computed by our algorithm (depicted in the graphs by filled 

circles) and when it is computed by the algorithm in (Lin et al., 2007d) (depicted in 

the graphs by filled squares). As can be seen in all the graphs, the performance of our 

algorithm is never inferior to, and typically better than, the performance of the 

algorithm in (Lin et al., 2007b) —this is not surprising since our algorithm is optimal 

while the one in (Lin et al., 2007b) is not.  

 

We now describe the experiments in greater detail. We determined the 

minimum number of processors as computed using both algorithms, under a variety 

of system and workload conditions. The system and workload is characterized by: 

the number of processors N and the processor release times 1 2, ,..., Nr r r ; the cluster 

parameters pC and mC  denoting the data-processing and communication rates 

respectively; and the real-time workload characterized by arrival-time, size, and 

deadline. In each experiment, all the parameters were kept constant and one 

parameter varied, thereby allowing us to evaluate the relative performance of the two 

algorithms with respect to the varying parameter. 
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4.6.1 Increasing Deadlines 
 

The first two sets of experiments evaluate the relative performance of the two 

algorithms as the deadline of the workload is increased, for clusters of 16 and 32 

processors.  The results are shown in Figure 4.4 and Figure 4.5 respectively. The 

performance improvement is observed to be very significant for tight deadlines; as 

the deadline increases, the performance penalty paid by the algorithm in (Lin et al., 

2007d) drops off. Table 4.1 and Table 4.2 show the minimum number of processors 

as determined by both algorithms with respect to load deadlines. Observe that, 

particularly in Table 4.1, not only does the approximation algorithm generate 

significantly larger numbers than our efficient algorithm, but the required number of 

processors often exceeds the cluster capacity.  In such situations, the cluster will 

simply reject the job as it does not have the capacity to execute the job. As shown in 

this particular simulation, with the approximation algorithm, only 30% of jobs will 

tend to be executed upon this cluster, compared to 100% of jobs by the efficient 

algorithm. 
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Figure 4.4: Comparison of generated nmin with increasing deadline and a cluster of 

n=16 processors 
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Table 4.1: Comparison of generated nmin with increasing deadline, and a cluster of 

n=16 processors 

 

Deadlines Our Algorithm Lin et al. 
Algorithm

1000 7 43
1005 7 41
1015 7 38
1030 7 34
1050 7 30
1075 6 26
1105 6 23
1140 6 9
1180 5 9
1225 5 8  
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Figure 4.5: Comparison of generated nmin with increasing deadline, and a cluster of 

n=32 processors 
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Table 4.2: Comparison of generated 
minn  with increasing deadline, and a cluster of 

n=32 processors 

 

Deadlines Our Algorithm Lin et al. 
Algorithm

1000 8 12
1005 8 12
1015 7 12
1030 7 11
1050 7 11
1075 7 10
1105 6 10
1140 6 9
1180 6 9
1225 5 8  

 

 

 

4.6.2 Increasing Communication Cost 
 

The two graphs shown in Figure 4.6 and Figure 4.7 evaluate the relative 

performance of the two algorithms as the communication cost parameter of the 

cluster – mC  – is increased, for clusters of 16 and 32 processors respectively. Table 

4.3 and Table 4.4 show the generated minn  in greater detail. As can be seen, the 

performance improvement for our algorithm increases as mC  increases.  
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Figure 4.6: Comparison of generated nmin with increasing Cm and a cluster of  

n=16 processors 

 

 

 

 

Table 4.3: Comparison of generated nmin with increasing communication cost Cm, 

and a cluster of n=16 processors 

 

Cm Our Algorithm Lin et al. 
Algorithm

1 4 6
2 4 6
3 4 6
4 4 7
5 5 7
6 5 7
7 5 9
8 5 9
9 5 10
10 5 10  
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Figure 4.7: Comparison of generated nmin with increasing Cm, and a cluster of  

n=32 processors 

 

 

 

Table 4.4: Comparison of generated nmin with increasing Cm, and a cluster of  

n=32 processors 

 

Cm Our Algorithm
Lin et al. 

Algorithm
1 6 7
2 6 7
3 6 7
4 6 7
5 6 8
6 6 8
7 6 8
8 6 9
9 7 10

10 7 10   
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4.6.3 Increasing Computation Cost 
 

Figures 4.8 and Figure 4.9 show the relative performance of the two 

algorithms as the processing cost parameter of the cluster – pC – is increased, for 

clusters of 16 and 32 processors respectively. The performance improvement seen by 

our algorithm once again increases with increasing pC .  
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Figure 4.8: Comparison of generated nmin with increasing Cp, and a cluster of  

n=16 processors 
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Table 4.5: Comparison of generated nmin with increasing Cp, and a cluster of  

n=16 processors 

 

Cp Our Algorithm Lin et al. 
Algorithm

50 4 4
60 4 4
70 5 5
80 5 5
90 6 7
100 7 8
110 7 9
120 8 18
130 9 20
140 10 21  
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Figure 4.9: Comparison of generated nmin with increasing Cp, and a cluster of  

n=32 processors 
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Table 4.6: Comparison of generated nmin with increasing Cp, and a cluster of  

n=32 processors 

 

Cp Our Algorithm Lin et al. 
Algorithm

50 3 3
60 4 4
70 5 5
80 5 5
90 6 8
100 7 10
110 7 11
120 8 12
130 9 13
140 10 14  

 

 

 

Table 4.5 and table 4.6 shows the minimum number of processors generated 

by both algorithms with respect to increasing communication cost upon a cluster of 

16 and 32 processors.  Once again, observe that the approximation algorithm tends to 

compute a number of processors that exceeds the cluster capacity, particularly within 

16 processors cluster; thus it will tend to reject more jobs than necessary.  

