

THE DEADLINE-BASED SCHEDULING OF DIVISIBLE REAL-TIME
WORKLOADS ON MULTIPROCESSOR PLATFORMS

SURIAYATI BT CHUPRAT

UNIVERSITI TEKNOLOGI MALAYSIA

THE DEADLINE-BASED SCHEDULING OF DIVISIBLE REAL-TIME

WORKLOADS ON MULTIPROCESSOR PLATFORMS

SURIAYATI BT CHUPRAT

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Doctor of Philosophy (Mathematics)

Faculty of Science

Universiti Teknologi Malaysia

JUNE 2009

iii

To

my beloved husband, Abd Hadi,

my loving childrens, Aizat and Ainaa,

and

my loving and supportive parents,

Hj Chuprat and Hajjah Rabahya.

iv

ACKNOWLEDGEMENT

First of all, I thank ALLAH (SWT), the Lord Almighty, for giving me the health,

strength, ability to complete this work and for blessing me with supportive

supervisors, family and friends.

I wish to express my deepest appreciation to my supervisor, Professor Dr

Shaharuddin Salleh for his idea, support, enthusiasm, and patience. I have learnt an

enormous amount from working with him. My special thanks to my co-supervisor

Professor Dr Sanjoy K. Baruah for his guidance, support, respect, and kindness. The

opportunity to collaborate with him during my five months visit at the University of

North Carolina, Chapel Hill, USA has benefited my research tremendously.

I would also like to thank Professor Dr James H. Anderson for giving me the

opportunity to attend his class on Real-time Systems at UNC. Thanks to the Real

Time Systems Group of UNC (Nathan, Bjeorn, John, Aaron, Hennadiy) for sharing

their dynamic discussions during the “Real-time Lunch” weekly meeting.

I am forever indebted to my employer Universiti Teknologi Malaysia (UTM) for

granted me the study leave, funds and the facilities for my research. Thanks to all

management staff of KST Kuala Lumpur, HRD Skudai and Canselori UTMKL.

Life would be harder without the support of many good friends. Thanks to Dr Zuraini

and Dr Ruzana for being such a good mentor, Arbai’ah and Haslina for sharing the

challenging PhD years, Dr Nazli, Dr Maslin and Dr Liza for their support and

motivations. Thank you to all my friends in KST Kuala Lumpur and UTM Skudai.

Finally, I thank to all my family members for their love, patient and uncountable

supports.

v

ABSTRACT

Current formal models of real-time workloads were designed within the

context of uniprocessor real-time systems; hence, they are often not able to

accurately represent salient features of multiprocessor real-time systems.

Researchers have recently attempted to overcome this shortcoming by applying

workload models from Divisible Load Theory (DLT) to real-time systems. The

resulting theory, referred to as Real-time Divisible Load Theory (RT-DLT), holds

great promise for modeling an emergent class of massively parallel real-time

workloads. However, the theory needs strong formal foundations before it can be

widely used for the design and analysis of real-time systems. The goal of this thesis

is to obtain such formal foundations, by generalizing and extending recent results and

concepts from multiprocessor real-time scheduling theory. To achieve this, recent

results from traditional multiprocessor scheduling theory were used to provide

satisfactory explanations to some apparently anomalous observations that were

previously made upon applying DLT to real-time systems. Further generalization of

the RT-DLT model was then considered: this generalization assumes that processors

become available at different instants of time. Two important problems for this

model were solved: determining the minimum number of processors needed to

complete a job by its deadline; and determining the earliest completion time for a job

upon a given cluster of such processors. For the first problem, an optimal algorithm

called MINPROCS was developed to compute the minimum number of processors

that ensure each job completes by its deadline. For the second problem, a Linear

Programming (LP) based solution called MIN-ξ was formulated to compute the

earliest completion time upon given number of processors. Through formal proofs

and extensive simulations both algorithms have been shown to improve the non-

optimal approximate algorithms previously used to solve these problems.

vi

ABSTRAK

 Model formal bagi beban kerja masa nyata asalnya direkabentuk dalam konteks

sistem masa-nyata satu pemproses. Model ini kadangkala gagal mewakilkan secara

tepat ciri-ciri sistem masa-nyata pemproses berbilang. Masalah ini cuba diatasi oleh

para penyelidik dengan mengaplikasikan model beban kerja yang digunakan di

dalam Teori Pembahagian Beban (DLT) kepada sistem masa nyata. Hasil aplikasi ini

dikenali sebagai Teori Pembahagian Beban Masa Nyata (RT-DLT). Teori ini

menunjukkan potensi yang meyakinkan bagi memodelkan beban kerja masa nyata

selari dalam kelas besar. Walaubagaimanapun, sebelum teori ini boleh digunakan

dalam merekabentuk dan analisis sistem masa nyata, ia memerlukan asas formal

yang kukuh. Tujuan kajian tesis ini adalah untuk menghasilkan asas formal yang

dimaksudkan dengan memperluaskan hasil kajian terkini dan menggunakan konsep

dari teori sistem masa nyata pemproses berbilang. Untuk mencapai tujuan ini, hasil

kajian terkini daripada teori penjadualan sistem masa nyata pemproses berbilang

digunakan bagi menerangkan pemerhatian yang luar-biasa apabila Teori

Pembahagian Beban diaplikasikan kepada sistem masa nyata. Tesis ini seterusnya

mengkaji model Teori Pembahagian Beban Masa Nyata apabila berlaku keadaan di

mana masa sedia pemproses-pemproses di dalam kluster adalah berbeza-beza. Dua

masalah utama berjaya diselesaikan dalam kajian ini: menentukan bilangan minimum

pemproses yang diperlukan untuk menyiapkan beban kerja sebelum sampai masa

tamat; menentukan masa yang paling awal bagi menyiapkan sesuatu beban kerja.

Bagi masalah pertama, satu algoritma optimal dinamakan MINPROCS telah

dihasilkan. Dan untuk masalah kedua satu penyelesaian berasaskan Pengaturcaraan

Lelurus yang dinamakan MIN-ξ telah direkabentuk. Melalui pembuktian formal dan

beberapa siri simulasi, telah dibuktikan bahawa kedua-dua penyelesaian adalah

optimal dan sekaligus algoritma yang sebelumnya digunakan untuk menyelesaikan

masalah yang sama diperbaiki.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii

ACKNOWLEDGEMENT iii

ABSTRACT iv

ABSTRAK v

TABLE OF CONTENTS vii

LIST OF TABLES xi

LIST OF FIGURES xii

LIST OF ABBREVIATION xv

LIST OF SYMBOLS xvi

LIST OF APPENDICES xviii

1 INTRODUCTION

1.1 Overview 1

1.2 Research Problem and Motivation 3

1.3 Research Objectives 4

1.4 Scope of Research 5

1.5 Research Methodology 6

1.6 Thesis Organization 9

viii

 2 LITERATURE REVIEW

 2.1 Introduction 11

 2.2 Real-time Systems 12

 2.2.1 Real-time Workload 12

 2.2.2 Platform Model 17

 2.2.3 Scheduling Algorithms 19

 2.3 Real-time Multiprocessor Scheduling and EDF 22

 2.4 Parallel Execution upon Multiprocessors 28

 Real-time Systems

 2.4.1 Dynamic Scheduling Algorithm 28

 2.4.2 Work Limited Parallelism 29

 2.4.3 Maximum Workload Derivative First 30

 With Fragment Elimination

 2.4.4 Divisible Load Theory (DLT) 31

 2.4.5 Real-time Divisible Load Theory 35

 2.4.6 Extending Real-time Divisible Load Theory 37

3 DEADLINE-BASED SCHEDULING OF

 DIVISIBLE REAL-TIME LOADS

 3.1 Introduction 38

 3.2 Application of DLT to Real-time Workloads 39

 3.2.1 Scheduling Framework 41

 3.2.1.1 Scheduling Algorithms 42

 3.2.1.2 Node Assignment Strategies 42

 3.2.1.3 Partitioning Strategies 43

 3.2.2 An Apparent Anomaly 48

ix

 3.3 A Comparison of EDF-OPR-AN and 48

 EDF-OPR-MN

 3.3.1 Uniprocessor and Multiprocessor EDF 49

 Scheduling of Traditional Jobs

 3.3.2 When the Head Node is a Bottleneck 51

 3.3.3 When the Head Node is not a Bottleneck 55

 3.4 Summary 60

4 SCHEDULING DIVISIBLE REAL-TIME LOADS ON

 CLUSTER WITH VARYING PROCESSOR

 START TIMES

 4.1 Introduction 61

 4.2 Motivation 62

 4.3 Foundation 63

 4.3.1 Processor Ready Times 63

 4.3.2 Processor with Equal Ready Times 64

 4.3.3 Processors with Different Ready Times 67

 4.4 Determining the Required Minimum Number 68

 of Processors

 4.5 Computing the Exact Required Minimum Number 70

 of Processors (MINPROCS)

 4.6 Simulation Results 73

 4.7 Summary 85

5 A LINEAR PROGRAMMING APPROACH FOR

 SCHEDULING DIVISIBLE REAL-TIME LOADS

 5.1 Introduction 86

 5.2 Computing Completion Time 87

 5.3 Linear Programming Formulation 90

x

 5.4 Simulation Design 96

 5.5 Experimental Evaluation 100

 5.5.1 Performance Comparison 100

 5.5.3 Heterogeneous Platforms 107

 5.5.3 Effect of Number of Processors 108

 5.6 Summary 109

6 CONCLUSION AND FUTURE WORK

 6.1 Conclusions 110

 6.2 Contributions and Significance 111

 6.3 Future Research 114

REFERENCES 116

APPENDIX A 125

xi

LIST OF TABLES

TABLE NO. TITLE PAGE

3.1 Bound on Inflation Factor 55

3.2 Cost, for selected values of β and n (assuming 1mCσ =) 57

4.1 Comparison of generated
minn with increasing deadline 75

 and a cluster of 16n = processors

4.2 Comparison of generated minn with increasing deadline 76

 and a cluster of 32n = processors

4.3 Comparison of generated
minn with increasing mC 77

 and a cluster of 16n = processors

4.4 Comparison of generated
minn with increasing mC 78

 cost mC and a cluster of 32n = processors

4.5 Comparison of generated
minn with increasing pC 80

 cost mC and a cluster of 16n = processors

4.6 Comparison of generated minn with increasing pC 81

 cost mC and a cluster of 32n = processors

4.7 Comparison of generated minn with increasing workload size 83

 cost mC and a cluster of 16n = processors

4.8 Comparison of generated minn with increasing workload size 84

 cost mC and a cluster of 32n = processors

5.1 Fraction iα values and calculations of completion time ξ 103

xii

LIST OF FIGURES

FIGURE NO. TITLE PAGE

1.1 Conducted phases in this research 6

1.2 Thesis organization 9

2.1 Typical parameters of a real-time job 12

2.2 Example of arrivals and executions of jobs generated by 14

 periodic tasks

2.3 Example of arrivals and executions of jobs generated by 15

 sporadic tasks

2.4 The layout of a SMP platform 18

2.5 Uniprocessor scheduling 20

2.6 Uniprocessor scheduling with preemption 20

2.7 A multiprocessor global scheduling 21

2.8 A multiprocessor partitioned scheduling 21

2.9 Example of an EDF schedule on uniprocessor platforms 23

2.10 Feasible schedule exists for a non-preemptive system 24

2.11 EDF schedule in a non-preemptive system 24

2.12 An example of Dhall’s effect 26

2.13 An example of two processors platform and a task 27

 systems that are schedulable by other scheduling

 strategies but not schedulable by EDF

2.14 Minimizing total workload and eliminating a fragmented workload 30

2.15 Single-Level Tree Network ∑ 32

2.16 Timing Diagram of Single-Level Tree Network with Front-End 33

2.17 Timing Diagram of Single-Level Tree Network without Front-End 35

2.18 Research Roadmap 37

xiii

3.1 The abstraction of RT-DLT framework 41

3.2 Timing diagram for EPR-based partitioning 44

3.3 Timing diagram for OPR-based partitioning 45

4.1 Data transmission and execution time diagram when 65

 processors have equal ready times

4.2 Data transmission and execution time diagram when 67

 processors have different ready times

4.3 Computing
minn 71

4.4 Comparison of generated
minn with increasing deadline, 74

 and a cluster of 16n = processors

4.5 Comparison of generated minn with increasing deadline 75

 and a cluster of 32n = processors

4.6 Comparison of generated
minn with increasing mC 77

 and a cluster of 16n = processors

4.7 Comparison of generated
minn with increasing mC 78

 and a cluster of 32n = processors

4.8 Comparison of generated
minn with increasing pC 79

 and a cluster of 16n = processor

4.9 Comparison of generated
minn with increasing pC 80

 and a cluster of 32n = processors

4.10 Comparison of generated minn with increasing load size 82

 and a cluster of 16n = processors

4.11 Comparison of generated
minn with increasing load size 83

 and a cluster of 32n = processors

5.1 Computing the completion time – LP formulation 91

5.2 The Simulation Design 96

5.3 Comparisons – computed completion time when 4n = 100

5.4 Comparisons – computed completion time when 6n = 101

5.5 Comparisons – computed completion time when 8n = 102

5.6 Comparisons – computed completion time when 12n = 102

5.7 Comparisons – computed completion time when 16n = 104

xiv

5.8 Comparisons – computed completion time when 20n = 105

5.9 Computed completion time with various mC values 106

5.10 Computed completion time with various pC values 106

5.11 Computed completion time with various N values 108

6.1 Summary of Contributions and Publications 113

xv

LIST OF ABBREVIATIONS

AN All Nodes

ATLAS AToroidal LHC ApporatuS

CMS Compact Muon Solenoid

DAG Directed Acyclic Graph

DLT Divisible Load Theory

DM Deadline Monotonic

EDF Earliest Deadline First

EDZL Earliest Deadline Zero Laxity

EPR Equal Partitioning

EPU Effective Processor Utilization

FIFO First In First Out

IIT Inserted Idle Time

LLF Least Laxity First

LP Linear Programming

MN Minimum Nodes

MWF Maximum Workload Derivative First

OPR Optimal Partitioning

RM Rate Monotonic

RT-DLT Real-time Divisible Load Theory

SMP Symmetric Shared Memory Multiprocessor

UMA Uniform Memory Access

WCET Worst Case Execution Time

xvi

LIST OF SYMBOLS

ia - Arrival Time of thi job

ic - Execution Requirement of thi job

mC - Communication Cost

pC - Computation Cost
j

ic - Computation Time

iC - Worst Case Requirement of thi task

id - Deadline of thi job

iD - Deadline of thi task

ie - Worst Case Execution Time of thi job

if - Completion Time of thi job

iJ - thi Job

I - Collection of Jobs

iL - thi Link

n - Number of Processors
minn - Minimum Number of Processors

ip - Period or Inter-arrival between successive jobs

iP - thi Processor

ir - Ready Time thi job

is - Start Time thi job

()S t - Schedule as Integer Step Function

iT - Minimum Inter-arrival separation of thi task
t - Time

xvii

iU - Utilization of thi task

()sumU τ - Total Utilization of a task system τ

max ()U τ - Maximum Utilization of a task system τ

max ()V τ - Maximum Utilization of a task system τ

 in non-preemptive system

()sumV τ - Total Utilization of a task system τ

 in non-preemptive system

max ()e τ - Maximum execution time of task τ

Greek Symbols

iτ - thi Task

iσ - thi Workload

iα - thi Fraction of Workload

β - Ratio of pC and (pC + mC)

δ - Density of thi task

max ()δ τ - Total Density of a task system τ

()sumδ τ - Largest Density of a task system τ

iξ - Execution Time of thi workload

φ - Off set

()nχ - Cost of executing a job

xviii

LIST OF APPENDICES

APPENDIX TITLE PAGE

A PAPERS PUBLISHED DURING THE 125

 AUTHOR’S CANDIDATURE

1

CHAPTER 1

INTRODUCTION

1.1 Overview

Real-time computer application systems are systems in which the correctness

of a computation depends upon both the logical and temporal properties of the result

of the computation. Temporal constraints of real-time systems are commonly

specified as deadlines within which activities should complete execution. For hard-

real-time systems, meeting timing constraints is crucially important – failure to do so

may cause critical failures and in some cases cause hazard to human life (Buttazzo,

2004). In soft-real-time systems, by contrast, the consequences of an occasional

missed deadline are not as severe (Buttazzo et al., 2005). Given the central

importance of meeting timing constraints in hard-real-time systems, such systems

typically require guarantees prior to deployment – e.g., during system design time –

that they will indeed always meet their timing constraints during run-time. This

thesis is primarily concerned with hard-real-time systems.

Real-time computing will continue to play a crucial role in our society, as

there are an increasing number of complex systems that needs computer control.

Many next-generation computing applications such as automated manufacturing

systems, defense systems (e.g. smart bombs, automotive, avionics and spacecraft

control systems), high speed and multimedia communication systems, have

significant real-time components (Liu, 2000; Buttazzo, 2004).

2

Such real-time application systems demand complex and significantly

increased functionality and it is becoming unreasonable to expect to implement them

upon uniprocessor platforms. Consequently, these systems are increasingly coming

to be implemented upon multiprocessor platforms, with complex synchronization,

data-sharing and parallelism requirements.

Formal models for representing real-time workloads have traditionally been

designed for the modeling of processes that are expected to execute in uniprocessor

environments. As real-time application systems increasingly come to be

implemented upon multiprocessor environments, these same models have been used

to model the multiprocessor task systems. However, these traditional models fail to

capture some important characteristics of multiprocessor real-time systems;

furthermore, they may impose additional restrictions (“additional" in the sense of

being mandated by the limitations of the model rather than the inherent

characteristics of the platform) upon system design and implementation.

One particular restriction that has been extended from uniprocessor models to

multiprocessor ones is that each task may execute upon at most one processor at each

instant in time. In other words, they do not allow task parallel execution. However,

this is overly restrictive for many current multiprocessor platforms; to further

exacerbate matters, this restriction is in fact one significant causal factor of much of

the complexity of multiprocessor scheduling. Indeed, as Liu (1969) pointed out, “the

simple fact that a [job] can use only one processor even when several processors are

free at the same time adds a surprising amount of difficulty to the scheduling of

multiple processors." Certainly, the next generation of embedded and real-time

systems will demand parallel execution.

Recently, some researchers have studied extensions to the workload models

traditionally used in real-time scheduling theory, to allow for the possibility that a

single job may execute simultaneously on multiple processors. One of the more

promising approaches in this respect has been the recent work of Lin et al. (2006a,

2006b, 2007a, 2007b, 2007c), that applies Divisible Load Theory (DLT) to

multiprocessor real-time systems. The resulting theory is referred to as Real-time

Divisible Load Theory (RT-DLT).

3

1.2 Research Problem and Motivations

Real-time Divisible Load Theory (RT-DLT) holds great promise for

modeling an emergent class of massively parallel real-time workloads. However, the

theory needs strong formal foundations before it can be widely used for the design

and analysis of hard real-time safety-critical applications. In this thesis, we address

the general problem of obtaining such formal foundations, by generalizing and

extending recent results and concepts from multiprocessor real-time scheduling

theory. Within this general problem, here are some of the specific issues we address:

i. Prior research in RT-DLT has reported some apparently anomalous findings, in

the sense that these findings are somewhat counter-intuitive when compared to

results from “regular” (i.e., non-real-time) DLT. What explains these

(previously-identified) apparent anomalies in RT-DLT?

ii. When the processors in a multiprocessor platform all become available at the

same instant in time, the issue of scheduling a real-time divisible workload on

such platforms is pretty well understood. However, the reality in many

multiprocessor environments is that all the processors do not become available

to a given workload at the same instant (perhaps because some of the

processors are also being used for other purposes). How does one extend RT-

DLT to render it applicable to the scheduling of real-time workloads upon

platforms in which all the processors are not made available simultaneously?

Specifically we address two important problems:

• Given a divisible job (, ,)i i i ia dτ σ= and varying processor ready-times

1 2 3, , ,...r r r what is the minimum number of processors needed to meet a

job’s deadline?

• Given a divisible job (, ,)i i i ia dτ σ= and n (identical) processors with

varying ready-times 1 2, ,..., nr r r upon which to execute it, what is the

earliest time at which the job iτ can complete execution?

4

1.3 Research Objectives

As stated above, the goal of this thesis is to develop strong formal

foundations that enable the application of RT-DLT for the design and analysis of

multiprocessor hard real-time systems. To achieve this goal, we must build

theoretical foundations and accurate simulation environments for experimenting

with, and explaining the behavior of, hard real-time DLT systems. Some of the

specific objectives that we have identified as needing to be accomplished in order to

achieve this goal are as follows:

i. To investigate the application of Divisible Load Theory (DLT) models to real-

time workloads, in order to obtain a deep and detailed understanding of the

behavior of such systems.

ii. To theoretically explain the apparent anomalies of Real-time Divisible Load

Theory (RT-DLT).

iii. To extend RT-DLT so that they are able to handle cluster and workload models

that are as general as possible. Specifically, we hope that these extensions will

be applicable to platforms in which all processors do not become available

simultaneously.

iv. To build efficient scheduling algorithms that will compute the exact minimum

number of processors that must be assigned to a job in order to guarantee that

it meets its deadline — on clusters in which all processors are not

simultaneously available.

v. To develop efficient scheduling algorithms that minimize the completion time

of a given divisible job upon a specified number of processors — on clusters in

which all processors are not simultaneously available.

5

1.4 Scope of Research

In this thesis, we focus upon a particular formal model of real-time workloads

that is very widely used in real-time and embedded systems design and

implementation. In this model, it is assumed that there are certain basic units of

work, known as jobs that need to be executed. Such jobs are generated by recurring

processes known as periodic or sporadic tasks – each such task represents a piece of

straight-line code embedded within a potentially infinite loop. This workload model

is described in greater detail in Chapter 2.

There are several kinds of timing constraints considered in the real-time

scheduling literature; in this thesis, we restrict our attention for the most part to just

one of these kinds of constraints – meeting deadlines of jobs.

With respect to system resources, we will focus for the most part on

minimizing the number of processors used. (Although other system resources, such

as network bandwidth, energy, etc. are also important, optimization with respect to

these resources does not lie within the scope of this thesis.)

Several different network topologies, such as stars, meshes, and trees, have

been studied in DLT. We restrict our attention to the single-level tree topology,

since this is one of the simpler models but nevertheless appears to contain most of

the important issues that arise when DLT is extended to apply to real-time

workloads.

6

1.5 Research Methodology

We conducted this research in six major phases, as shown in Figure 1.1. The

six phases are: Literature Review, Analysis and Problem Formulations, Algorithms

Design, Algorithms Implementation, Algorithms Evaluations and Documentation.

Each of these phases will be described in greater detail in the following pages.

Literature Review

Analysis and Problem
Formulations

Algorithms Design

Algorithms Implementation

Algorithms Evaluation

Documentations

 Figure 1.1 Conducted phases in this research

7

i. Literature Review

We performed literature review on various topics related to the research

conducted in this thesis. The topic includes:

• State of the art of Real-time Systems

• State of the art of Real-time scheduling theory

• Current findings on Divisible Load Theory (DLT)

• Current findings on Real-time Divisible Load Theory (RT-DLT)

ii. Analysis and Problem Formulations

In this phase, we studied the applicability of DLT to multiprocessor scheduling

of real-time systems. Specifically we analyzed series of work on RT-DLT (Lin

et al., 2006a, 2006b, 2007a, 2007b, 2007c) and formulated three important

problems arises upon these works. We explain these formulations in Chapter 3, 4

and 5 accordingly.

iii. Algorithms Design

As stated earlier, we formulated three significant problems detected from the

work of Lin et al. (2006a, 2006b, 2007a, 2007b, and 2007c). For the first

problem, we used existing scheduling theory to explain an anomalous

observation of Lin et al. (2006a, 2006b, 2007a) when they first applied DLT to

real-time multiprocessor scheduling. For the second problem, we designed an

efficient algorithm to compute the minimum number of processors needed for a

job to meet its deadline. To develop this algorithm, we used the first principle of

RT-DLT found in Lin et al. (2006a, 2006b, and 2007a). And for the third

problem, we formed a Linear Programming-based algorithm to compute the

minimum completion time of a job execution. We present each detail design in

Chapter 3, 4 and 5 respectively.

8

iv. Algorithms Implementation

In this phase, we developed series of simulations to compare the degree of

improvement of our proposed algorithms to prior existing ones. For the second

problem, we implemented the algorithm using C++ and for the third problem we

developed the simulation programs using MATLAB.

v. Algorithms Evaluation

We evaluated our proposed algorithms by analyzing the results produced by our

simulation programs. We compared the results produced by our algorithm with

the ones produced by previous algorithms. In all comparisons, our algorithms

showed significant improvement over pre-existing ones. We also provide

lemmas and proofs to support our results and discussion in this thesis.

We conducted phase 3, 4 and 5 in three cycles for the three problems

formulated.

vi. Documentations

Finally each contribution reported in this thesis was documented in technical

publications. A list of papers published in the proceedings of conferences and

journals are listed in Appendix A. The final and complete documentation is

compiled in this thesis.

9

1.6 Thesis Organization

This thesis is organized into six chapters. Figure 1.2 shows the flow of the

thesis organization; descriptions are given in the following pages.

CHAPTER 1

Introduction

CHAPTER 2

Literature Review

CHAPTER 3

Deadline-based
Scheduling of Divisible

Real-time Loads

CHAPTER 5

A Linear Programming
Approach for Scheduling
Divisible Real-time Loads

CHAPTER 6

Conclusion and
Future Work

CHAPTER 4

Scheduling Divisible Real-time
Loads on Cluster with Varying

Processor Start Times

Figure 1.2 Thesis organization

This thesis explores two important research areas: Real-time Systems and

Divisible Load Theory. In Chapter 2, we present some background information and

review some of the prior results on real-time systems. The first part describes the

basic concepts of real-time systems. We then briefly review some fundamental

10

results concerning real-time multiprocessor scheduling. The discussion mainly

focuses on global multiprocessor scheduling with the Earliest Deadline First (EDF)

scheduling algorithm. This chapter also discusses in greater detail the concept of

Divisible Load Theory (DLT) and the application of this theory to multiprocessor

scheduling of real-time systems, referred to as RT-DLT. We review some of the

prior work done in RT-DLT, which we extend as part of this thesis.

In Chapter 3, we will report our first contribution presented in this thesis. We

describe the initial work of Lin et al. (2006a, 2006b and 2007a) and their apparently

anomalous findings with respect to a scheduling framework integrating DLT and

EDF. We then present our results that provide a theoretical analysis to some of these

anomalies.

In Chapter 4, we describe our study on scheduling problems in RT-DLT

when applied to clusters in which different processors become available at different

time-instants. We present an algorithm that efficiently determines the minimum

number of processors that are required to meet a job’s deadline. We then describe

and discuss simulation results evaluating the proposed algorithm, and comparing it to

previously-proposed heuristics for solving the same problem.

We have proposed a Linear Programming (LP) based approach to efficiently

determine the earliest completion time for the job on a given processors which may

become available at different times. This LP based approach is described in Chapter

5. We then present extensive experimental simulations to evaluate this LP based

approach and consequently show how this approach significantly improves on the

heuristic approximations that were the only techniques previously known for solving

these problems.

Finally, we conclude our work and suggest directions for future research in

Chapter 6.

11

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In the previous chapter, we mentioned that the goal of our research is to

further study the application of Divisible Load Theory (DLT) to the real-time

systems workloads (henceforth, we referred as RT-DLT). In this chapter, we present

some background information and review some of the prior results on real-time

systems. The basic concepts of real-time systems will be presented in section 2.2.

In section 2.3, we will briefly review some fundamental results concerning

real-time multiprocessor scheduling. The discussion will mainly focus on global

multiprocessor scheduling with the Earliest Deadline First (EDF) scheduling

algorithm. In section 2.4, we review recent works concerning parallel execution

upon multiprocessor real-time systems. Specifically, we review the fundamental

concepts of DLT and current findings on RT-DLT.

12

2.2 Real-time Systems

In designing a real-time system, there are three important components that

must be specified: Workload Models, Platform Models and Scheduling Algorithm.

This section will briefly explain the basic terms and concepts used to describe these

components.

2.2.1 Real-time Workload

Real-time workloads are assumed to be comprised of basic units of execution

known as jobs. Each job, (, ,)i i i iJ a c d= is characterized by an arrival time 0ia ≥ ,

an execution requirement 0ic > , and a relative deadline 0id > , and has the

following interpretation: The job must execute for ic time units over the time

interval [,)i i ia a d+ . Other parameters associated with a job are the start time is and

the completion time if . Figure 2.1 shows typical parameters of a real-time job.

ia is if id

ic

Figure 2.1: Typical parameters of a real-time job

Jobs are classified as being preemptive or non-preemptive. A preemptive job

that is executing may have its execution interrupted at any instant in time and

resumed later, at no cost or penalty; by contrast, the entire execution of a non-

13

preemptive job must occur in one contiguous time-interval of length ic . In this

thesis, we are primarily concerned with the scheduling of preemptive jobs.

In real-time systems, it is generally assumed that these jobs are generated by

recurring tasks. Each such recurring task is assumed to model a piece of straight-line

code embedded within a potentially infinite loop, with each iteration through the loop

being modeled by a single job. Over time, a recurring taskτ , initiates a real-time

instance I, where I denotes a finite or infinite collection of jobs 1 2{ , ,...}I J J= . Task

model is a format and rules for specifying a task system. For every execution of the

system, recurring task iτ will generate a collection of real-time jobs. Several

recurring tasks can be composed together into a recurring task system

1 2{ , ,... }mτ τ τ τ= .

Among widely used task models is the periodic task model (Liu and Layland,

1973). In this model, a periodic task iτ is specified by a three tuple (, ,)i i ie pφ , where

iφ is the offset of the first job generated by iτ from start system time; ie is the worst-

case execution time (WCET) of any job generated by iτ ; and ip is the period or

inter-arrival time between successive jobs of iτ .

The set of jobs generated by a periodic task iτ with worst-case possible

execution times is:

() {(, ,), (, , 2), (2 , , 3),...}
defP

i i i i i i i i i i i i i i iWCET e p p e p p e pJ τ φ φ φ φ φ φ= + + + + +

Example 2.1: Consider a periodic task 1 2{ (0, 4,8), (10,5,15)}τ τ τ= = = . The set of

jobs generated by 1τ and 2τ with worst-case execution times are:

1() {(0,4,8), (8,4,16), (16,4,24),...}P

WCETJ τ =

2() {(10,5,15), (25,5, 40), (40,5,55),...}P

WCETJ τ =

14

Figure 2.2 depicts the arrivals and executions of jobs generated by two

periodic task described in Example 2.1.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

1 (0, 4,8)τ =

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

2 (10,5,15)τ =

Figure 2.2: Example of arrivals and executions of jobs generated by periodic tasks

1 (0,4,8)τ = and 2 (10,5,15)τ = .

The sporadic task model (Mok, 1983, Baruah et al., 1990) is another

commonly used formal model for representing recurring real-time task systems. In

the sporadic task model, a task (, ,)i i i iC D Tτ = is characterized by a worst-case

execution requirement iC , a (relative) deadline iD , and a minimum inter-arrival

separation iT , also known as period. Such a sporadic task generates an infinite

sequence of jobs, with successive job-arrivals separated by at least iT time units.

Each job has a worst-case execution requirement equal to iC and a deadline

that occurs at iD time units after its arrival time. A sporadic task system is

comprised of several such sporadic tasks. Let τ denote a system of such sporadic

tasks: 1 2{ , ,..., }mτ τ τ τ= with (, ,)i i i iC D Tτ = for all i ,1 i m≤ ≤ . Task system τ is

said to be a constrained deadline sporadic task system if it is guaranteed that each

task iτ τ∈ has its relative deadline parameter no larger than its period: i iD P≤ for all

iτ τ∈ .

15

Example 2.2: Consider a sporadic task 1 2{ (2,4,6), (3,9,12)}τ τ τ= = = . Since the

sporadic task model specifies a minimum, rather than an exact, separation between

the arrivals of successive jobs of each task, each sporadic task may generate

infinitely many different sets of jobs. One such possible set of jobs generated by 1τ

and 2τ with worst-case execution times are:

1() {(0,2, 4), (6, 2,10), (12, 2,16),...}S

WCETJ τ =

2() {(0,3,9), (12,3, 21), (24,3,33),...}S

WCETJ τ =

Figure 2.3 depicts the arrivals and executions of jobs generated by two

sporadic task described in Example 2.2.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

1 (2,4,6)τ =

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

2 (3,9,12)τ =

Figure 2.3: Example of arrivals and executions of jobs generated by sporadic tasks

1 (2,4,6)τ = and 2 (3,9,12)τ = .

16

Additional task properties that we would like to define, as we will use in later

chapters are the notions of Utilization and Density.

Utilization The utilization iU of a task iτ is the ratio of its execution requirement to

its period:

() i
i

i

CU
T

τ = (2.1)

The total utilization ()sumU τ and the largest utilization max ()U τ of a task

system τ are defined as follows:

() ()
i

def

sum iU U
τ τ

τ τ
∈

= ∑ (2.2)

max () max ()
i

def

iU U
τ τ

τ τ
∈

= (2.3)

Density The density δ of a task iτ is the ratio of its execution requirement to the

smallest of its relative deadline and its period:

()
min(,)

i
i

i i

C
D T

δ τ = (2.4)

17

The total density ()sumδ τ and the largest density max ()δ τ of a task system τ

are defined as follows:

() ()
i

def

sum i
τ τ

δ τ δ τ
∈

= ∑ (2.5)

max () max ()
i

def

iτ τ
δ τ δ τ

∈
= (2.6)

One of the fundamental assumptions in these task models is that a job may be

executing on at most one processor at each instant in time. In other words, parallel

execution is not permitted. Keeping this in mind, now we will define the platform

models in the following section.