 

 

 

4.6.4 Increasing Workload Size 
 

The graphs in Figure 4.10 and Figure 4.11 evaluate the relative performance 

of the two algorithms as the size of the workload is increased, for clusters of 16 and 

32 processors respectively. The performance improvement is observed to be 

negligible or very small for small loads; but as the load size increases, the 

performance penalty paid by the algorithm in (Lin et al., 2007b) becomes more 

significant.   
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For greater detail, we show the minimum number of processors generated by 

both algorithms in Table 4.7 and Table 4.8. Once again, as shown in both tables, the 

approximation algorithm tends to compute a number of processors that exceeds the 

cluster capacity; thus it will tend to reject more jobs than necessary. 
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Figure 4.10: Comparison of generated nmin with increasing load size, and a cluster of  

n=16 processors 
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Table 4.7: Comparison of generated nmin with increasing workload size, and a cluster 

of n=16 processors 

 

Load Size Our Algorithm Lin et al. 
Algorithm

50 3 3
53 3 3
59 3 3
68 4 4
80 4 5
95 5 6
113 6 8
134 8 12
158 9 15
185 11 17  
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Figure 4.11: Comparison of generated nmin with increasing workload size, and a 

cluster of n=32 processors 
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Table 4.8: Comparison of generated nmin with increasing workload size, and a cluster 

of n=32 processors 

 

Load Size Our Algorithm Lin et al. 
Algorithm

50 4 5
53 5 6
59 5 6
68 6 7
80 7 9
95 9 11
113 10 13
134 13 17
158 15 33
185 18 40  

 

 

 

 

The high-level conclusions to be drawn from these experiments are that the 

previous algorithm (the one in (Lin et al., 2007b)) is acceptable upon clusters in 

which the communication and computation overheads are very small, and on 

workloads that do not “stress” the system (i.e., they are small jobs, and/or have large 

relative deadlines). In other circumstances, our optimal algorithm performs 

significantly better. 
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4.7 Summary 
 

In this chapter, we have studied scheduling problems in RT-DLT when 

applied to clusters in which different processors become available at different time-

instants.  We proposed an algorithm that efficiently determines the minimum number 

of processors that are required to meet a job deadline. Through extensive 

experimental evaluation, we have shown that this efficient formula significantly 

improves on the heuristic approximations proposed by Lin et al. (2007b, 2007c). 

 



 

 

86

 

 

 

CHAPTER 5 

 

 

 

 

A LINEAR PROGRAMMING APPROACH FOR 

SCHEDULING DIVISIBLE REAL-TIME LOADS 
 
 
 
 
 
5.1 Introduction 
 
 

In the previous chapter, we studied the problem of distributing arbitrarily 

parallelizable real-time workloads among processors which become available at 

different instants of time.  We also presented an efficient algorithm to determine the 

minimum number of processors needed to complete this job by its deadline upon 

such cluster environments, and through a series of simulations, we showed that our 

algorithm always produced an efficient number and comfortably out-performed the 

approximate algorithms found in (Lin et al., 2007b, 2007c).   

 

In this chapter, we will study another aspect of the problem: Given a divisible 

job of a particular size and a fixed number of processors, which may become 

available at different times, upon which to execute it, determine the earliest 

completion time for the job. We formulate this problem as a linear program (LP), and 

thereby provide a polynomial-time algorithm for solving the problem. 
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The remainder of this Chapter is organized as follows. In Section 5.2, we 

describe in greater detail the motivation for this work and demonstrate the non-

optimality of previously proposed approaches.  In Section 5.3, we present our LP 

formulation. We performed a series of simulations to compare the performance of 

these approaches: we discuss the design and results of these simulations in Section 

5.4 and Section 5.5. 

 

 

 

5.2 Computing completion time on a given set of processors 
 

As discussed in Chapter 4, for the case when the processors have different 

ready times, Lin et al. proposed an approach in (2007b, 2007c) via the abstraction of 

heterogeneous clusters — clusters in which all n processors become available at the 

same instant but different processors may have different computing capacities. 