2.2.2 Platform Model

Real-time scheduling theory has traditionally focused upon scheduling real-

time workloads on uniprocessor platforms. In such platforms, there is only a single

processor upon which the entire real-time workload is to execute. More recently,

attention has been given to multiprocessor platforms, comprised of several

processors. Typically, the letter P is used to denote processor(s). If a platform has n

processors, the platform is denoted as 1 2, ,..., nP P P .

An identical multiprocessor platform is a platform in which all the processors

have the same capabilities and speed; more specifically, each processor is identical in

terms of architecture, cache size and speed, I/O and resource access, and the access

time to shared memory (Uniform Memory Access (UMA)).

18

Figure 2.4 shows a high-level illustration of a possible layout of an identical

multiprocessor platform. All processors are connected at the bus level. This type of

multiprocessor is commonly referred to as a symmetric shared-memory

multiprocessor (SMP), also known as tightly-coupled multiprocessor systems. On the

other hand, loosely-coupled multiprocessor systems, also known as clusters, are

comprised of multiple standalone computers interconnected via a high speed

communication system such as Gigabit Ethernet. A Linux Beowulf cluster is an

example of a loosely-coupled multiprocessor system.

Processor
P1

Cache

Processor-Memory Interconnect (e.g. Bus)

Processor
P2

Cache

Processor
Pn

Cache

Shared Memory

Figure 2.4: The layout of a symmetric shared-memory multiprocessor (SMP)

platform.

A multiprocessor platform is called heterogeneous if each processor has

different capabilities. Heterogeneous multiprocessors may be further classified into

uniform and unrelated multiprocessors. The classification can be made in terms of

execution speed of each processor.

 Recall that, a task is a computation that is executed by the processor(s). When

a single processor has to execute a set of tasks, or the number of tasks to be executed

is greater than the number of processors in the processing platform, one need to

19

decide which task to be assigned to these processors. The set of rules for these

assigning activities is known as scheduling algorithm (Cottet et al., 2002). We will

describe this concept in greater detail, in the following section.

2.2.3 Scheduling Algorithms

Generally, a scheduling algorithm is a set of rules that allocates processor

time to tasks. In real-time systems, processor-allocation strategies are driven by the

need to meet timing constraints. A formal definition of a uniprocessor schedule for

real-time task systems is given as follows:

Definition (from, (Buttazzo, 2004)): Given a set of m tasks, 1 2{ , ,..., }mτ τ τ τ= , a

schedule is an assignment of tasks to processor, so that each task is executed until

completion. More formally, a schedule can be defined as a function :S + → such

that 1 2, ,t t t+∀ ∈ ∃ such that 1 2[,)t t t∈ and 1 2' [,)t t t∀ ∈ () (')S t S t= . In other words,

()S t is an integer step function and ()S t i= , with 0i > , means that task iτ is

executing at time t, while () 0S t = means that the processor is idle.

Before we further describe the scheduling approaches, we define some terms

commonly used in describing properties of real-time scheduling algorithms.

• Feasibility. A schedule is said to be feasible if all tasks are completed

according to set of specified constraints.

• Schedulability. A set of tasks is said to be schedulable if there exists at least

one algorithm that can produce a feasible schedule.

• Optimality. A scheduling algorithm is said to be an optimal if the algorithm

is able to produce a feasible schedule for any schedulable task set.

20

In uniprocessor scheduling, jobs will need to be organized and executed over

a single processor, as illustrated in Figure 2.5. Arriving jobs will be stored in a job

queue, and wait until the processor is ready for next execution. A scheduling

algorithm, will select a job from the jobs queue, based on the scheduling policy used.

For example, in the Earliest Deadline First (EDF) scheduling algorithm, the

scheduler will choose a job with the nearest deadline. In other words, the job with

the smallest deadline has the highest priority for the next execution. In some

scheduling algorithm, preemption1 is allowed, where the current job execution will

be stop, allowing a job with higher priority be executed, and the preempted job will

resume execution in other point of time. This kind of scheduling is illustrated in

Figure 2.6.

Figure 2.5: Uniprocessor scheduling

Figure 2.6: Uniprocessor scheduling with preemption

1 Preemption is allowed in a system that permits interruption at any point of task execution.

21

On the other hand, in multiprocessor systems, the scheduler will organize and

execute tasks over a set of processors. Two kinds of scheduling are defined for

multiprocessor systems – one is known as global scheduling (Baker and Baruah,

2008) and the other is called partitioned scheduling (Baker and Baruah, 2008).

As illustrated in Figure 2.7, in global scheduling, arriving jobs will be placed

in the global jobs queue. Then the global scheduler will organize which job to

execute on each processor at each instant of time. In partitioned scheduling (see

Figure 2.8) tasks will first be assigned to processors by a partitioning algorithm, and

the generated jobs of each task are subsequently placed on the local job queue. Then,

a uniprocessor scheduling is used to schedule jobs to each processor.

Multiprocessor
Scheduler
(Global)

P1

Jobs QueueArrival Jobs P2

Pn

. . .

Figure 2.7: A multiprocessor global scheduling

Uniprocessor
Scheduler P1

Jobs Queue

Arrival
Jobs Partitioning

Algorithm

Uniprocessor
Scheduler P2

Jobs Queue

Uniprocessor
Scheduler Pn

Jobs Queue

… …

Figure 2.8: A multiprocessor partitioned scheduling

22

Scheduling in multiprocessor systems is more complex than in uniprocessor

systems. Although it seems, having more processors provides the advantages in

executing more jobs at each instant of time, but the organization and synchronization

adds more complexity to the scheduling algorithms. These challenges have created a

significant attention to multiprocessor scheduling research. We now review some of

the important results concerning the real-time multiprocessor scheduling in the

following section.

2.3 Real-time Multiprocessor Scheduling and EDF

Real-time scheduling is an important area of research in real-time computing

as scheduling theory addresses the problem of meeting the specified timing

requirements of the system (Stankovic and Ramamritham, 1985). Among the

scheduling algorithms studied in real-time systems are: Earliest Deadline First (EDF)

(Liu and Layland, 1973), Rate Monotonic (Liu and Layland, 1973; Baruah and

Goossens, 2003), Deadline Monotonic (Leung and Whitehead, 1982), Least Laxity

First (Dertouzous and Mok, 1989), Pfair-based algorithms (Baruah et al., 1996;

Baruah et al., 1995) and Earliest Deadline with Zero Laxity (Cirinei and Baker,

2007; Baker et al., 2008).

Since our work is related to EDF, this section reviews the prior fundamental

results obtained in EDF scheduling. EDF is a priority-driven scheduling algorithm

that schedules the arriving tasks according to their deadlines. Specifically, tasks with

the earlier deadlines have highest priority to be executed as soon as processors

become available. EDF is known to be an excellent scheduling algorithm for

uniprocessor platforms under a wide variety of conditions. For preemptive systems

of independent jobs, it has been shown (Dertouzos, 1974) to be optimal in the sense

that if any scheduling algorithm can schedule a given system to meet all deadlines,

then EDF, too, will meet all deadlines for this system.

23

Figure 2.9 depicts an example of an EDF schedule on a uniprocessor

platform, with a set of three tasks 1 (0,1,3)τ = , 2 (0, 4,10)τ = and 3 (2, 2,4)τ = . Both

task 1τ and task 2τ arrived at t=0, and 1τ is executed first, since it has an earlier

deadline. At t=1, 2τ begins its execution after 1τ completes. When 3τ arrives at t=3,

2τ is preempted and resumes execution when 3τ completes at t=4. In this example

all tasks meet their respective deadlines.

Figure 2.9: Example of an EDF schedule on uniprocessor platforms. Up arrows

depicts job arrivals, and down arrows depicts job deadlines.

For non-preemptive systems, the EDF can be a non-optimal algorithm (Jeffay

et al., 1991). Consider the same set of 3 tasks 1τ , 2τ , 3τ and the same job arrivals as in

Figure 2.7. Figure 2.10 shows that these jobs can be scheduled non-preemptively to

meet all deadlines. Figure 2.11 exhibits that non-preemptive EDF fails to produce a

feasible schedule.

24

Figure 2.10: Feasible schedule exists for a non-preemptive system

Figure 2.11: EDF schedule in a non-preemptive system. Task 2τ gets executed first

since 2 3A A< , and 3τ can only begin its execution when 2τ completes at t=4, thus

failing to meet its deadline.

 For multiprocessor platforms, EDF is not quite as good an algorithm as it is

on uniprocessors. Sufficient conditions and bounds have been obtained for using

EDF for scheduling upon multiprocessors. One of the more important results

concerning preemptive EDF multiprocessor scheduling was proved by Philips et al

(1997).

25

Theorem 2.1 (from (Philips et al., 1997; Philips et al., 2002)) If a real-time

instance is feasible on m processors, then the same instance will be scheduled to

meet all deadlines by EDF on m processors in which the individual processors are

1(2)
m

− times as fast as in the original system.

Goossens et al. (2003) extended the above conditions for periodic task

systems on identical multiprocessor platforms.

Theorem 2.2 (from (Goossens et al., 2003)) Periodic task system τ is scheduled to

meet all deadlines by EDF on an identical multiprocessor platform comprised of m

unit-capacity processors, provided:

 max() (1) ()sumU m m Uτ τ≤ − − (2.7)

For non-preemptive multiprocessor system, Baruah (2006) presented

sufficient conditions for determining whether a given periodic task system will meet

all deadlines if scheduled non-preemptively upon a multiprocessor platform using the

EDF algorithm.

Theorem 2.4 (from (Baruah, 2006)) Any task system τ satisfying the following

condition, will successfully scheduled by Non-preemptive EDF to meet all deadlines:

 max() (1) ()sumV m m Vτ τ≤ − − × (2.8)

Where,

max

()(,)
max(0, () ())

def
i

i
i

ev
p e

ττ τ
τ τ

=
−

 (2.9)

26

 () (,)
i

def

sum iV V
τ τ

τ τ τ
∈

= ∑ (2.10)

 max () max (,)
i

def

iV V
τ τ

τ τ τ
∈

= (2.11)

Above, we have seen several sufficient conditions and schedulability bounds

introduced in various investigation of EDF multiprocessor scheduling. However, it is

also important to be aware that there exist task systems with very low utilization that

are not EDF-schedulable on multiprocessor platforms. This phenomenon of task

systems having low utilization but being not schedulable on a multiprocessor system

is sometimes known as Dhall’s effect (Dhall and Liu, 1978). We describe Dhall’s

effect through the following example.

Example 2.1 Consider a platform with two processors, 1 2{ , }P P P= and a task system

(, ,)i i i iA E Dτ = = { 1 (0,1,50)τ = , 2 (0,1,50)τ = , 3 (0,100,100)τ = }.

Figure 2.12: An example of Dhall’s effect. EDF fails to schedule a task system with

utilization 1.04 on two processors.

27

Figure 2.13: An example of two processors platform and a task systems that are

schedulable by other scheduling strategies but not schedulable by EDF.

 Another situation that is also meaningful to help us understand the behavior

of multiprocessor real-time system is that scheduling anomalies can happen in

multiprocessor scheduling. For instance, Graham (1976) has observed that

anomalous results may occur, where increasing the number of processors, reducing

the execution times, or weakening precedence constraints, can render a schedulable

systems unschedulable.

We would also like to recall a fundamental restriction we mentioned in the

earlier chapter. In multiprocessor real-time scheduling, a single job may execute

upon at most one processor at any instant in time, even if there are several idle

processors available. Perhaps, this restriction makes the scheduling in multiprocessor

significantly more complex. Recall that, as Liu observed (Liu, 1969), “The simple

fact that a task can use only one processor even when several processors are free at

the same time adds a surprising amount of difficulty to the scheduling of

multiprocessors.” Undoubtedly, the next generation of embedded and real-time

systems will demand parallel execution. Looking at this significant need, recently,

some researchers have studied extensions to the traditional workload models, to

allow for the possibility that a single job may execute simultaneously on multiple

processors. We briefly review some of these works in the following section.

28

2.4 Parallel Execution upon Multiprocessor Real-time Systems

Attempting to address the difficulty in multiprocessor scheduling, some

researchers have studied extensions to the workload models traditionally used in real-

time scheduling theory, to allow for the possibility that a single job may execute

simultaneously on multiple processors. We briefly review a few significant work

respects to this attempt.

2.4.1 Dynamic Scheduling Algorithm

Manimaran and Murthy (1998) proposed a dynamic algorithm for non-

preemptive scheduling of real-time tasks upon multiprocessor systems. In this work,

they introduced an extra notion of a real-time task. Specifically each task iτ is

aperiodic and is characterized by its arrival time (ia), ready time (ir), worst case

computation time (j
ic) and deadline (id). j

ic is the worst case computation time of

iT which is the upper bound on the computation time, when run on thj processors in

parallel where 1 j N≤ ≤ . There are four significant differences of Manimaran and

Murthy’s work to what we proposed in this thesis:

• They work with aperiodic task model.

• When a task is parallelized, all its parallel subtasks (split tasks) have to start

at the same time in order to synchronize their executions.

• They equally split a task to thj processors (maximum degree of parallelization

permitted that satisfy j
ic)

• Manimaran and Murthy algorithm is a variant of myopic algorithm proposed

by Ramamritham et al. (1990). The myopic algorithm is a heuristic search

algorithm that schedules dynamically arriving real-time tasks with resource

constraints.

29

2.4.2 Work Limited Parallelism

Similarly, Collete et al. (2007, 2008), investigated global scheduling of

implicit deadline sporadic task systems with work-limited job parallelism upon

identical parallel machines. In other words, they allow jobs to be executed on

different processors at the very same instant.

In this work, they considered a sporadic task system. Recall that, in sporadic

task model, a task (, ,)i i i iC D Tτ = is characterized by a worst-case execution

requirement iC , a (relative) deadline iD , and a minimum inter-arrival separation iT ,

also known as period. For a task iτ and m identical processors, they provide an m-

tuple of real numbers (),1 ,2 ,, ,...
def

i i i i mγ γ γΓ = to model job parallelism, with the

interpretation that a job of iτ that executes for t time units on j processors

completes ,i j tγ × units of execution. They observed that, full parallelism, which

corresponds to the case where (1,2,...,)i mΓ = is not realistic. That is if full

parallelism is allowed, the multiprocessor scheduling problem is equivalent to the

uniprocessor one.

Collete et al. assumed that a work-limited job parallelism with the following

definition:

Definition (from Collete et al., 2007, 2008): The job parallelism is said to be work-

limited if and only if for all iΓ we have:

, '

,

'1 , 1 ' , i j

i j

ji n j j m
j

γ
γ

∀ ≤ ≤ ∀ ≤ < ≤ >

One major difference of Collete et al.’s approach compared to our work is

that they assumed an m-tuple of real numbers is given to guide them in splitting a

job.

30

2.4.3 Maximum Workload Derivative First with Fragment

Elimination (MWF-FE)

Another significant work is by Lee et al. (2003). They proposed an algorithm

called “Maximum Workload derivative First with Fragment Elimination” (MWF-

FE) for the on-line scheduling problem. This algorithm utilizes the property of

scalable tasks for on-line and real-time scheduling. They assumed tasks are scalable

if their computation time can be decreased (up to some limit) as more processors are

assigned to their execution. They also defined the total amount of processors time

devoted to the execution of a scalable task as the workload of the task. They

assumed, as the number of processors allocated to a scalable task increases, its

computation time decreases but its workload increases because of parallel execution

overhead, such as contention, communication, and unbalanced load distribution.

In Lee et al. algorithm, the total workload of all scheduled tasks is reduced by

managing processors allocated to the tasks as few as possible without missing their

deadlines. As a result, the processors in the system have lesser load to execute the

scheduled tasks and can execute more newly arriving tasks before their deadlines.

They also defined available processors due to their next allocation assignment as

fragmented workload and need to eliminate it by allocating more processors to

previously scheduled tasks. As more processors are allocated to a task, its

computation is completed sooner. Figure 2.14 depicts the idea of minimizing total

workload and eliminating a fragmented workload.

Figure 2.14: (a) Minimizing total workload and (b) eliminating a fragmented

workload (Lee et al., 2003)

31

2.4.4 Divisible Load Theory (DLT)

In a series of papers (2006a, 2006b, 2007a, 2007b, 2007c) Lin et al. have

extended the Divisible Load Theory known as DLT (Bharadwaj et al., 2003) to real-

time workloads. Since this thesis extends the work of Lin et al. (2006a, 2006b,

2007a, 2007b, 2007c), we will briefly review the fundamental and some current

findings of DLT in this section.

“Divisible load theory offers a tractable and realistic approach to scheduling

that allows integrated modeling of computation and communication in parallel and

distributed computing systems” (Robertazzi, 2003). DLT involves the study of an

optimal distribution strategy that distributes loads among a collection of processors

that link to each other via a network (Bharadwaj et al., 1996). DLT thus seeks

optimal strategies to split divisible loads into chunks/ fractions and send them to the

processing nodes with the goal of minimizing the overall completion time (the

“makespan”).

Loads in DLT can be arbitrarily divided into pieces and distributed among the

processors and links in a network system. An arbitrarily divisible load is a load that

can be arbitrarily partitioned into any number of load fractions. Applications that

have this kind of load are to be found in bioinformatics (e.g protein sequence

analysis and simulation of cellular micro physiology), high energy and particle

physics (e.g the CMS –Compact Muon Solenoid– and ATLAS –Atoroidal LHC

Apparatus– projects), Kalman filtering (Sohn et al., 1998), image processing

(Bharadwaj and Ranganath, 2002; Xiaolin et al., 2003), database searching

(Drozdwoski, 1997) and multimedia processing (Balafoutis et al., 2003). It is

assumed that there are no precedence relations among the distributed loads or to

other loads.

Most of the studies done in DLT research involve developing mechanisms for

the efficient distribution and allocation of a given load to processors over a network

such that all the processors complete processing their assigned sub-loads at the same

time – this is sometimes referred to as the optimality principle in DLT.

32

Intuitively, the optimality principle yields a schedule with minimum

makespan because any schedule that is not compliant with this principle can be

improved by transferring some load from busy processors to idle ones when some

processors are idle while others are still busy (Bharadwaj et al., 1996). Optimal

strategies for the distribution of loads have been obtained for several network

topologies including linear daisy chains (Robertazzi, 1993), star network

(Drozdowski and Wolniewicz, 2006), and bus and tree networks (Sohn and

Robertazzi, 1993; Bharadwaj et al., 2000; Barlas and Bharadwaj, 2004).

There have been further studies in terms of load distribution policies for two

and three dimensional meshes (Drozdowski and Glazek, 1999) and hypercubes

(Piriyakumar and Murthy, 1998). In (Sohn and Robertazzi, 1998a, 1998b) the

concept of time varying processor speed and link speed are introduced. There also

have been study on multi-installment sequential scheduling (Bharadwaj et al., 1995;

Barlas and Bharadwaj, 2000; Glazek, 2003; Drozdowski and Lawenda, 2005) and

Multi-round algorithms (Yang et al., 2003; Marchal et al., 2005; Yang and Casanova,

2005). Note that none of these deal with real-time workloads.

P0

P1 P2 P3 Pn. . .

L1

L2

L3

Ln

Figure 2.15: Single-Level Tree Network ∑

33

We will briefly explain the concept of DLT using the single-level tree network.

We chose to focus on this network topology due to its wide applicability in real-time

systems (due to its applicability, earlier work on RT-DLT, such as the work of Lin et

al. (2006a, 2006b, 2007a, 2007b, 2007c)) were also modeled using this network

model). Greater details of DLT can be found in Bharadwaj et al. (1996).

As illustrated in Figure 2.15, a single-level tree network, denoted as ∑,

consists of (n+1) processors and N links. The root processor P0 is connected to the

child processors 1 2, ,..., nP P P via links 1 2, ,..., nL L L . The root processor divides the total

load into (1n +) fractions, denoted as 0 1 2, , ,..., nα α α α . 0P will keep its own

fraction 0α and distribute the remaining fractions to the child processors 1 2, ,..., nP P P

in the sequence1, 2,..., n . Each processor will begin execution when it completes

receiving its load fraction.

P0

P1

P2

P3

Pn

0 0 cpw Tα

1 1 cpw Tα

2 2 cpw Tα

3 3 cpw Tα

n n cpw Tα

1 1 cmz Tα 2 2 cmz Tα 3 3 cmz Tα n n cmz Tα…

Figure 2.16: Timing Diagram: Single-Level Tree Network with Front-End

34

In the DLT literature, strategies have been proposed to deal with processors

both with and without front-end processing capabilities. In the case of processors

with front end processing capabilities, it is assumed that some of the processors in

the network are equipped with co-processors so that they are able to process their

assigned load and communicate simultaneously. Figure 2.16 shows an example of

timing diagram of communication and computation done in a single-level tree

network with front-end processing capabilities. Note that, the root processor P0

starts its own computation of fraction 0α while sending the remaining fractions to the

child processors.

In clusters without front-end processing capabilities, processors can only

compute or communicate at any given instant in time. Figure 2.17 depicts an

example of timing diagram of communication and computation done in a single-level

tree network without front-end processing capabilities. In this network, the root

processor
0P will only start its own computation of fraction 0α after it has finished

sending the other fractions to the child processors.

In most DLT literature, the following notations (Bharadwaj et al., 1996) are

used:

Time taken by processor to compute a given load
Time taken by a standard processor to compute the same load

i
i

Pw =

Time taken to process a unit load by the standard processorcpT =

Time taken by link to compute a given load
Time taken by a standard processor to compute the same load

i
i

Lz =

Time taken to communicate a unit load on a standard linkcmT =

35

P0

P1

P2

P3

Pn

0 0 cpw Tα

1 1 cpw Tα

2 2 cpw Tα

3 3 cpw Tα

n n cpw Tα

1 1 cmz Tα 2 2 cmz Tα 3 3 cmz Tα n n cmz Tα…

Figure 2.17: Timing Diagram: Single-Level Tree Network without Front-End

2.4.5 Real-time Divisible Load Theory (RT-DLT)

The promising strategy of DLT has recently attracted the attention of the

Real-time system research community. Lin, Lu, Deogun, and Goddard (2007a,

2007b, 2007c, 2007d, and 2007e) have applied results from Divisible Load Theory

(DLT) to the scheduling of arbitrarily divisible real-time workloads upon

multiprocessor. To the best of our knowledge, these are among the earliest attempts

to study the application of DLT to real-time computing system. Among other results,

they obtained elegant solutions to the following two problems:

i. Given a divisible job and a specified number of processors upon

which it may execute, determine how this job should be divided

among the assigned processors in order to minimize the time at which

it completes execution.

ii. Given a divisible real-time job, determine the minimum number of

processors that must be assigned to this job in order to ensure that it

complete by its deadline.

36

In the initial work of Lin et al (2006a, 2006b, 2007a), they investigated the

use of DLT to enhance the quality of service (QoS) and provide performance

guarantees in cluster computing environments. The main contributions made in this

work were in providing the first formal definitions of RT-DLT, and in proposing a

scheduling framework integrating DLT and EDF (Earliest Deadline First)

scheduling. They conducted series of extensive simulation experiments and based

upon the outcome of these experiments, they made some anomaly observations

which, they note, seem to disagree with previously-published results in conventional

(non real-time) DLT.

Lin et al. (2007b) further extended their work on RT-DLT. They studied a

problem where if the required number of processors to process a job are not available

and the job waits for some currently running jobs to finish and free additional

processors. This essentially causes a waste of processing power as some processors

are idle within the waiting period. They refer this problem as Inserted Idle Times

(IITs) problem. They proposed a new real-time divisible load scheduling approach

that utilizes IITs. Two contributions were made in this work. First, they mapped a

cluster with different processor available times to a heterogeneous cluster of “virtual

processors” which may each have different processing capabilities but all of which

are assumed to be available simultaneously. A DLT heterogeneous model is then

applied to guide task partitioning, to derive a task execution time function and to

approximate the minimum number of processors required to meet a task deadline.

Second, they proved that executing the partitioned subtasks in the homogenous

cluster at different processor available times leads to completion times no later than

the estimates. This result is then applied to develop a new divisible load scheduling

algorithm that uses IITs and provides real-time guarantees.

Using the same motivation in (2006a, 2006b, 2007a, 2007b), Lin et al.

(2007c) proposed another strategy to further make use of IITs. They claimed that

when certain conditions hold, the enhanced algorithm can optimally partition and

schedule jobs to fully utilize IITs. Two contributions are made in this work. First,

they proposed a new partitioning approach to fully utilize IITs and investigated its

applicability constraints. Second, they integrated this with their previous work

(2006a, 2006b, 2007a, 2007b) and proposed a new real-time scheduling algorithm.

37

2.4.6 Extending Real-time Divisible Load Theory (RT-DLT)

We investigated the anomaly observations found in Lin et al. (2006a, 2006b,

2007a) and provide theoretical explanation using recent results from real-time

multiprocessor scheduling theory. We presented this work in greater detail in

Chapter 3. We also studied the work of Lin et al. (2007b, 2007c) and observed that

their scheduling algorithms are inefficient. Thus, we proposed two alternatives

algorithms that significantly improved the previous algorithms by Lin et al. (2007b,

2007c). We presented these works in Chapter 4 and Chapter 5. Figure 2.18 depicts

the research roadmap of our work in extending RT-DLT of Lin et al. (2006a, 2006b,

2007a, 2007b, 2007c).

Real-time Systems

Soft Real-time Systems

Scheduling

Uniprocessor Multiprocessor

Partitioned Global

Parallel Non-Parallel

Hard Real-time Systems

Dynamic Algorithm
(Manimarah &
Murthy 1998)

Work Limited
Parallelism

(Collete, Cucu &
Goossens, 2007,

2008)

WMF-FE
(Lee at al., 2003)

RT-DLT
(Lin et al.,

2006a, 2006b,
2007a, 2007b,

2007c)

Our Work –
Extending RT-

DLT
(2007a, 2007b,
2008a, 2008b)

Figure 2.18: Research Roadmap

38

CHAPTER 3

DEADLINE-BASED SCHEDULING OF

DIVISIBLE REAL-TIME LOADS

3.1 Introduction

The previous chapter highlighted the shortcomings of the traditional

workload models used in the real-time multiprocessor scheduling. We have also

briefly introduced some of the approaches that had been proposed to address these

difficulties. Among the significant approaches is the application of DLT to real-time

workloads. In this chapter, we will report our first extension of the initial work of

Lin et al. (2006a, 2006b, 2007a). Lin et al. (2006a, 2006b, 2007a) proposed a

scheduling framework integrating DLT and EDF. They conducted a series of

extensive simulation experiments comparing the proposed framework with other

approaches. Based upon the outcome of these experiments, they made some

observations which, they note, seems to disagree with previously-published results in

conventional (non real-time) DLT. Our results here provide a theoretical analysis of

some of these observations, and thereby help identify the kinds of systems for which

these observations hold.

39

The remainder of this chapter is organized as follows. In Section 3.2, we

discuss the overall picture of how Lin et al. (2006a, 2006b, 2007a) applied DLT to

real-time workloads, and their apparently anomalous observations. In Section 3.3 we

present our analysis and theoretical explanation by using some fundamental theories

of real-time scheduling. We conclude this chapter in Section 3.4.

3.2 Application of DLT to Real-time workloads

Now let us recall the fundamental definitions used in RT-DLT:

Task Model

Each divisible job iJ is characterized by a 3-tuple (, ,)i i iA Dσ , where 0iA ≥ is the

arrival time of the job, 0iσ > is the total load size of the job, and 0iD > is its

relative deadline, indicating that it must complete execution by time-instant i iA D+ .

System Model

The computing cluster used in DLT is comprised of a head node denoted 0P , which is

connected via a switch to n processing nodes denoted 1 2, ,..., nP P P . All processing

nodes have the same computational power, and all the links from the head to the

processing nodes have the same bandwidth.

Assumptions

• The head node does not participate in the computation – its role is to accept or

reject incoming jobs, execute the scheduling algorithm, divide the workload and

distribute data chunks to the processing nodes.

• Data transmission does not occur in parallel: at any time, the head node may be

sending data to at most one processing node. However, computation in different

processing nodes may proceed in parallel to each other.

40

• The head node, and each processing node, is non-preemptive. In other words, the

head node completes the dividing and distribution of one job's workload before

considering the next job, and each processing node completes executing one job's

chunk before moving on to the chunk of any other job that may have been

assigned to it.

• Different jobs are assumed to be independent of one another; hence, there is no

need for processing nodes to communicate with each other.

According to DLT, linear models are used to represent transmission and

processing times (Bharadwaj et al., 2003). The computation time of a load of size iσ

is equal to i mCσ × , while the processing time is equal to i pCσ × , where mC is a cost

function for transmitting a unit workload and pC is a cost function for processing a

unit workload. For the kinds of applications considered in (2006a, 2006b, 2007a) the

output data is just a short message and is assumed to take negligible time to

communicate. To summarize, a computing cluster in DLT is characterized by a 3-

tuple (, ,)p mn C C where n denotes the number of processing nodes, and pC and

mC denote the amount of time taken to process and transmit a unit of work,

respectively. For a given computing cluster, let β be defined as follows:

()

def
p

p m

C
C C

β =
+

 (3.1)

41

3.2.1 Scheduling Frameworks

To evaluate the applicability of DLT for real-time workloads, Lin et al.

(2006a, 2006b, 2007a) proposed a set of scheduling frameworks combining

scheduling algorithms, node assignment strategies, and task partitioning strategies.

Figure 3.1 depicts an abstraction of these frameworks.

Jobs Queue

Selected Job

Arrival Jobs

Scheduling Strategy

Partitioning Strategy Switch

Partitioned Job

P1

P2

P3

Pn

P0

Ji=(Ai, i, Di)

Node Assignment Strategy

Figure 3.1: The abstraction of RT-DLT framework.

As shown in Figure 3.1, each arrival jobs (, ,)i i i iJ A Dσ= will be placed in

the Jobs Queue. The Scheduling Strategy decide the execution order, the Node

Assignment Strategy compute the number of processors needed for a task execution

and Partitioning Strategy distribute a job into subtasks and send each subtask to each

processors via a switch.

42

3.2.1.1 Scheduling Algorithms

The scheduling algorithms investigated in the framework are:

• First-in First-out (FIFO) Jobs are considered by the head node in the

order in which they arrive: job (, ,)i i i iJ A Dσ= is considered before

(, ,)k k k kJ A Dσ= if i kA A< (ties broken arbitrarily). Observe that FIFO is

not really a “real-time" strategy, in the sense that it does not take into

account the temporal constraints on the system.

• Earliest Deadline First (EDF) Jobs are considered by the head node in

the order of their (absolute) deadlines: if jobs (, ,)i i i iJ A Dσ= and

(, ,)k k k kJ A Dσ= are both awaiting service and the head node chooses iJ ,

then i i k kA D A D+ < + (ties broken arbitrarily).

• Maximum Workload-derivative First (MWF) This algorithm (Lee et

al., 2003) is evidently one that is used extensively in conventional (non

real-time) DLT; since (Lin et al., 2006a, 2006b, 2007a) concluded that

this is not particularly suited for real-time computing; we will not discuss

it further in this chapter.

3.2.1.2 Node Assignment Strategies

The scheduling algorithm (discussed above) is used to determine which waiting

job is next considered for dispatch by the head node. In addition, the head node is

responsible for determining how many processing nodes to assign to this selected job

--- this is the responsibility of the node assignment strategy.

43

The node assignment strategies considered by Lin et al. (2006a, 2006b, 2007a)

are:

• All nodes (AN). All n processing nodes in the cluster are assigned to one

single job currently selected by the head node. This strategy thus tries to

finish the current task as early as possible, and then continue with other

waiting jobs.

• Minimum nodes (MN). A job is assigned the minimum number minn of

processing nodes needed in order to complete prior to its deadline, thereby

saving the remaining processors for other jobs.

In essence, AN tends to treat the cluster as a uniprocessor platform, as one task

is assigned to all available processors. In contrast, MN attempts to maximize the

degree of parallelism in processing the workload by assigning the fewest possible

processors to each job, and a larger number of jobs can be processed simultaneously

in parallel.

3.2.1.3 Partitioning Strategies

After selecting the next job to execute and the number of processing nodes to

assign to it, the head node next determines how to partition the job's workload among

the assigned processors. A naive approach may be to partition the workload equally

among the assigned processing nodes -- this is referred to as the Equal Partitioning

Rule (EPR). However, EPR is provably non-optimal for clusters in which the

communication cost mC is non-zero. Instead, Lin et al. (2006a, 2006b, 2007a) derived

a superior partitioning strategy, the Optimal Partitioning Rule (OPR).

44

P0

P1

P2

Pn

/mC nσ

/pC nσ

/mC nσ /mC nσ. . .

.

.

.