Specifically, the algorithm in (Lin et al., 2007b, 2007c ) assumes that all n processors 

become available at time-instant rn and the i’th processor Pi takes piC x×  time to 

process x units of data, where the piC ’s are as given in Equation 4.3 (reproduced 

below): 

 

( , ) ,
( , )pi

n i

nC
n r r
ξ σ

ξ σ
=

+ −
             (5.1)

           

 

Here, ( , )nξ σ denotes the completion time if all processors are immediately 

available in the original cluster, as given by Equation 4.2. Using these processor 

computing capacities, the approach of Lin et al. (2007b) adopts a strategy very 

similar to the one in 4.2.1 of the previous chapter, to derive formulas for computing 

the fractions of the workload that must be assigned to each (hypothetical 

heterogeneous) processor in order that all the processors complete at the same instant 

(Lin et al., 2007b, (Equations 4 and 5)), and for computing this completion time (Lin 

et al., 2007b, (Equations 6)). We illustrated these formulas via the following 

example. 
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Example 1: Consider a cluster in which 1m pC C= = , and consider a job of 

size 30σ =  which arrives at time-instant zero, and is assigned two processors 1P  and 

2P  in this cluster, with ready-times 1 0r =  and 2 21r =  respectively. We describe how 

to convert this cluster to a heterogeneous cluster of two processors in which both 

become available at time-instant 21 (i.e., at 2r ).  

 

First, we need to compute  ( , 2)ξ σ  according to Equation 5.2 – the 

completion time of this job was to be scheduled optimally upon two homogeneous 

processors that are always available. It may be verified that Equation 5.1 yields 

1
2
3

α =  (two-thirds of the job is assigned to processor 1P  and the remaining one-third 

to P2); consequently, 1P  participates in data-transmission over [0; 20) and 

computation over [20; 40) while 2P  participates in data-transmission over [20; 30) 

and computation over [30; 40) for an eventual completion-time of 40ξ = . Using this 

value in Equation 5.3 we get 1 1pC = and 2
40
61pC =  as the processor computing 

capacities in the heterogeneous cluster.  

 

We now describe how to compute the fractions 1'α  and 2'α  of the job 

allocated to the two (hypothetical) heterogeneous processors. The idea is to apply the 

optimal partitioning rule to the heterogeneous platform – determine the values of 1'α  

and 2'α  such that if the first processor were to be assigned a load 1α σ  and the 

second a load 2α σ  (both starting at the same time-instant), both processors would 

complete at the same instant.  

 

 

That is, we need values for 1'α  and 2'α  that sum to one ( 1 2' ' 1α α+ = ) and satisfy: 

 

 1 1 1 1 2 2 2' ' ( ' ' ) 'm p m pC C C Cα σ α σ α α σ α σ+ = + +  (5.2) 
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Solving, we obtain the values 1
101'
162

α =   and 2
61'

162
α = .  Mapping these shares back 

to the original cluster (homogeneous processors, but with different processor ready 

times), we obtain the following schedule:  

 

 

Processor 1P  participates in data-transmission over the time-interval 19

27
0,18⎡ ⎞

⎟⎢⎣ ⎠
, and 

processes this data over the time-interval 19 11

27 27
18 ,37⎡ ⎞

⎟⎢⎣ ⎠
; hence, P1’s completion time 

is 11

27
37 . 

 

 

Processor 2P  participates in data-transmission over the time-interval 8

27
21,32⎡ ⎞

⎟⎢⎣ ⎠
, and 

processes this data over the time-interval 8 16

27 27
32 ,43⎡ ⎞

⎟⎢⎣ ⎠
; hence, P2’s completion time 

is 16

27
43 . 

 

 

Taking the larger of the two individual processor completion times, we see that the 

overall completion time is equal to 16

27
43 . 
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Non-optimality of the (Lin et al., 2007b) approach. This approach is easily seen to 

be non-optimal. For the situation considered in Example 1 it may be verified that if 

1P  and 2P  (in the original cluster) were assigned fractions 1
27

40
α =  and 2

13

40
α =  of 

the load respectively, then 1P  would receive data over interval [0; 20.25) and process 

this data over [20.25, 40.5) for a completion-time of 40.5; meanwhile, 2P  would 

receive data over the interval [21, 30.75) and process this data over the interval 

[30.75, 40.5) for an overall completion time of 40.5 (which is earlier than the 16

27
43  

completion time of the schedule in the example).  

 

In fact, examples are easily constructed in which the completion-time bound 

obtained using the approach of (Lin et al., 2007b) is arbitrarily worse than the 

optimal. (Consider a simple modification to our two-processor cluster in Example 1 

above that increased 2r  to some value 30ρ >  but leaves everything else unchanged. 

The optimal schedule – the one with earliest completion time – would execute the 

entire load on the first processor for a completion time of 30. However, the approach 

of first transforming to a heterogeneous platform would necessarily assign non-zero 

load to the second processor (see (Lin et al., 2007b, (Equations 4 and 5))), and hence 

have a completion-time ρ> .  As ρ →∞ , the performance of this approach therefore 

becomes arbitrarily bad as compared to the optimal approach. 

 

 

 

5.3 Linear Programming Formulation 
 

We now describe how the problem of computing the earliest completion time 

may be formulated as a linear programming problem. This would immediately allow 

us to conclude that the earliest completion time can be computed exactly in 

polynomial time, since it is known that a Linear Program (an LP) can be solved in 

polynomial time by the ellipsoid algorithm (Khachiyan, 1979) or the interior point 

algorithm (Karmakar, 1984). In addition, the exponential-time simplex algorithm 

(Dantzig, 1963) has been shown to perform extremely well in practice and is often 
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the algorithm of choice despite its exponential worst-case behavior. It is also well-

known that LP problems can be efficiently solved (in polynomial time), and that 

excellent libraries (and several stand-alone tools) exist for solving LP’s extremely 

efficiently in practice.  

 

 

____________________________________________________________________ 

minimize ξ  

subject to the following constraints: 

 

(1)  1 2 ... 1nα α α+ + + =  

(2) 0 iα≤     1 i n≤ ≤  

(3)  i ir s≤ ,    1 i n≤ ≤  

(4)  1,i i m is C sα σ ++ ≤   1 i n≤ ≤  

(5)   ( )i i m ps C Cα σ ξ+ + ≤ , 1 i n≤ ≤  

____________________________________________________________________ 

 

Figure 5.1: Computing the completion time – LP formulation 

 

 

 

Given the workload size σ, the cluster parameters mC  and pC , and the n processor 

ready-times 1 2, ,..., nr r r  we construct a linear program (Figure 5.1) on the following 

(2n + 1) variables: 

 

• The n variables { }1 2, ,..., nα α α , with iα  denoting the fraction of the workload 

to be assigned to the i’th processor; 

 

• The n variables { }1 2, ,..., ns s s  with is denoting the time-instant at which the 

head node begins transmitting data to the i’th processor; and 
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• The variable ξ , denoting the completion time of the schedule (i.e., the 

objective function of the minimization problem). 

 

 

The constraints that must be satisfied by these variables are as follows: 

 

(1) The entire workload must be allocated; i.e., the iα ’s must sum to 1.  This is 

represented by equality (1) of the LP in Figure 5.1. 

 

(2) The fraction of the workload allocated to each processor must be non-

negative. This is represented by the n  inequality (2) of the LP in Figure 

5.1. 

 

(3) Each processor may begin receiving data only after its ready time—we 

must have i is r≥  for all i. This is represented by the n  inequality (3) of the 

LP in Figure 5.1. 

 

(4) Data-transmission is sequential, which means that data-transmission to the 

(i + 1)’th processor may commence (at time-instant is ) only after data-

transmission to the i’th processor has completed (at time-instant 

i i ms Cα σ+ .  This is represented by the n  inequality (4) of the LP in Figure 

5.1. 

 

(5) The completion time on the i’th processor (i.e., ( i i m i ps C Cα σ α σ+ + )) is, by 

definition, no larger than the completion time ξ  of the entire schedule.  

This is represented by the n  inequality (5) of the LP in Figure 5.1. 
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Recall that, when all processors have equal ready time, by using the DLT 

optimality principle, the workload execution time ( , )nξ σ  as given in Equation 3.3 

(reproduced here): 

 

1 1

1 2 2

1 2 3 3

( , )

( )

( )

...

m p

m p

m p

n C C

C C

C C

ξ σ α σ α σ

α α σ α σ

α α α σ α σ

= +

= + +

= + + +  

                     1 2( ... )n m n pC Cα α α σ α σ= + + + +           (5.3) 

 

And the values for the 
iα  are computed by using: 

1
1
1 n

βα
β
−

=
−

 (5.4) 

 
1

1,
j

jα β α−=  for j > 1    (5.5) 

 

Where β  is defined as: 

( )

def
p

p m

C
C C

β =
+

    (5.6) 

 

 When processors have different ready time, we use the same principle to 

compute the value of fraction 
iα  and the fraction’s execution time must not exceed 

the overall schedule completion time ξ , as represented by the inequality (5)'s of the 

LP in Figure 5.1. 

 

i i m i ps C Cα σ α σ ξ+ + ≤    (5.7) 

 

 In addition, since processors have different ready time, we need to compute 

different is for each fraction 
iα  by setting the constraints as represented by the 

inequality (3)’s and (4)’s of the LP in Figure 5.1. 
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The following two lemmas formally assert that the problem of obtaining a 

feasible solution to the LP in Figure 5.1 is equivalent to the problem of obtaining a 

schedule for the workload on the n processors.   

 

 

Lemma 1 Given feasible solution to the LP in Figure 5.1 that assigns value  oξ to the 

variable ξ , we can construct a schedule for a workload of size σ with completion-

time oξ . 

 

 

Proof: Any feasible solution to the LP assigns nonnegative values to each of the iα 's 

and is 's. By assigning a workload iσα  to the i'th processor, it immediately follows 

from the construction of the LP that the total workload is assigned to the n 

processors. Furthermore oξ , the value of ξ  in the feasible solution, clearly represents 

an upper bound on the completion time of the schedule.  