/pC nσ

/pC nσ

Figure 3.2: Timing diagram for EPR-based partitioning

Figure 3.2 illustrates the time diagram produced by the EPR-based

partitioning. This diagram shows the cost functions: the data transmission time on

each link and the data processing time on each processing node. The data

transmission time on each link is defined as /mC nσ and the data processing time on

each node is defined as /pC nσ , where σ is the workload size, mC is the cost of

transmitting a unit workload, pC is the cost of processing a unit workload and n is

the total number of processing nodes allocated to the workload. By analyzing this

time diagram the workload execution time is defined as:

 (,) p
m

C
n C

n
σ

ξ σ σ= + (3.2)

The time diagram produced by the OPR-based partitioning strategy is shown

in Figure 3.3. In DLT it is known that the completion time of a job on a given set of

processing nodes is minimized if all the processing nodes complete their execution of

the job at the same instant. OPR is based upon this DLT optimality principle.

45

αnσCp

α2σCm α3σCmα1σCm αnσCm
P0

α1σCp

α2σCp

α3σCp

P1

P2

P3

Pn

Figure 3.3: Timing diagram for OPR-based partitioning

For a given divisible workload (, ,)i i iA Dσ and a given number of processing

nodes n, let jα denote the fraction of the load assigned to the j'th processing node,

0 1jα< ≤ ,
1

1n
jj

α
=

=∑ , mC is the cost of transmitting a unit workload and pC is the

cost of processing a unit workload. Thus, we will have the following cost function:

the data transmission time on thj link is j mCα σ and the data processing time on

thj node is j mCα σ . Using the DLT optimality principle, the workload execution time

can be defined as follows:

1 1

1 2 2

1 2 3 3

(,)

()

()

...

m p

m p

m p

n C C

C C

C C

ξ σ α σ α σ

α α σ α σ

α α α σ α σ

= +

= + +

= + + +

 1 2(...)n m n pC Cα α α σ α σ= + + + + (3.3)

46

Lin et al. (2006a, 2006b, 2007a) then show that an application of the

optimality principle results in the following values for the
iα 's:

1
1
1 n

βα
β
−

=
−

 (3.4)

1

1,
j

jα β α−= for j > 1 (3.5)

The job execution time is also defined as:

1(,) ()
1 p mnn C Cβξ σ σ

β
−

= +
−

 (3.6)

Assuming a job has a start time s , where s A≥ , then to meet the job’s deadline, it is
necessary that:

(,)s n A Dξ σ+ ≤ + (3.7)

Using the equation (3.5), Lin et al. (2006a, 2006b, 2007a) derived the minimum

number of processors minn needed to complete this job by its deadline:

 min ln
ln

n γ
β

⎡ ⎤
= ⎢ ⎥
⎢ ⎥

 (3.8)

Where, 1 mC
A D s
σγ = −
+ −

and β is as defined in equation (3.1).

47

To further understand the application of DLT to real-time cluster-based scheduling,

Lin et al. (2006a, 2006b, 2007a) also derived the time function and minn for EPR-

based partitioning. Recall that the job execution time is defined as

(,) p
m

C
n C

n
σ

ξ σ σ= + . Assuming that a job has a start time is , then the task

completion time is () (,)iC n s nξ σ= + , then to meet the job’s deadline, it is

necessary that ()C n A D≤ + . That is:

 p
m

C
s C A D

n
σ

σ+ + ≤ + (3.9)

Thus,

 p

m

C
n

A D s C
σ

σ
≤

+ − −
 (3.10)

Using the equation (3.9), Lin et al. (2006a, 2006b, 2007a) derived the minimum

number of processors minn needed to complete this job by its deadline as:

 min p

m

C
n

A D s C
σ

σ
⎡ ⎤

= ⎢ ⎥+ − −⎢ ⎥
 (3.11)

48

3.2.2 An Apparent Anomaly

Using the scheduling framework described above, Lin et al. (2006a, 2006b,

2007a) generated 10 scheduling algorithms: EDF-OPR-MN, EDF-OPR-AN, EDF-

EPR-MN, EDF-EPR-AN, FIFO-OPR-MN, FIFO-OPR-AN, FIFO-EPR-MN, FIFO-

EPR-AN, MWF-OPR-MN and MWF-EPR-MN. Based upon extensive simulations

over a wide range of system parameters, Lin et al. (2006a, 2006b and 2007a)

concluded that the EDF-OPR-AN combination performs the best from among the 10

different combinations they evaluated. It is reasonable that EDF be the scheduling

algorithm in the optimal combination since it is the only “real-time" cognizant

scheduling algorithm among the three considered. Similarly, it is not surprising that

OPR be the optimal workload partitioning strategy, given that the other strategy

evaluated in the simulation experiments – EPR – is provably inferior.

However, they found the conclusion that the AN node-assignment strategy is

superior to the MN strategy somewhat surprising, since prior published results from

conventional DLT strongly indicate that MN assigning the minimum number of

processing nodes per job and -- hence maximizing parallelism – is a superior strategy

to AN.

3.3 A Comparison of EDF-OPR-AN and EDF-OPR-MN

As stated in the previous section, Lin et al. (2006a, 2006b, 2007a) were

somewhat surprised to observe that EDF-OPR-AN seems to perform better than

EDF-OPR-MN for real-time systems. In this section, we attempt to explain these

apparently anomalous findings. Observe that the AN strategy, by assigning all the

processing nodes to a single job at each instant in time, reduces to a variant to

uniprocessor EDF, while the MN strategy, which attempts to maximize inter-job

parallelism, more closely resembles multiprocessor EDF. Hence it behooves us to

first review known results concerning uniprocessor and multiprocessor EDF, which

we do in Section 3.3.1 below.

49

In Section 3.3.2, we take a closer look at the role played by the head node.

Regardless of the node assignment strategy used, each job must first be processed by

the head node. If a significant fraction of the time taken to process a job is spent at

the head node, then the overall processing of the job is more likely to resemble the

uniprocessor scheduling of the head node bottleneck. We identify conditions under

which such a bottleneck occurs, thereby identifying conditions in which EDF-OPR-

AN is a particularly appropriate scheduling framework.

In Section 3.3.3, we study conditions under which the head node is not a

bottleneck. Under such conditions, the tradeoff between the AN and MN strategies is

highlighted by considering the cost of executing a job under both strategies, where

the cost is defined to be the product of the number of processors used and the total

execution time. We will see that the AN strategy has a greater cost per job. But, it

will turn out that the conditions that result in the head node not becoming a

bottleneck are also responsible for ensuring that the cost of the AN strategy does not

exceed the cost of the MN strategy by too much. This fact, in conjunction with the

well-known superior behavior of uniprocessor EDF as compared to multiprocessor

EDF, results in EDF-OPR-AN once again performing better than EDF-OPR-MN.

3.3.1 Uniprocessor and multiprocessor EDF Scheduling of

 “traditional” jobs

With respect to traditional (as opposed to divisible) workloads, as we

mentioned in the earlier chapter, EDF is known to be an excellent scheduling

algorithm for uniprocessor platforms under a wide variety of conditions. For

preemptive systems of independent jobs, it has been shown (Dertouzos, 1974) to be

optimal in the sense that if any scheduling algorithm can schedule a given system to

meet all deadlines, then EDF, too, will meet all deadlines for this system.

50

For non-preemptive systems, too, it has been shown (Jeffay, Stanat and

Martel, 1991) to be optimal under specific well defined conditions. Furthermore,

efficient tests have been designed for determining whether given systems are

successfully scheduled or not, by both preemptive and non-preemptive uniprocessor

EDF.

For multiprocessor platforms, EDF is not quite as good an algorithm. It is

provably not optimal for scheduling collections of independent jobs. Recall, for

instance, Theorem 2.1 in Chapter 2: any system of independent jobs for which a

schedule meeting all deadlines exists on an m-processor platform can be scheduled to

meet all deadlines by EDF on an m-processor platform in which each processor is

12
m

⎛ ⎞−⎜ ⎟
⎝ ⎠

 times as fast. This bound is known to be tight, in the sense that systems have

been identified that are feasible on m-processor platforms but which EDF fails to

successfully schedule on m-processor platforms in which the individual processors

are less 12
m

⎛ ⎞−⎜ ⎟
⎝ ⎠

 that times as fast. Similarly pessimistic results are known for EDF-

scheduling on multiprocessor platforms in which different processors have different

speeds of computing capacities, as well as for non-preemptive scheduling.

A further known fact (Baker and Baruah, 2007) concerning multiprocessor

EDF scheduling will prove useful to us. Let us recall the density of a (traditional) job

(, ,)i i i ij A C D= to be the ratio of its execution requirement to its relative

deadline () (/)i i ij C Dδ = , and the system density of a system of jobs to be the largest

density of any job in the system. It has been observed that the larger the system

density, the poorer the performance of multiprocessor EDF tends to be in scheduling

that system of jobs. More specifically, it has been observed (Baruah et. al, 1991) that

the Effective Processor Utilization (EPU) --- the fraction of the computing capacity

of the computing platform that is guaranteed to be devoted to executing jobs that do

meet their deadlines --- tends to decrease with increasing system density, when

multiprocessor EDF is the scheduling algorithm used.

51

3.3.2 When the head node is a bottleneck

We now return to the divisible load model. Depending on the node-

assignment strategy used, multiple jobs may be executing simultaneously. However,

each job iJ , with workload iσ must first be processed by the head node. Now all that

the head node does is distributing the workload to the processing nodes. But since it

does so sequentially, the amount of time needed to complete this data distribution is

equal to ()i mCσ × .

It therefore follows that ()i mCσ × is a lower bound on the amount of time

taken by the bottleneck head node to process a job of workload size iσ , regardless of

which node assignment strategy is used. This leads to the following observation:

Observation 1 For a given sequence of divisible jobs 1{(, ,)}i i i iA Dσ ≥ to be

schedulable under any node assignment strategy, it is necessary that the sequence of

traditional jobs 1{ (, ,)}i i m i iA C Dσ ≥= × , be schedulable on a uniprocessor.

Equation 3.6 gives the amount of time ()nξ needed to execute a job with workload

σ upon n processors under the OPR partitioning strategy. Using the definition of β

in (Equation 3.1) in Equation 3.6, we obtained:

1() ()
1

1 ()
1

()
1

p mn

p
p mn

p m

m
p mn

p m

n C C

C
C C

C C

C C C
C C

βξ σ
β

σ
β

σ
β

−
= +

−

⎛ ⎞
= − +⎜ ⎟⎜ ⎟− +⎝ ⎠

⎛ ⎞
= +⎜ ⎟⎜ ⎟− +⎝ ⎠

1

m
n

Cσ
β

=
−

 (3.12)

52

Since mC denotes the rate at which data is transmitted from the head node to

the processing nodes, mCσ represents a lower bound on the amount of time needed

to complete execution of a job of sizeσ . Equation 3.12 above tells us that the

amount of time taken to complete the execution of a job when assigned n processing

nodes is equal to this lower bound, inflated by a factor 1
(1)nβ−

. Hence if 1
(1)nβ−

is very small, then the time taken to complete the execution of this job is very close

to the lower bound. Keeping this observation in mind, it become our interest to

evaluate the behavior of EDF-OPR-AN.

In this strategy, at each instant in time all N processing nodes are devoted to

executing one job – the one currently selected by the head node. Hence the duration

of time devoted to executing a job of workload size σ is equal

to () (1/ (1))n
mCσ β× − , and no other jobs get executed at all during this time. This

leads to Observation 2 below:

Observation 2 For a given sequence of divisible jobs 1{(, ,)}i i i iA Dσ ≥ to be

schedulable under the EDF-OPR-AN strategy, it is sufficient that the sequence of

traditional jobs 1{ (, (1/ (1),)}n
i i m i iA C Dσ β ≥= × × − , be schedulable on a

uniprocessor.

Recall that in DLT, a platform (also known as a computing cluster) is

characterized by the 3-tuple (, ,)p mn C C , with n denoting the number of processing

nodes in the cluster and Cp and Cm denoting the amount of time taken to process and

transmit a unit of work, respectively. On the basic of Observations 1 and 2, we can

identify certain computing clusters upon which EDF-OPR-AN is likely to perform

particularly well in comparison to other node-assignment strategies.

53

Lemma 1 EDF-OPR-AN is a particularly appropriate scheduling framework for

computing clusters in which

n

p

p m

C

C C+

⎛ ⎞
⎜ ⎟
⎝ ⎠

 is small.

Proof: We will show that the sufficient condition of Observation 2 is very close to

the necessary condition of Observation 1 when
n

p

p m

C

C C+

⎛ ⎞
⎜ ⎟
⎝ ⎠

is small. Indeed, observe

that p

p m

def C

C C
β =

+

⎛ ⎞
⎜ ⎟
⎝ ⎠

. Hence, 1
(1)nβ−

 decreases with decreasing
n

p

p m

C

C C+

⎛ ⎞
⎜ ⎟
⎝ ⎠

, becoming

arbitrarily close to 1 as
n

p

p m

C

C C+

⎛ ⎞
⎜ ⎟
⎝ ⎠

becomes arbitrarily small. And for values of

1
(1)nβ−

 close to 1, the traditional jobs referred to in the statement of Observation 2

become almost identical to the ones in the statement of Observation 1.

54

Since schedulability of the jobs in the statement of Observation 1 is necessary

for the DLT system to be schedulable, it follows that the sufficient condition for

EDF-OPR-AN is close to the necessary condition, and hence EDF-OPR-AN is close

to optimal.

To understand the implications of Lemma 1, let us consider computing

clusters in which p mC C (i.e., pC is a lot smaller than mC) or p mC C≈ (i.e., the

values of pC and mC are of comparable magnitude). We note that these seem

reasonable scenarios since:

i) Data-transmission rates in computing clusters are typically far slower than

processing rates, rather than the other way around.

ii) For the types of DLT systems considered by Lin et al. (2006a, 2006b, 2007a),

recall that it is assumed that a linear model is used to represent processing

cost – the processing time for a workload of size x is assumed to equal

px C× . Under such an assumption, it follows that the processing algorithm

that is being implemented, and executed upon the processing nodes, is a

linear-time algorithm. This argument rules out the possibility that the

algorithm being implemented has such a high computational complexity that

data-transmission costs are actually dominated by processing costs.

iii) And finally, even for those rare example clusters in which pC is

currently mC , technological trends (as exemplified by Moore's Law) are

such that pC tends to decrease at a far greater rate than mC . As a

consequence, it is highly likely that pC will become mC≈ in the not-too-

distant future even for these clusters.

55

For instance if p mC C≤ , it follows that 0.5β ≤ . Table 3.1 bounds the factor

by which the execution requirement of each job gets inflated beyond its lower bound,

according to Observation 2:

Table 3.1: Bound on Inflation Factor

n BOUND ON INFLATION FACTOR

3

4

5

10

1.15

1.07

1.03

1.001

As the table above indicates, for a computing cluster with 5 processing

nodes (5)n = , the execution requirement of each traditional job to which each

divisible job may be considered mapped is within 3% of its lower bound, when EDF-

OPR-AN is the scheduling framework used. For n = 10 the inflation factor is

negligible – less than one-tenth of one percent. Based upon these numbers and the

known optimality of uniprocessor EDF (Jeffay et al., 1991), we may conclude that

for computing clusters with p mC C≈ and 5n ≥ , EDF-OPR-AN offers near-optimal

performance.

3.3.3 When the head node is not a bottleneck

As stated in Section 3.1.2, Lin et al. (2006a, 2006b, 2007a) were somewhat

surprised to observe that, contrary to expectations (based upon results from

conventional DLT), the EDF-OPR-AN strategy seems to perform better than the

EDF-OPR-MN strategy for real-time systems. In Section 3.2.2 above, we provided

part of the explanation for the apparent anomaly identified by Lin et al. (2006a,

56

2006b, 2007a), by identifying certain conditions in which EDF-OPR-AN is a

particularly appropriate scheduling framework.

We now examine the situation when these conditions are not satisfied. For

these situations, we obtain a different set of reasons to explain EDF-OPR-AN's

superior behavior. Now, the major difference between an “AN”(all nodes) and “MN”

(minimum number of nodes) strategy is highlighted by the cost of executing a job,

where the cost is defined to be the product of the number of processors used and the

total execution time:

() ()

1m n

x n n n
nC

ξ

σ
β

= ×

= ×
−

 (3.13)

Although Equation 3.8 showed that increasing the number n of processing

nodes assigned to a job decreases the time ()nξ needed to execute it, Equation 3.13

above illustrates that the cost ()x n of executing a job increases with increasing n.

Consequently, an “MN” strategy incurs lower overall cost by minimizing the number

of processing nodes assigned to a job, as compared to an “AN” strategy. For

example, we would expect an “MN" strategy to use a smaller fraction of the

computing capacity of the cluster as compared to an “AN” strategy, in order to

actually execute any particular job.

Contrasted against this greater efficiency of the “MN” strategy is the well-

known superior performance of uniprocessor EDF as opposed to multiprocessor

EDF. As explained in Section 3.2.1, uniprocessor EDF is characterized by a

significantly greater Effective Processor Utilization (EPU) than multiprocessor EDF.

Since EDF-OPR-AN reduces to uniprocessor EDF while EDF-OPR-MN reduces to

multiprocessor EDF, the tradeoff is that while EDF-OPR-MN incurs lower costs in

actually executing a job, the fraction of the platform capacity that is used for such

execution is also correspondingly lower than for EDF-OPR-AN.

57

In the remainder of this section, we compare the relative effects of these two

factors, and use this comparison to explain the apparently anomalous empirical

observations of Lin et al. (2006a, 2006b, 2007a).

Table 3.2: Cost, for selected values of β and n (assuming 1mCσ =).

n β

 0.75 0.8 0.9 0.95 0.99 0.999

1 4.00 5.00 10.00 20.00 100.00 1000.00

3 5.19 6.15 11.07 21.03 101.01 1001.00

4 5.85 6.78 11.63 21.56 101.51 1001.50

5 6.56 7.44 12.21 22.10 102.02 1002.00

10 10.60 11.20 15.35 24.92 104.58 1004.51

§1. The relative cost. The case of interest is when p mC C (since otherwise the

results in Section 3.2.2 provide adequate explanation for EDF-OPR-AN's superior

performance). By the definition of β (Equation 1), it follows that 1β → . Table 3.2

lists some values of
1 n

n

β−
for different values of n, for some values of β close to

one. The critical observation is that for largeβ , the cost does not increase by a large

factor with increasing n. For instance, in a cluster with 10 processing nodes

and 0.99β = , an all-nodes strategy cannot inflate the cost of a job by a factor greater

than 1.05. Even when β is as low as 0.9, the inflation is bounded from above by a

1.54 factor. While the inflation in cost is greater for smallerβ , for example, for

0.75β = and 10n = the inflation is 10.6 / 4 2.7≈ . Recall that for such smaller β the

headnode bottleneck is the dominating effect: for 0.75β = and 10n = , the inflation

factor 1
(1)nβ−

of Observation 2 is a mere 1.05%.

58

These observations are formalized in the following:

Observation 3 For computing clusters with a large value for β , the cost inflation

experienced by jobs executed under an AN strategy is small.

As we will see next, this slight inflation in total cost tends to be more than

offset by the decrease in Effective Processor Utilization (EPU) experienced by EDF-

OPR-MN vis-à-vis EDF-OPR-AN.

§2. The EPU effect. With respect to any node-assignment strategy, we define a

mapping from each divisible job to a “traditional” (non-divisible) job as follows.

Suppose that the node-assignment strategy assigns a job (, ,)i i iA Dσ to in processing

nodes. Ignoring for the moment the bottleneck head node, from the perspective of the

processing nodes we can look upon this assignment as transforming the divisible job

into a traditional job (, (1 (1),)in
i i m iA C Dσ β× × − on a single processor, this single

processor being a virtual one obtained from the in processing nodes, and that exists

only for the duration of the job's execution.

Since EDF-OPR-MN assigns the minimum possible number of processing

nodes to each job, it is likely that these jobs will complete very close to their

deadlines. More specifically, consider a job (, ,)i i i iJ A Dσ= . The number of

processors minn assigned to this job under the EDF-OPR-MN combination of

strategies is such that min(1)n
iσ β− is relatively large compared to iD . Recalling

(Section 3.2.1) that the ratio of the execution requirement of a traditional job to its

relative deadline parameter is called its density, this immediately yields Observation

4 below:

59

Observation 4 Under EDF-OPR-MN scheduling, divisible jobs tend to be mapped

on to traditional jobs of high density.

As stated in Section 3.2.1, it has been observed that multiprocessor EDF on

traditional jobs exhibits poor Effective Processor Utilization (EPU) on high-density

systems:

Observation 5 The scheduling component (i.e., EDF) of the EDF-OPR-MN

scheduling framework exhibits poor performance, in the sense that it is unable to

make effective use of a significant fraction of the computing capacity of the platform.

Recall that we had identified a tradeoff of increased cost versus poorer EPU.

Observations 3 and 5 provide estimates for comparing these two effects, yielding the

following lemma:

Lemma 2 For computing clusters with largeβ, EDF-OPR-MN is a poor scheduling

framework compared to EDF-OPR-AN.

Proof: Observation 3 above asserts that the cost inflation suffered by individual jobs

is relatively small under the EDF-OPR-MN strategy upon such computing clusters,

while Observation 5 states that the loss of EPU is high. Taken together, these two

factors yield the lemma.

60

3.4 Summary

In this chapter, we have taken a close theoretical look at the kind of real-time

divisible loads studied by Lin et al. (2006a, 2006b and 2007a). Using recent results

from “traditional” multiprocessor scheduling theory, we have provided satisfactory

explanations for the apparently anomalous observation reported that an “all nodes”

(AN) node-assignment strategy appears to significantly out-perform a “minimum

number of nodes" (MN) strategy in the scheduling of real-time divisible workloads.

61

CHAPTER 4

SCHEDULING DIVISIBLE REAL-TIME LOADS

ON CLUSTER WITH

VARYING PROCESSOR START TIMES

4.1 Introduction

We have described the foundations of the initial work on RT-DLT (Lin et al.,

2006a, 2006b, 2007a) in the previous chapters. While scheduling a particular

divisible job, Lin et al. (2006a, 2006b, 2007a) assumed in this initial work that all the

processors under consideration are simultaneously available to the job. Later, Lin et

al. (2007b, 2007c) extended their work on RT-DLT to address the problem of

distributing arbitrarily parallelizable real-time workloads among processors which

become available at different instants in the future. They proposed an approximation

algorithm to determine the smallest number of processors needed to complete the

divisible job by its deadline. We consider the same problem in this chapter, and

improve upon their results by providing with an efficient algorithm for solving this

problem.

62

In the following section, we will describe in greater detail the issues that

motivate consideration of this problem. In Section 4.3 and 4.4, we discuss the prior

approaches that have been proposed for solving it. In Section 4.5, we present our

efficient algorithm. We performed a series of simulations to compare the

performance of these algorithms; we discuss the results of these experiments in

Section 4.6. Finally we, conclude this work in Section 4.7.

4.2 Motivation

The initial work on RT-DLT assumed that all the processors to be allocated to

the divisible job are simultaneously available. However, this is often not the case

since some processors may have been allocated to previously-admitted (and

scheduled) jobs — such processors will only become available once the jobs to

which they have been allocated have completed execution upon them. When

scheduling a given job, if a sufficient number of processors are available then the

processors are allocated and the job is started. But if the required number of

processors are not available, prior techniques required that the job be delayed until

currently running jobs have finished and freed up an adequate number of additional

processors. This causes a waste of computing capacity since some processors are idle

even though there are waiting jobs; in the real-time context, such wastage can lead to

missed deadlines.

In an attempt to lessen the deleterious effects of such waste on overall system

performance, Lin et al. extended RT-DLT in (2007b, 2007c) to be applicable in a

more general framework, in which each processor only becomes available to the job

at a specified instant in the future. Their approach was to model such a cluster as a

heterogeneous cluster, comprised of processors that are all available immediately,

but have different computing capacities.

63

In this manner, they transformed the problem of different ready times for the

processors to one of identical ready times but different computing capacities, which

they subsequently solved (approximately) by extending the strategies that had

previously been used for the analysis of homogeneous clusters.

In this chapter, we study the problem of determining the minimum number of

processors that must be assigned to a job in order to guarantee that it meets its

deadline, on clusters in which all processors are not simultaneously available. We

provide efficient solutions to this problem, thereby improving on the approximate

solutions of Lin et al. (2007b, 2007c). Our approach is very different from the

approach of Lin et al. (2007b, 2007c), in that we have chosen to directly work with

identical processors and different ready times (rather than first transforming to the

heterogeneous cluster model).

4.3 Foundation

4.3.1 Processor Ready Times

As we mentioned earlier, the initial work on RT-DLT assumed that all

processors are simultaneously made available to a job. In recent work of Lin et al.

(2007b, 2007c), they further extend this model to allow for the possibility that all the

processors are not immediately available. In this extended model, at any instant in

time at which the head-node is determining whether to accept an incoming job or not

(and if so, how to divide the job and allocate the pieces to the processors), there is a

vector 1 2, ,... nr r r of positive real numbers, with ir , called the ready time of iP ,

denoting the earliest time-instant (at or after the present) at which the i’th processing

node becomes available. In this chapter, we retain the assumption made by Lin et al.

(2007b, 2007c) that iP can only participate in data transmission and/ or computation

of the job currently under consideration at or after time-instant ir .

64

Since this work extends the work of Lin et al. (2007b, 2007c), we briefly

review some of the results from the previous chapter. We start out with the simpler

model — all processor have the same ready time, and then proceed to the more

challenging model in which different processors become available at different times

in the future.

4.3.2 Processors with Equal Ready Times

In (Lin et al., 2006a, 2006b, 2007a), it is assumed that all the processors,

upon which a particular job will be distributed by the head node, are available for

that job over the entire time-interval between the instant that the head-node initiates

data transfer to any one of these nodes, and the instant that it completes execution

upon all the nodes. Under this model of processor availability, it is known that the

completion time of a job on a given set of processing nodes is minimized if all the

processing nodes complete their execution of the job at the same instant.

This makes intuitive sense – if some processing node completes before the

others for a given distribution of the job’s workload, then a different distribution of

the workload that transfers some of the assigned work from the remaining processing

node to this one would have an earlier completion time. Figure 4.1 depicts the data

transmission and execution time diagram when processors have equal ready times.

65

Figure 4.1: Data transmission and execution time diagram when processors

have equal ready times

For a given job (), ,A Dσ and a given number of processing nodes n, let

iσ α× denote the amount of the load of the job that is assigned to the j’th processing

node, 1 j n≤ ≤ . Since data-transmission occurs sequentially, the i’th node iP can

only receive data after the previous ()1i − nodes have completed receiving their data.

Hence, each iP receives its data over the interval)1

1 1
,i i

m j m ij j
C Cα σ α σ−

= =
⎡
⎣ ∑ ∑ and

therefore completes execution at time-instant
1

i
m j p ij

C Cα σ α σ
=

+∑ .

66

By the optimality principle, iP and 1iP+ complete execution at the same time-

instant. We therefore have:

 ()

1

1
1 1

1 1
1 1

1

1

1

i i

m j p i m j p i
j j

i i

m j p i m j m i p i
j j

p i p m i

p
i i

p m

i i

C C C C

C C C C C

C C C

C
C C

α σ α σ α σ α σ

α σ α σ α σ α σ α σ

α σ α σ

α α

α βα

+

+
= =

+ +
= =

+

+

+

+ = +

≡ + = + +

≡ = +

⎛ ⎞
≡ = ⎜ ⎟⎜ ⎟+⎝ ⎠
≡ =

∑ ∑

∑ ∑

That is, the fractions 1 2, ,..., nα α α form a geometric series; furthermore, this series

sums to one. Using the standard formula for the sum of an n-term geometric series,

we require that

1(1) 1
1

nα β
β
−

=
−

 1
1
1 n

βα
β

⎛ ⎞−
≡ = ⎜ ⎟−⎝ ⎠

 (4.1)

Letting (,)nξ σ denote the time-instant at which the job completes execution, and

observing that this completion time is given by the sum of the data-transmission and

processing times on iP , we have

 1 1(,) m pn C Cξ σ α σ α σ= +

 1(,) ()
1 m pnn C Cβξ σ σ

β
−

≡ = +
−

 (4.2)

67

4.3.3 Processors with Different Ready Times

The derivations in Section 4.2.2 above all assume that all n processors are

immediately available. In (2007b, 2007c), Lin et al. allow for the possibility that all

the processors are not immediately available. To determine the completion time of a

job upon a given number of processors in this more general setting, Lin et al. (2007b,

2007c) adopt a heuristic approach that aims to partition a job so that the allocated

processors could start at different times but finish computation (almost)

simultaneously.

To achieve this, they first map the given homogenous cluster with different

processor available times 1 2, ,... nr r r (with 1i i ir r+≤ ∀) into a heterogeneous model

where all n assigned nodes become available simultaneously at the time-instant rn,

but different processors may have different computing capacities. Intuitively

speaking, the 'i th processor has its computing capacity inflated to account for the

reality that it is able to execute over the interval [ri ,rn) as well. Figure 4.2 depicts the

data transmission and execution time diagram when processors have different ready

times.

Figure 4.2: Data transmission and execution time diagram when processors

have different ready times

68

In (Lin et al., 2007b, 2007c), this heterogeneity is modeled by associating a

different constant
piC with each processor

iP , with the interpretation that it takes

piC time to complete one unit of work on the processor
iP . The formula for

determining
piC , as given in (Lin et al., 2007b, 2007c), is

 (,) ,
(,)pi

n i

nC
n r r
ξ σ

ξ σ
=

+ −
 (4.3)

where (,)nξ σ denotes the completion time if all processors are immediately

available in the original (homogenous) cluster— see Equation 4.2. In (Lin et al.,

2007b, 2007c), these Cpi values are used to derive formulas for computing the

fractions of the workload that are to be allocated to each heterogeneous processor

such that all processors complete at approximately the same time, and for computing

this completion-time. These formulas are further discussed below in Section 4.4.

4.4 Determining the required minimum number of processors

When allocating resources in order to meet a divisible job’s deadline, a

scheduling algorithm must know the minimum amount of resources required by the

job. Previous work by Lin et al. described how to compute this when all the

processors are simultaneously allocated to a job (Lin et al., 2006a, 2007b, 2007a),

and when processors can be allocated to a job at different times (Lin et al., 2007b).

When all the processors are allocated simultaneously, recall that the completion time

is given by Equation 4.2. The minimum number of processors needed is easily

computed from Equation 4.2, by setting this completion time to the job’s deadline (A

+ D) in Equation 4.2, and making “n” — the number of processors — the variable.

(Since the number of processors is necessary integral, it is actually the ceiling of this

value that is the minimum number of processors.)

69

When the processors have different ready times, using this same approach to

determine the minimum number of processors needed is more challenging. Recall

that the approach given in (Lin et al., 2007b) approximates the completion time of a

job on a given number of processors by first transforming the cluster to a

heterogeneous cluster in which all processors are available simultaneously but each

processor may have a different computing capacity — these computing capacities are

defined according to Equation 4.3. Using these computing capacities (the Cpi’s), it is

easy to derive an expression for the exact completion time on such a heterogeneous

platform (which, Lin et al. (2007b, 2007c) asserts, is an approximation of the

completion time on the original homogeneous system with different processor ready

times). Such a formula for the completion time on a heterogeneous platform is given

in Lin et al. (2007b, (Equation 6)).

However, it is difficult to use this (approximate) completion-time formula to

determine the minimum number of processors needed, for the following reason. In

order to compute the right-hand side of Equation 4.3, we must already know the

number of processors being used (since both (,)nξ σ and
nr depend upon this

number). Thus, there is a circularity of reasoning going on here — the number of

processors actually used must be known in order to compute the minimum number of

processors needed.

We have been informed (in a personal email communication from the

authors) that this dilemma is tackled in Lin et al. (2007b) by iterating over the

possible values of n – n = 1,2,…, until the minimum number of processors computed

using that particular value of n is equal to the value used in computing the right-hand

side of Equation 4.3. The approach in (Lin et al., 2007b) further approximates the

behavior of the heterogeneous system by a homogeneous system with the same

number of processors — (Lin et al., 2007b (Equations 9 and 10)) — when computing

the minimum number of processors needed. In essence, they are determining the

number of processors needed to meet the job’s deadline assuming that all the

processors become available at time-instant rn, where rn is the ready time of the n’th

processor for some n guessed to be no smaller than the minimum number of

processors needed.

70

As formally proved in Lin et al. (2007b), such an approximation is a safe one,

in that while it may overestimate the number of processors needed, it is guaranteed to

not underestimate it and hence deadlines are guaranteed to be met. However, it is not

difficult to construct scenarios in which the degree of pessimism, as measured by the

ratio of the actual minimum number of processors needed and the number computed

by this approach, is arbitrarily large.

4.5 Computing the exact required minimum processors

We have adopted an altogether different approach to circumvent this

circularity of reasoning. Rather than first deriving a formula for computing the

completion time on a given number of processors and then using this formula to

determine the minimum number of processors needed to meet a deadline, we instead

compute the minimum number of processors directly, from first principles. Our

approach is presented in pseudo-code form in Figure 4.3.

The general idea is as follows. Starting out with no processors, we will

repeatedly add processors until we have either added enough to complete the job

(line 3 in the pseudo-code), or we determine that it is not possible to complete this

job by its deadline (line 4 in the pseudo-code). We now discuss the pseudo-code in

greater detail. We are given the size of the workload ()σ , the amount of time

between the current instant and the deadline ()Δ , the cluster parameters
pC and

mC ,

and the processor ready times 1 2, ,... nr r r in sorted order. We will determine the

minimum number of processors needed (minn), the shares allocated to each processor

(the
iα ’s), and the time at which each processor will begin receiving data from the

head node 0P (the is ’s).