 

 

Lemma 2 Given a schedule for a workload of size σ with completion-time 1ξ  that 

there is a feasible solution to the LP in Figure 5.1 that assigns the variable ξ  the 

value 1ξ .  
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Proof: Let 'iα  denote the amount of the workload executed on the i'th processor, and 

'is the time-instant at which transmission of this workload commences to the i'th 

processor. It is once again evident from the manner of construction of the LP that the 

variable assignment 

 

' ,i iα α←        1 i n≤ ≤  

' ,i is s←       1 i n≤ ≤  

1ξ ξ←  

 

constitutes a feasible solution to the LP. We now present our main result in this 

section, demonstrating the equivalence of scheduling to minimize completion time to 

Linear Programming.  

 

 

Theorem 1 Computing the earliest completion time of a given divisible workload of 

size σ  on a cluster with parameters mC  and pC , and n identical processors with 

(non-decreasing) available times 1 2, ,..., nr r r  is equivalent to solving the linear 

programming problem given in Figure 5.1.  

 

 

Proof: It immediately follows from Lemma 1 and Lemma 2 that the smallest value 

of ξ satisfying the LP in Figure 5.1 is exactly the desired earliest completion time. 

 

As a parenthetical side-note, we observe that this LP is easily modified to 

compute the earliest completion time upon more general heterogeneous platforms as 

well, in which there may be a different miC  and a different piC  associated with the 

data-communication and computing capacity of each processor iP . The only 

modifications are that each mC in the third constraints is replaced by miC for each i, 

and that each mC and pC in the fourth constraints are replaced by miC and 

piC respectively for each i.  We will demonstrate this heterogeneous transformation 

in the following section. 
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5.4 Simulation Design 
 

We have performed extensive simulation experiments comparing the 

performance of our (proved efficient) LP solution technique to the approximate 

technique of (Lin et al., 2007b, 2007c).  Our experiments were performed in 

MATLAB, using the linprog, a linear-programming solver that is available with 

MATLAB to solve our LPs.  Figure 5.2 depicts the design of these simulation 

programs.  

Start

Initialize Cluster & Load Parameters
(N, Cm, Cp), (A, σ, D)

SimulationCycle 1

Compute nMin

Generate Random 
Release Time of 

Processors

Form the Data Matrix for
(f, Aeq, beq, A, b, LB, UB)

Compute Completion Time
linProg(f,A,b,Aeq,beq, LB, UB)

Plot Data to 
Graph

Compute Completion 
Time

(Lin et al. Formula)

SimulationCycle =+1
Update LoadSize σ

SimulationCycle
= 20?

End

Yes

No

 
Figure 5.2: The Simulation Design 
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As shown in Figure 5.2, We now briefly describes the simulation design: 

 

• Initialize Cluster Parameters 

We performed 6 sets of simulations to compare the performance of 

our LP-based formula to the Lin et al. (2007b, 2007c) solution. For 

these simulations, we set the cluster parameters 1mC =  and 100pC = .  

In each set, we considered 6 values for the number of processors n: 

4n = , 6n = , 8n = , 12n = , 16n = and 20n = . For example for the 

first set, we initialize the cluster parameter as ( 1mC = , 100pC = , 

4n = ). 

 

We also studied the behavior of our LP-based approach with different 

cluster parameters.  Thus, for these purpose, we set different values of 

mC and pC . 

 

• Initialize Load Parameters 

In this procedure, we initialize the workload parameters ( , , )A Dσ with 

the initial values. 

 

• Simulation Cycle 

This step is to initialize the variable SimulationCycle=1, which later 

will be use to control the simulation cycle. 

 

• Generate Random Release Time 

This procedure will randomly generate the processor release times – 

the ri’s. For example, for 8n = , it will generate 8 processor release 

times values. 

 

• Compute the minn  

Assuming minn  has been generated by some formula described in the 

previous chapter; this procedure will use minn  value for the next 

computation. 
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• Form the Data Matrix 

This procedure will form the data matrix to be used in the 

computation of the completion time. In the following, we present an 

example of generated data matrix for a cluster ( 1mC = , 100pC = , 

3n = ) and a workload ( 0A = , 20σ = , 1000D = ).  

 

Example: 

 

Given an objective function: 

Minimize 1 2 3 1 2 30. 0. 0. 0. 0. 0.Z s s sα α α ξ= + + + + + +  

 

Subject to the following constraints:  

 

1 2 3

1 1

2 2

3 3

1 1 2

2 2 3

1 1

2 2

3 3

1

0
0

( ) 0

( ) 0

( ) 0

m

m

m p

m p

m p

s r
s r
s r

C s s
C s s

C C s

C C s

C C s

α α α

α σ
α σ

α σ ξ

α σ ξ

α σ ξ

+ + =
− ≤ −
− ≤ −
− ≤ −

+ − ≤
+ − ≤

+ + − ≤

+ + − ≤

+ + − ≤

 

 
 

The generated matrix would be: 

  

 

0
0
0
0
0
0
1

f

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 [1 1 1 0 0 0 0]Aeq = ; [1]beq =  
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0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

0 0 1 1 0 0
0 0 0 1 1 0

( ) 0 0 1 0 0 1
0 ( ) 0 0 1 0 1
0 0 ( ) 0 0 1 1

m

m

m p

m p

m p

C
A

C
C C

C C
C C

σ
σ

σ
σ

σ

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥−⎢ ⎥= ⎢ ⎥−
⎢ ⎥

+ −⎢ ⎥
⎢ ⎥+ −
⎢ ⎥

+ −⎢ ⎥⎣ ⎦

; 

1

2

3

0
0
0
0
0

r
r
r

b

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

  

  

 [ ]0 0 0 0 0 0 0LB =  

 
[ ]inf inf inf inf inf inf infUB =  

 
 
 

• Compute Completion Time  

To compute the completion time, this procedure will call the linprog, 

a linear programming solver that is available in MATLAB: 

 

E=linprog(f, A, b, Aeq, beq, LB, UB); 

 

 

• Compute Completion Time (Lin et al. formula) 

This procedure will compute the completion time of a job execution 

according to Lin et al. formula (2007b, 2007c). 

 

• Plot Data to Graph 

The completion time generated by both formulas will be plotted on 

the same graph. 

 

• Update Simulation Cycle & Load Size σ  

Simulation cycle will be updated in steps of 1 and stopped at 

SimulationCycle=20. For each of the simulation cycle, we increased 

the load size in steps of 5.  
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5.5 Experimental Evaluation 

  

5.5.1 Performance Comparison 
 

In this section, we compare the completion time computed by our LP with the 

completion time computed by the approximation approach proposed in (Lin et al., 

2007d).   As shown in Figure 5.3 through Figure 5.8, in all cases the LP based 

formula computed a lower completion time compared to the one computed by the 

approximation approach of (Lin et al., 2007b, 2007c).  
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Figure 5.3: Comparison - computed completion time when 4n =  

 

 

Observe that as the number of processors n  increases, the relative 

improvement of our approach to the approximation approach increases.  These 

observations may be explained as follows.  Recall that the approximation approach 

uses the processor availability to estimate the completion time.  As n  increases it is 

more likely that takes on a larger value.   
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For example, these are the release times we used for 16n = : [19,111, 111, 

255, 321, 321, 321, 763, 763, 774, 907, 935, 1016, 1054, 1168, 1390]; this means 

that the nr  used when 16n =  is 1390. In (2007b and 2007c) Lin et al. derived an 

upper bound of minimum number of processors for a job to complete before its 

deadline by proving that: 

1ˆ( , ) ( )
1 m pnn C Cβξ σ σ

β
−

≤ +
−

                                (5.8) 

ˆ( , ) ( , )n nξ σ ξ σ≤                                          (5.9) 

 
And use the equation to estimates the completion time as: 
 

1ˆ( ) ( , ) ( )
1n n m pnC n r n r C Cβξ σ σ

β
−

= + ≤ + +
−

                       (5.10) 

 

We have shown via Example 1 that the performance of this approximation 

approach is non-optimal since their computation time is inflated by the value of 

nr and nr →∞ . Thus, as shown in Figure 5.3 through Figure 5.8, as n  increases, Lin 

et al. formula (2007b, 2007c) is more likely to takes on a larger value of nr and uses 

these values to estimates the completion time. Consequently, this formula will 

compute a larger completion time. 
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Figure 5.4: Comparison - computed completion time when 6n =  
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Figure 5.5: Comparison - computed completion time when 8n =  
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Figure 5.6: Comparison - computed completion time when 12n =  
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For greater detail, let us consider the following examples: Given a load size 

60σ = , 1mC = , 100pC = , 8n =  with each processor release time as 1 194r = , 

2 207r = , 3 207r = , 4 365r = , 5 381r = , 6 428r = , 7 524r =  and 8 524r = . Using this 

values in Equation 5.10, the completion time computed by Lin et al. formula (2007b, 

2007c)  is: 

 

1( ) ( )
1

1 0.9901524 60 (1 100)
1 0.9235

1308

n m pnC n r C Cβ σ
β
−

= + +
−
−

= + × × +
−

=

 

 

Using the same values in our LP-based algorithm and run the simulation 

program, the computed completion time 1113ξ = . The following table shows the 

exact values of fractions iα computed by our LP-based algorithm, the processors’s 

release time ir , the start time is  computed by the LP-based algorithm, the sending 

and computation time of each fractions ( i m i pC Cα σ α σ+ ) assigned to each processors 

and the completion time ξ  in the final column. Particularly in this example, the 

completion time computed by our algorithm is approximately 15% lesser than the 

one computed by Lin et al. formula (Lin 2007b, 2007c). 

 

Table 5.1: Fraction iα  values and calculations of completion time ξ  

ith 

Processor 
iα  ir  is  i m i pC Cα σ α σ+ ( )i i m ps C Cξ α σ= + +

1 0.1517 194 194 919 1113 

2 0.1495 207 207 906 1113 

3 0.1480 207 216 897 1113 

4 0.1234 365 365 748 1113 

5 0.1208 381 381 732 1113 

6 0.1131 428 428 685 1113 

7 0.0972 524 524 589 1113 

8 0.0962 524 530 583 1113 
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Based on the experiments, we observed that our algorithm is superior for use 

in admission control – i.e., in determining whether to accept or reject incoming jobs 

based on whether they will meet their deadlines or not.  This follows since the 

completion time computed by our approach is much smaller than the one computed 

by the approximation approach of (Lin et al., 2007b, 2007c), and it is hence far more 

likely that our approach will meet any given job’s deadline.   