71

__

MINPROCS(,σ Δ)

1 1 1; 0; 1s r alloc i← ← ←

2 while (true) do

3 if (1alloc ≥) break end if

4 if (is ≥ Δ) break end if

5 () (())i i m ps C Cα σ← Δ− ÷ × +

6 1 1max(, ())i i i i ms r s Cα σ+ +← + × ×

7 ialloc alloc α← +

8 1i i← +

end while

9 if (1alloc ≥) then success!!

10 minn i←

else cannot meet the deadline, regardless of the number of processors used

11 minn ←∞

end if

__

Figure 4.3: Computing nmin

The pseudo-code uses two additional variables — alloc, denoting the fraction

of the workload that has already been allocated, and i, indicating that Pi is being

considered. The main body of the pseudo-code is an infinite while loop, from which

the only exist is be one of two break statements. The break in line 3 indicates that

we have allocated the entire job, while executing the break in line 4 means that we

need to execute beyond the deadline (i.e., there are not enough processors with ready

times prior to this job’s deadline for us to be able to meet its deadline).

72

If neither break statement executes, we compute
iα , the fraction of the job

that is allocated to processor Pi. The value is computed by observing that allocating a

fraction
iα of the load require this node to be receiving data for m iC α σ time units

and then executing this data for p iC α σ time units. In keeping with the optimality

rule, we would like to have this processor complete execution at the job deadline

(i.e., at time-instantΔ); since iP may only begin receiving data at time-instant is , we

require that i m i p is C Cα σ α σ+ + = Δ , from which we derive the value of iα given in

line 5.

Once iP ’s share is computed, we can compute the time at which 1iP+ may

begin execution. This is the later of its ready time and the time at which iP has

finished receiving data (and the head-node is thus able to commence data-

transmission to 1iP+). This computation of 1is + is done in line 6. Lines 7 and 8 update

the values of the fraction of the workload that has already been allocated, and the

index of the processor to be considered next.

Properties. It should be evident that the schedule generated by this algorithm is both

correct — the job will indeed complete by its deadline on the computed number of

processors, according to the schedule that is implicitly determined by the algorithm,

and optimal — the number of processors used is the minimum possible. Making

reasonable assumptions on the problem representation (e.g., that the processor ready

times are provided in sorted order), it is also evident that the run-time of this

algorithm is linear in the number of processors used. Hence, since the output of such

an algorithm must explicitly include the processor shares (the iα ’s) in order to be

useful for actual scheduling and dispatching, it is asymptotically optimal from the

perspective of run-time computational complexity.

73

4.6 Simulation Results

We have conducted extensive simulation experiments to estimate the degree

by which our optimal algorithm outperforms the non-optimal approach of (Lin et al.,

2007b). In this section, we describe these experiments, present some of the results,

and draw some conclusions regarding under which conditions it is most beneficial to

adopt our approach in preference to the one in (Lin et al., 2007b).

The outcomes of our experiments are plotted in Figure 4.4 through Figure

4.11. For greater detail, we also present the results data in Table 4.1 through Table

4.8. All the graphs plot the minimum number of processors (minn) needed to

complete a given real-time workload by its specified deadline, when this minimum

number of processors is computed by our algorithm (depicted in the graphs by filled

circles) and when it is computed by the algorithm in (Lin et al., 2007d) (depicted in

the graphs by filled squares). As can be seen in all the graphs, the performance of our

algorithm is never inferior to, and typically better than, the performance of the

algorithm in (Lin et al., 2007b) —this is not surprising since our algorithm is optimal

while the one in (Lin et al., 2007b) is not.

We now describe the experiments in greater detail. We determined the

minimum number of processors as computed using both algorithms, under a variety

of system and workload conditions. The system and workload is characterized by:

the number of processors N and the processor release times 1 2, ,..., Nr r r ; the cluster

parameters pC and mC denoting the data-processing and communication rates

respectively; and the real-time workload characterized by arrival-time, size, and

deadline. In each experiment, all the parameters were kept constant and one

parameter varied, thereby allowing us to evaluate the relative performance of the two

algorithms with respect to the varying parameter.

74

4.6.1 Increasing Deadlines

The first two sets of experiments evaluate the relative performance of the two

algorithms as the deadline of the workload is increased, for clusters of 16 and 32

processors. The results are shown in Figure 4.4 and Figure 4.5 respectively. The

performance improvement is observed to be very significant for tight deadlines; as

the deadline increases, the performance penalty paid by the algorithm in (Lin et al.,

2007d) drops off. Table 4.1 and Table 4.2 show the minimum number of processors

as determined by both algorithms with respect to load deadlines. Observe that,

particularly in Table 4.1, not only does the approximation algorithm generate

significantly larger numbers than our efficient algorithm, but the required number of

processors often exceeds the cluster capacity. In such situations, the cluster will

simply reject the job as it does not have the capacity to execute the job. As shown in

this particular simulation, with the approximation algorithm, only 30% of jobs will

tend to be executed upon this cluster, compared to 100% of jobs by the efficient

algorithm.

0
5

10
15
20
25
30
35
40
45
50

1000 1005 1015 1030 1050 1075 1105 1140 1180 1225

N
um

be
r o

f P
ro

ce
ss

or
s

Deadlines

Cm=1, Cp=100, N=16, LoadSize=50, Arrival=100

Our Algorithm
Lin et al. Algorithm

Figure 4.4: Comparison of generated nmin with increasing deadline and a cluster of

n=16 processors

75

Table 4.1: Comparison of generated nmin with increasing deadline, and a cluster of

n=16 processors

Deadlines Our Algorithm Lin et al.
Algorithm

1000 7 43
1005 7 41
1015 7 38
1030 7 34
1050 7 30
1075 6 26
1105 6 23
1140 6 9
1180 5 9
1225 5 8

0

2

4

6

8

10

12

14

1000 1005 1015 1030 1050 1075 1105 1140 1180 1225

N
um

be
r o

f P
ro

ce
ss

or
s

Deadlines

Cm=1, Cp=100, N=32, LoadSize=50, Arrival=100

Our Algorithm
Lin et al. Algorithm

Figure 4.5: Comparison of generated nmin with increasing deadline, and a cluster of

n=32 processors

76

Table 4.2: Comparison of generated
minn with increasing deadline, and a cluster of

n=32 processors

Deadlines Our Algorithm Lin et al.
Algorithm

1000 8 12
1005 8 12
1015 7 12
1030 7 11
1050 7 11
1075 7 10
1105 6 10
1140 6 9
1180 6 9
1225 5 8

4.6.2 Increasing Communication Cost

The two graphs shown in Figure 4.6 and Figure 4.7 evaluate the relative

performance of the two algorithms as the communication cost parameter of the

cluster – mC – is increased, for clusters of 16 and 32 processors respectively. Table

4.3 and Table 4.4 show the generated minn in greater detail. As can be seen, the

performance improvement for our algorithm increases as mC increases.

77

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10

N
um

be
r o

f P
ro

ce
ss

or
s

Cm

Cp=100, N=16, LoadSize=50, Deadline=2500, Arrival=100

Our Algorithm
Lin et al. Algorithm

Figure 4.6: Comparison of generated nmin with increasing Cm and a cluster of

n=16 processors

Table 4.3: Comparison of generated nmin with increasing communication cost Cm,

and a cluster of n=16 processors

Cm Our Algorithm Lin et al.
Algorithm

1 4 6
2 4 6
3 4 6
4 4 7
5 5 7
6 5 7
7 5 9
8 5 9
9 5 10
10 5 10

78

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10

N
um

be
r o

f P
ro

ce
ss

or
s

Cm

Cp=100, N=32, LoadSize=50, Deadline=2500, Arrival=100

Our Algorithm
Lin et al. Algorithm

Figure 4.7: Comparison of generated nmin with increasing Cm, and a cluster of

n=32 processors

Table 4.4: Comparison of generated nmin with increasing Cm, and a cluster of

n=32 processors

Cm Our Algorithm
Lin et al.

Algorithm
1 6 7
2 6 7
3 6 7
4 6 7
5 6 8
6 6 8
7 6 8
8 6 9
9 7 10

10 7 10

79

4.6.3 Increasing Computation Cost

Figures 4.8 and Figure 4.9 show the relative performance of the two

algorithms as the processing cost parameter of the cluster – pC – is increased, for

clusters of 16 and 32 processors respectively. The performance improvement seen by

our algorithm once again increases with increasing pC .

0

5

10

15

20

25

50 60 70 80 90 100 110 120 130 140

N
um

be
r o

f P
ro

ce
ss

or
s

Cp

Cm=1, N=16, LoadSize=50, Deadline=2500, Arrival=100

Our Algorithm
Lin et al. Algorithm

Figure 4.8: Comparison of generated nmin with increasing Cp, and a cluster of

n=16 processors

80

Table 4.5: Comparison of generated nmin with increasing Cp, and a cluster of

n=16 processors

Cp Our Algorithm Lin et al.
Algorithm

50 4 4
60 4 4
70 5 5
80 5 5
90 6 7
100 7 8
110 7 9
120 8 18
130 9 20
140 10 21

0
2
4
6
8

10
12
14
16

50 60 70 80 90 100 110 120 130 140

N
um

be
r o

f P
ro

ce
ss

or
s

Cp

Cm=1, N=32, LoadSize=50, Deadline=2500, Arrival=100

Our Algorithm
Lin et al. Algorithm

Figure 4.9: Comparison of generated nmin with increasing Cp, and a cluster of

n=32 processors

81

Table 4.6: Comparison of generated nmin with increasing Cp, and a cluster of

n=32 processors

Cp Our Algorithm Lin et al.
Algorithm

50 3 3
60 4 4
70 5 5
80 5 5
90 6 8
100 7 10
110 7 11
120 8 12
130 9 13
140 10 14

Table 4.5 and table 4.6 shows the minimum number of processors generated

by both algorithms with respect to increasing communication cost upon a cluster of

16 and 32 processors. Once again, observe that the approximation algorithm tends to

compute a number of processors that exceeds the cluster capacity, particularly within

16 processors cluster; thus it will tend to reject more jobs than necessary.

4.6.4 Increasing Workload Size

The graphs in Figure 4.10 and Figure 4.11 evaluate the relative performance

of the two algorithms as the size of the workload is increased, for clusters of 16 and

32 processors respectively. The performance improvement is observed to be

negligible or very small for small loads; but as the load size increases, the

performance penalty paid by the algorithm in (Lin et al., 2007b) becomes more

significant.

82

For greater detail, we show the minimum number of processors generated by

both algorithms in Table 4.7 and Table 4.8. Once again, as shown in both tables, the

approximation algorithm tends to compute a number of processors that exceeds the

cluster capacity; thus it will tend to reject more jobs than necessary.

0
2
4
6
8

10
12
14
16
18

50 53 59 68 80 95 113 134 158 185

N
um

be
r o

f P
ro

ce
ss

or
s

Load Size

Cm=1, Cp=100, N=16, Deadline=2500, Arrival=100

Our Algorithm
Lin et al. Algorithm

Figure 4.10: Comparison of generated nmin with increasing load size, and a cluster of

n=16 processors

83

Table 4.7: Comparison of generated nmin with increasing workload size, and a cluster

of n=16 processors

Load Size Our Algorithm Lin et al.
Algorithm

50 3 3
53 3 3
59 3 3
68 4 4
80 4 5
95 5 6
113 6 8
134 8 12
158 9 15
185 11 17

0
5

10
15
20
25
30
35
40
45

50 53 59 68 80 95 113 134 158 185

N
um

be
r o

f P
ro

ce
ss

or
s

Load Size

Cm=1, Cp=100, N=32, Deadline=2500, Arrival=100

Our Algorithm
Lin et al. Algorithm

Figure 4.11: Comparison of generated nmin with increasing workload size, and a

cluster of n=32 processors

84

Table 4.8: Comparison of generated nmin with increasing workload size, and a cluster

of n=32 processors

Load Size Our Algorithm Lin et al.
Algorithm

50 4 5
53 5 6
59 5 6
68 6 7
80 7 9
95 9 11
113 10 13
134 13 17
158 15 33
185 18 40

The high-level conclusions to be drawn from these experiments are that the

previous algorithm (the one in (Lin et al., 2007b)) is acceptable upon clusters in

which the communication and computation overheads are very small, and on

workloads that do not “stress” the system (i.e., they are small jobs, and/or have large

relative deadlines). In other circumstances, our optimal algorithm performs

significantly better.

85

4.7 Summary

In this chapter, we have studied scheduling problems in RT-DLT when

applied to clusters in which different processors become available at different time-

instants. We proposed an algorithm that efficiently determines the minimum number

of processors that are required to meet a job deadline. Through extensive

experimental evaluation, we have shown that this efficient formula significantly

improves on the heuristic approximations proposed by Lin et al. (2007b, 2007c).

86

CHAPTER 5

A LINEAR PROGRAMMING APPROACH FOR

SCHEDULING DIVISIBLE REAL-TIME LOADS

5.1 Introduction

In the previous chapter, we studied the problem of distributing arbitrarily

parallelizable real-time workloads among processors which become available at

different instants of time. We also presented an efficient algorithm to determine the

minimum number of processors needed to complete this job by its deadline upon

such cluster environments, and through a series of simulations, we showed that our

algorithm always produced an efficient number and comfortably out-performed the

approximate algorithms found in (Lin et al., 2007b, 2007c).

In this chapter, we will study another aspect of the problem: Given a divisible

job of a particular size and a fixed number of processors, which may become

available at different times, upon which to execute it, determine the earliest

completion time for the job. We formulate this problem as a linear program (LP), and

thereby provide a polynomial-time algorithm for solving the problem.

87

The remainder of this Chapter is organized as follows. In Section 5.2, we

describe in greater detail the motivation for this work and demonstrate the non-

optimality of previously proposed approaches. In Section 5.3, we present our LP

formulation. We performed a series of simulations to compare the performance of

these approaches: we discuss the design and results of these simulations in Section

5.4 and Section 5.5.

5.2 Computing completion time on a given set of processors

As discussed in Chapter 4, for the case when the processors have different

ready times, Lin et al. proposed an approach in (2007b, 2007c) via the abstraction of

heterogeneous clusters — clusters in which all n processors become available at the

same instant but different processors may have different computing capacities.

Specifically, the algorithm in (Lin et al., 2007b, 2007c) assumes that all n processors

become available at time-instant rn and the i’th processor Pi takes piC x× time to

process x units of data, where the piC ’s are as given in Equation 4.3 (reproduced

below):

(,) ,
(,)pi

n i

nC
n r r
ξ σ

ξ σ
=

+ −
 (5.1)

Here, (,)nξ σ denotes the completion time if all processors are immediately

available in the original cluster, as given by Equation 4.2. Using these processor

computing capacities, the approach of Lin et al. (2007b) adopts a strategy very

similar to the one in 4.2.1 of the previous chapter, to derive formulas for computing

the fractions of the workload that must be assigned to each (hypothetical

heterogeneous) processor in order that all the processors complete at the same instant

(Lin et al., 2007b, (Equations 4 and 5)), and for computing this completion time (Lin

et al., 2007b, (Equations 6)). We illustrated these formulas via the following

example.

88

Example 1: Consider a cluster in which 1m pC C= = , and consider a job of

size 30σ = which arrives at time-instant zero, and is assigned two processors 1P and

2P in this cluster, with ready-times 1 0r = and 2 21r = respectively. We describe how

to convert this cluster to a heterogeneous cluster of two processors in which both

become available at time-instant 21 (i.e., at 2r).

First, we need to compute (, 2)ξ σ according to Equation 5.2 – the

completion time of this job was to be scheduled optimally upon two homogeneous

processors that are always available. It may be verified that Equation 5.1 yields

1
2
3

α = (two-thirds of the job is assigned to processor 1P and the remaining one-third

to P2); consequently, 1P participates in data-transmission over [0; 20) and

computation over [20; 40) while 2P participates in data-transmission over [20; 30)

and computation over [30; 40) for an eventual completion-time of 40ξ = . Using this

value in Equation 5.3 we get 1 1pC = and 2
40
61pC = as the processor computing

capacities in the heterogeneous cluster.

We now describe how to compute the fractions 1'α and 2'α of the job

allocated to the two (hypothetical) heterogeneous processors. The idea is to apply the

optimal partitioning rule to the heterogeneous platform – determine the values of 1'α

and 2'α such that if the first processor were to be assigned a load 1α σ and the

second a load 2α σ (both starting at the same time-instant), both processors would

complete at the same instant.