 

Although we do not present any simulation results concerning the likelihood 

of meeting or missing deadlines, it is easy to observe why this is likely to be the case 

from our graphs when 12n = , 16n =  and 20n = .  Consider, for example the 

20n = case, and consider jobs of the different sizes all with a deadline of 1500.  

None of these jobs would be deemed to meet their deadlines by the approximation 

approach.  As a result, the scheduler will simply reject these jobs even though, as 

indicated by our efficient test, they would in fact have met their deadlines. 
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Figure 5.7: Comparison - computed completion time when 16n =  

 



 

 

105

 

50 60 70 80 90 100 110 120 130 140 150
1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

Load Size

C
om

pl
et

io
n 

Ti
m

e

N=20, Cm=1, Cp=100

LP Solution
Approx Solution

 
Figure 5.8: Comparison - computed completion time when 20n =  

 

 

We also studied the behavior of our LP-based approach with different cluster 

parameters.  In the simulations depicted in Figure 5.9, we set mC to values of 1, 3, 5, 

7, 9 while maintaining 100pC = .  And for each set of this simulation we increased 

the load size in steps of 10 units.  In the simulations depicted in Figure 5.10 we ran 

sets of simulations with pC  values set to 100, 110, 120, 130, 140 while 

maintaining 1mC = . As observed, the completion time increases as mC  or  pC  

increases. 
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Figure 5.9: Computed completion time with various mC  values 
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Figure 5.10: Computed completion time with various pC values 
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5.5.2 Heterogeneous Platforms 
 

As we mentioned in section 5.3, our LP is easily modified to compute the 

earliest completion time upon more general heterogeneous platforms. Following is an 

example of the LP specification for heterogeneous clusters of 4n = .   

 

(1) 1 2 3 4 1α α α α+ + + =  

 

(2)      

1 1

2 2

3 3

4 4

r s
r s
r s
r s

≤
≤
≤
≤

 

 

(3)             
2 1 1 1

3 2 2 2

4 3 3 3

m

m

m

s s C
s s C
s s C

α σ
α σ
α σ

≥ +

≥ +
≥ +

 

 

(4)             

1 1 1 1

2 2 2 2

3 3 3 4

4 4 4 4

( )

( )

( )

( )

m p

m p

m p

m p

s C C

s C C

s C C

s C C

α σ ξ

α σ ξ

α σ ξ

α σ ξ

+ + ≤

+ + ≤

+ + ≤

+ + ≤

 

 

 

 
Note that, to specify a heterogeneous platform, the only modifications are in the 

Constraint numbers (3) and (4), where mC  and pC  values are involved.  Recall that 

mC  is the data communication cost and pC  is the computation cost for each 

processor in a cluster.  
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5.5.3 Effect of Number of Processors 
 

In this section we study the behavior of this LP approach for different 

numbers of processors in the cluster.  We used the cluster parameters 

1mC = and 100pC = , and ran 5 sets of simulations with 4n = , 8n = , 12n = , 16n =  

and 20n = . In each set we increased the load size in steps of 10 units.  As shown in 

Figure 5.11, the completion time decreases significantly with increasing n , 

particularly for larger load sizes.  And when 20n = , the completion time for each 

job does not increase much with increasing load size.  For a certain kind of system, 

where there are jobs with hard deadlines to be met, it makes sense to allocate more 

processors to these jobs so that they will finish their executions earlier, and release 

the processors for other incoming jobs. This reinforces a finding first reported in 

(Chuprat and Baruah, 2007) and described in Chapter 3 of this dissertation, that a 

scheduling framework which allocates all processing nodes to one job at a time 

performs very well when compared to a scheduling framework which allocates the 

minimum number of nodes needed to just meet the job’s deadline 
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Figure 5.11: Computed completion time with various n values 
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5.6 Summary 
 

In this chapter, we studied scheduling problems in RT-DLT when applied to 

clusters in which different processors become available at different time-instants.  

We proposed an LP based formula to efficiently determine the earliest completion 

time for the job on a given processors.  Through extensive experimental evaluation, 

we have shown that this LP based formula significantly improves on the heuristic 

approximations that were the only techniques previously known for solving these 

problems. 
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CHAPTER 6 
 

 

 

 

CONCLUSIONS AND FUTURE WORK 
 

 

 

 

6.1 Summary 

 
Many future computing applications such as automated manufacturing 

systems, military systems, high speed telecommunication systems, flight control 

systems, etc., have significant real-time components. Such real-time application 

systems demand complex and significantly increased functionality and are 

increasingly being implemented upon multiprocessor platforms, with complex 

synchronization, data-sharing and parallelism requirements.  

 

However, current formal models of real-time workloads were designed within 

the context of uniprocessor real-time systems; hence, they are often not able to 

accurately represent salient features of multiprocessor real-time systems.  

Furthermore, they may impose additional restrictions (“additional" in the sense of 

being mandated by the limitations of the model rather than the inherent 

characteristics of the platform) upon system design and implementation. One 

particular restriction that has been extended from uniprocessor models to 

multiprocessor ones is that they do not allow task parallel execution.   
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Researchers have recently attempted to overcome this shortcoming by 

applying workload models from Divisible Load Theory (DLT) to real-time systems. 

The resulting theory, referred to as Real-time Divisible Load Theory (RT-DLT). RT-

DLT holds great promise for modeling an emergent class of massively parallel real-

time workloads.  However, the theory needs strong formal foundations before it can 

be widely used for the design and analysis of hard real-time safety-critical 

applications.  

 

This thesis presents our works in obtaining such formal foundations, by 

generalizing and extending recent results and concepts from multiprocessor real-time 

scheduling theory. We summarize the contributions presented in this thesis in 

Section 6.2.   We list a number of open questions that together comprise a future 

research agenda arising from this thesis in Section 6.3.  

 

 

 

6.2 Contributions and Significance  
 

The research performed as part of this thesis significantly advances the state 

of the art of RT-DLT.  Most prior work has been simulation-based and hence not 

applicable to the design and analysis of hard-real-time systems (where even a single 

deadline failure is unacceptable and hence guarantees are required during system 

design time that all timing constraints will be met); to our knowledge, the work 

reported in this thesis is the first to be able to make such guarantees.  As a 

consequence, we have enabled the use of RT-DLT for the design and analysis of 

safety-critical systems.  
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The specific technical contributions obtained during this research are: 

 

i. We have investigated the application of Divisible Load Theory (DLT) 

models to real-time workloads. Specifically, we have examined the 

initial work of Lin et al. (2006a, 2006b and 2007a) and their 

apparently anomalous findings with respect to a scheduling 

framework integrating DLT and EDF. 

 

ii. We have used recent results from traditional multiprocessor 

scheduling theory to provide satisfactory explanations for the 

apparently anomalous observations identified by Lin et al. in (2006a, 

2006b and 2007a).  

 

iii. We have investigated the application of DLT to real-time scheduling 

and report the findings in Chapter 4 and 5.  Specifically, we addressed 

the scheduling problems in RT-DLT when applied to clusters in 

which different processors become available at different time-instants. 

 
iv. We have devised an efficient algorithm to determine the minimum 

number of processors that must be assigned to a job in order to 

guarantee that it meets its deadline — on clusters in which all 

processors are not simultaneously available. We have also shown that 

our solution significantly improved the approximate algorithms found 

in (Lin et al., 2007b, 2007c). 

 

v. We have formulated the problem of determining the completion time 

of a given divisible job upon a specified number of processors as a 

Linear Programming (LP) problem.  Based on this LP approach, we 

have improved the non-optimal approximate algorithms found in (Lin 

et al., 2007b, 2007c). 

 
 
We summarized the research the contributions made and list of publications 

in Figure 6.1. 
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Figure 6.1: Summary of Contributions and Publications 
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6.3 Future Research  

 
Real-time divisible load theory (RT-DLT), as developed by Lin et al. (2006a, 

2006b, 2007a, 2007b, 2007c), has the potential to provide a solid theoretical 

foundation for the provision of real-time performance guarantees while executing 

arbitrarily divisible workloads on parallel computing clusters. However this is an 

emerging area of research; therefore, there are many open areas of research only 

some of which were addressed in this thesis. In this subsection, we briefly list some 

potential avenues for future research extending the results of this thesis. 

 

i. Task model 

 

In this thesis we have only considered the sporadic task model. Periodic and 

aperiodic task models are among other widely used task models in real-time 

systems.  It would be worth extending this work to be applicable for these 

additional models as well. 

 

 

ii. Real-time Scheduling Algorithms 

 

We have mainly discussed the EDF scheduling algorithm and integrated this 

algorithm into the RT-DLT scheduling framework. There are many other 

algorithms that can potentially be integrated; among these are the Earliest 

Deadline Zero Laxity (EDZL) and Deadline Monotonic (DM) scheduling 

algorithms. 

 
 
 

iii. Multi-round DLT  

 

We have so far investigated and developed a single-round DLT algorithm. 

We observe that, some more complex problems such as scheduling with 

blocking/reservation (Mamat et al., 2008) may be efficiently solvable with 

Multi-round DLT algorithm. 
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iv. Network model 

 

In this thesis, we have restricted our attention to the single-level tree 

topology. However, there are several different network topologies, such as 

stars, meshes, and trees that have been extensively studied in DLT.  We 

believe exploring these additional network topologies in the context of RT-

DLT offers vast opportunities for further research. 

 

 
v. Network with Front-end Processor 

 
Recall that, one assumption in Lin et al. (2006a, 2006b, 2007a) which we 

note is a bit different from the original work of DLT is that the head node is 

assumed to lack of front-end processing capabilities and hence not participate 

in the computation.  It would be interesting to extend this work to allow for 

head-nodes with front-end processing capabilities. 
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