That is, we need values for 1'α and 2'α that sum to one (1 2' ' 1α α+ =) and satisfy:

 1 1 1 1 2 2 2' ' (' ') 'm p m pC C C Cα σ α σ α α σ α σ+ = + + (5.2)

89

Solving, we obtain the values 1
101'
162

α = and 2
61'

162
α = . Mapping these shares back

to the original cluster (homogeneous processors, but with different processor ready

times), we obtain the following schedule:

Processor 1P participates in data-transmission over the time-interval 19

27
0,18⎡ ⎞

⎟⎢⎣ ⎠
, and

processes this data over the time-interval 19 11

27 27
18 ,37⎡ ⎞

⎟⎢⎣ ⎠
; hence, P1’s completion time

is 11

27
37 .

Processor 2P participates in data-transmission over the time-interval 8

27
21,32⎡ ⎞

⎟⎢⎣ ⎠
, and

processes this data over the time-interval 8 16

27 27
32 ,43⎡ ⎞

⎟⎢⎣ ⎠
; hence, P2’s completion time

is 16

27
43 .

Taking the larger of the two individual processor completion times, we see that the

overall completion time is equal to 16

27
43 .

90

Non-optimality of the (Lin et al., 2007b) approach. This approach is easily seen to

be non-optimal. For the situation considered in Example 1 it may be verified that if

1P and 2P (in the original cluster) were assigned fractions 1
27

40
α = and 2

13

40
α = of

the load respectively, then 1P would receive data over interval [0; 20.25) and process

this data over [20.25, 40.5) for a completion-time of 40.5; meanwhile, 2P would

receive data over the interval [21, 30.75) and process this data over the interval

[30.75, 40.5) for an overall completion time of 40.5 (which is earlier than the 16

27
43

completion time of the schedule in the example).

In fact, examples are easily constructed in which the completion-time bound

obtained using the approach of (Lin et al., 2007b) is arbitrarily worse than the

optimal. (Consider a simple modification to our two-processor cluster in Example 1

above that increased 2r to some value 30ρ > but leaves everything else unchanged.

The optimal schedule – the one with earliest completion time – would execute the

entire load on the first processor for a completion time of 30. However, the approach

of first transforming to a heterogeneous platform would necessarily assign non-zero

load to the second processor (see (Lin et al., 2007b, (Equations 4 and 5))), and hence

have a completion-time ρ> . As ρ →∞ , the performance of this approach therefore

becomes arbitrarily bad as compared to the optimal approach.

5.3 Linear Programming Formulation

We now describe how the problem of computing the earliest completion time

may be formulated as a linear programming problem. This would immediately allow

us to conclude that the earliest completion time can be computed exactly in

polynomial time, since it is known that a Linear Program (an LP) can be solved in

polynomial time by the ellipsoid algorithm (Khachiyan, 1979) or the interior point

algorithm (Karmakar, 1984). In addition, the exponential-time simplex algorithm

(Dantzig, 1963) has been shown to perform extremely well in practice and is often

91

the algorithm of choice despite its exponential worst-case behavior. It is also well-

known that LP problems can be efficiently solved (in polynomial time), and that

excellent libraries (and several stand-alone tools) exist for solving LP’s extremely

efficiently in practice.

__

minimize ξ

subject to the following constraints:

(1) 1 2 ... 1nα α α+ + + =

(2) 0 iα≤ 1 i n≤ ≤

(3) i ir s≤ , 1 i n≤ ≤

(4) 1,i i m is C sα σ ++ ≤ 1 i n≤ ≤

(5) ()i i m ps C Cα σ ξ+ + ≤ , 1 i n≤ ≤

__

Figure 5.1: Computing the completion time – LP formulation

Given the workload size σ, the cluster parameters mC and pC , and the n processor

ready-times 1 2, ,..., nr r r we construct a linear program (Figure 5.1) on the following

(2n + 1) variables:

• The n variables { }1 2, ,..., nα α α , with iα denoting the fraction of the workload

to be assigned to the i’th processor;

• The n variables { }1 2, ,..., ns s s with is denoting the time-instant at which the

head node begins transmitting data to the i’th processor; and

92

• The variable ξ , denoting the completion time of the schedule (i.e., the

objective function of the minimization problem).

The constraints that must be satisfied by these variables are as follows:

(1) The entire workload must be allocated; i.e., the iα ’s must sum to 1. This is

represented by equality (1) of the LP in Figure 5.1.

(2) The fraction of the workload allocated to each processor must be non-

negative. This is represented by the n inequality (2) of the LP in Figure

5.1.

(3) Each processor may begin receiving data only after its ready time—we

must have i is r≥ for all i. This is represented by the n inequality (3) of the

LP in Figure 5.1.

(4) Data-transmission is sequential, which means that data-transmission to the

(i + 1)’th processor may commence (at time-instant is) only after data-

transmission to the i’th processor has completed (at time-instant

i i ms Cα σ+ . This is represented by the n inequality (4) of the LP in Figure

5.1.

(5) The completion time on the i’th processor (i.e., (i i m i ps C Cα σ α σ+ +)) is, by

definition, no larger than the completion time ξ of the entire schedule.

This is represented by the n inequality (5) of the LP in Figure 5.1.

93

Recall that, when all processors have equal ready time, by using the DLT

optimality principle, the workload execution time (,)nξ σ as given in Equation 3.3

(reproduced here):

1 1

1 2 2

1 2 3 3

(,)

()

()

...

m p

m p

m p

n C C

C C

C C

ξ σ α σ α σ

α α σ α σ

α α α σ α σ

= +

= + +

= + + +

 1 2(...)n m n pC Cα α α σ α σ= + + + + (5.3)

And the values for the
iα are computed by using:

1
1
1 n

βα
β
−

=
−

 (5.4)

1

1,
j

jα β α−= for j > 1 (5.5)

Where β is defined as:

()

def
p

p m

C
C C

β =
+

 (5.6)

 When processors have different ready time, we use the same principle to

compute the value of fraction
iα and the fraction’s execution time must not exceed

the overall schedule completion time ξ , as represented by the inequality (5)'s of the

LP in Figure 5.1.

i i m i ps C Cα σ α σ ξ+ + ≤ (5.7)

 In addition, since processors have different ready time, we need to compute

different is for each fraction
iα by setting the constraints as represented by the

inequality (3)’s and (4)’s of the LP in Figure 5.1.

94

The following two lemmas formally assert that the problem of obtaining a

feasible solution to the LP in Figure 5.1 is equivalent to the problem of obtaining a

schedule for the workload on the n processors.

Lemma 1 Given feasible solution to the LP in Figure 5.1 that assigns value oξ to the

variable ξ , we can construct a schedule for a workload of size σ with completion-

time oξ .

Proof: Any feasible solution to the LP assigns nonnegative values to each of the iα 's

and is 's. By assigning a workload iσα to the i'th processor, it immediately follows

from the construction of the LP that the total workload is assigned to the n

processors. Furthermore oξ , the value of ξ in the feasible solution, clearly represents

an upper bound on the completion time of the schedule.

Lemma 2 Given a schedule for a workload of size σ with completion-time 1ξ that

there is a feasible solution to the LP in Figure 5.1 that assigns the variable ξ the

value 1ξ .

95

Proof: Let 'iα denote the amount of the workload executed on the i'th processor, and

'is the time-instant at which transmission of this workload commences to the i'th

processor. It is once again evident from the manner of construction of the LP that the

variable assignment

' ,i iα α← 1 i n≤ ≤

' ,i is s← 1 i n≤ ≤

1ξ ξ←

constitutes a feasible solution to the LP. We now present our main result in this

section, demonstrating the equivalence of scheduling to minimize completion time to

Linear Programming.

Theorem 1 Computing the earliest completion time of a given divisible workload of

size σ on a cluster with parameters mC and pC , and n identical processors with

(non-decreasing) available times 1 2, ,..., nr r r is equivalent to solving the linear

programming problem given in Figure 5.1.

Proof: It immediately follows from Lemma 1 and Lemma 2 that the smallest value

of ξ satisfying the LP in Figure 5.1 is exactly the desired earliest completion time.

As a parenthetical side-note, we observe that this LP is easily modified to

compute the earliest completion time upon more general heterogeneous platforms as

well, in which there may be a different miC and a different piC associated with the

data-communication and computing capacity of each processor iP . The only

modifications are that each mC in the third constraints is replaced by miC for each i,

and that each mC and pC in the fourth constraints are replaced by miC and

piC respectively for each i. We will demonstrate this heterogeneous transformation

in the following section.

96

5.4 Simulation Design

We have performed extensive simulation experiments comparing the

performance of our (proved efficient) LP solution technique to the approximate

technique of (Lin et al., 2007b, 2007c). Our experiments were performed in

MATLAB, using the linprog, a linear-programming solver that is available with

MATLAB to solve our LPs. Figure 5.2 depicts the design of these simulation

programs.

Start

Initialize Cluster & Load Parameters
(N, Cm, Cp), (A, σ, D)

SimulationCycle 1

Compute nMin

Generate Random
Release Time of

Processors

Form the Data Matrix for
(f, Aeq, beq, A, b, LB, UB)

Compute Completion Time
linProg(f,A,b,Aeq,beq, LB, UB)

Plot Data to
Graph

Compute Completion
Time

(Lin et al. Formula)

SimulationCycle =+1
Update LoadSize σ

SimulationCycle
= 20?

End

Yes

No

Figure 5.2: The Simulation Design

97

As shown in Figure 5.2, We now briefly describes the simulation design:

• Initialize Cluster Parameters

We performed 6 sets of simulations to compare the performance of

our LP-based formula to the Lin et al. (2007b, 2007c) solution. For

these simulations, we set the cluster parameters 1mC = and 100pC = .

In each set, we considered 6 values for the number of processors n:

4n = , 6n = , 8n = , 12n = , 16n = and 20n = . For example for the

first set, we initialize the cluster parameter as (1mC = , 100pC = ,

4n =).

We also studied the behavior of our LP-based approach with different

cluster parameters. Thus, for these purpose, we set different values of

mC and pC .

• Initialize Load Parameters

In this procedure, we initialize the workload parameters (, ,)A Dσ with

the initial values.

• Simulation Cycle

This step is to initialize the variable SimulationCycle=1, which later

will be use to control the simulation cycle.

• Generate Random Release Time

This procedure will randomly generate the processor release times –

the ri’s. For example, for 8n = , it will generate 8 processor release

times values.

• Compute the minn

Assuming minn has been generated by some formula described in the

previous chapter; this procedure will use minn value for the next

computation.

98

• Form the Data Matrix

This procedure will form the data matrix to be used in the

computation of the completion time. In the following, we present an

example of generated data matrix for a cluster (1mC = , 100pC = ,

3n =) and a workload (0A = , 20σ = , 1000D =).

Example:

Given an objective function:

Minimize 1 2 3 1 2 30. 0. 0. 0. 0. 0.Z s s sα α α ξ= + + + + + +

Subject to the following constraints:

1 2 3

1 1

2 2

3 3

1 1 2

2 2 3

1 1

2 2

3 3

1

0
0

() 0

() 0

() 0

m

m

m p

m p

m p

s r
s r
s r

C s s
C s s

C C s

C C s

C C s

α α α

α σ
α σ

α σ ξ

α σ ξ

α σ ξ

+ + =
− ≤ −
− ≤ −
− ≤ −

+ − ≤
+ − ≤

+ + − ≤

+ + − ≤

+ + − ≤

The generated matrix would be:

0
0
0
0
0
0
1

f

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 [1 1 1 0 0 0 0]Aeq = ; [1]beq =

99

0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

0 0 1 1 0 0
0 0 0 1 1 0

() 0 0 1 0 0 1
0 () 0 0 1 0 1
0 0 () 0 0 1 1

m

m

m p

m p

m p

C
A

C
C C

C C
C C

σ
σ

σ
σ

σ

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥−⎢ ⎥= ⎢ ⎥−
⎢ ⎥

+ −⎢ ⎥
⎢ ⎥+ −
⎢ ⎥

+ −⎢ ⎥⎣ ⎦

;

1

2

3

0
0
0
0
0

r
r
r

b

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 []0 0 0 0 0 0 0LB =

[]inf inf inf inf inf inf infUB =

• Compute Completion Time

To compute the completion time, this procedure will call the linprog,

a linear programming solver that is available in MATLAB:

E=linprog(f, A, b, Aeq, beq, LB, UB);

• Compute Completion Time (Lin et al. formula)

This procedure will compute the completion time of a job execution

according to Lin et al. formula (2007b, 2007c).

• Plot Data to Graph

The completion time generated by both formulas will be plotted on

the same graph.

• Update Simulation Cycle & Load Size σ

Simulation cycle will be updated in steps of 1 and stopped at

SimulationCycle=20. For each of the simulation cycle, we increased

the load size in steps of 5.

100

5.5 Experimental Evaluation

5.5.1 Performance Comparison

In this section, we compare the completion time computed by our LP with the

completion time computed by the approximation approach proposed in (Lin et al.,

2007d). As shown in Figure 5.3 through Figure 5.8, in all cases the LP based

formula computed a lower completion time compared to the one computed by the

approximation approach of (Lin et al., 2007b, 2007c).

30 40 50 60 70 80 90 100 110 120 130
500

1000

1500

2000

2500

3000

3500

Load Size

C
om

pl
et

io
n

Ti
m

e

N=4, Cm=1, Cp=100

LP Solution
Approx Solution

Figure 5.3: Comparison - computed completion time when 4n =

Observe that as the number of processors n increases, the relative

improvement of our approach to the approximation approach increases. These

observations may be explained as follows. Recall that the approximation approach

uses the processor availability to estimate the completion time. As n increases it is

more likely that takes on a larger value.

101

For example, these are the release times we used for 16n = : [19,111, 111,

255, 321, 321, 321, 763, 763, 774, 907, 935, 1016, 1054, 1168, 1390]; this means

that the nr used when 16n = is 1390. In (2007b and 2007c) Lin et al. derived an

upper bound of minimum number of processors for a job to complete before its

deadline by proving that:

1ˆ(,) ()
1 m pnn C Cβξ σ σ

β
−

≤ +
−

 (5.8)

ˆ(,) (,)n nξ σ ξ σ≤ (5.9)

And use the equation to estimates the completion time as:

1ˆ() (,) ()
1n n m pnC n r n r C Cβξ σ σ

β
−

= + ≤ + +
−

 (5.10)

We have shown via Example 1 that the performance of this approximation

approach is non-optimal since their computation time is inflated by the value of

nr and nr →∞ . Thus, as shown in Figure 5.3 through Figure 5.8, as n increases, Lin

et al. formula (2007b, 2007c) is more likely to takes on a larger value of nr and uses

these values to estimates the completion time. Consequently, this formula will

compute a larger completion time.

30 40 50 60 70 80 90 100 110 120 130
500

1000

1500

2000

2500

3000

Load Size

C
om

pl
et

io
n

Ti
m

e

N=6, Cm=1, Cp=100

LP Solution
Approx Solution

Figure 5.4: Comparison - computed completion time when 6n =

102

30 40 50 60 70 80 90 100 110 120 130
600

800

1000

1200

1400

1600

1800

2000

2200

2400

Load Size

C
om

pl
et

io
n

Ti
m

e

N=8, Cm=1, C=100

LP Solution
Approx Solution

Figure 5.5: Comparison - computed completion time when 8n =

30 40 50 60 70 80 90 100 110 120 130
600

800

1000

1200

1400

1600

1800

2000

Load Size

C
om

pl
et

io
n

Ti
m

e

N=12, Cm=1, Cp=100

LP Solution
Approx Solution

Figure 5.6: Comparison - computed completion time when 12n =

103

For greater detail, let us consider the following examples: Given a load size

60σ = , 1mC = , 100pC = , 8n = with each processor release time as 1 194r = ,

2 207r = , 3 207r = , 4 365r = , 5 381r = , 6 428r = , 7 524r = and 8 524r = . Using this

values in Equation 5.10, the completion time computed by Lin et al. formula (2007b,

2007c) is:

1() ()
1

1 0.9901524 60 (1 100)
1 0.9235

1308

n m pnC n r C Cβ σ
β
−

= + +
−
−

= + × × +
−

=

Using the same values in our LP-based algorithm and run the simulation

program, the computed completion time 1113ξ = . The following table shows the

exact values of fractions iα computed by our LP-based algorithm, the processors’s

release time ir , the start time is computed by the LP-based algorithm, the sending

and computation time of each fractions (i m i pC Cα σ α σ+) assigned to each processors

and the completion time ξ in the final column. Particularly in this example, the

completion time computed by our algorithm is approximately 15% lesser than the

one computed by Lin et al. formula (Lin 2007b, 2007c).

Table 5.1: Fraction iα values and calculations of completion time ξ

ith

Processor
iα ir is i m i pC Cα σ α σ+ ()i i m ps C Cξ α σ= + +

1 0.1517 194 194 919 1113

2 0.1495 207 207 906 1113

3 0.1480 207 216 897 1113

4 0.1234 365 365 748 1113

5 0.1208 381 381 732 1113

6 0.1131 428 428 685 1113

7 0.0972 524 524 589 1113

8 0.0962 524 530 583 1113

104

Based on the experiments, we observed that our algorithm is superior for use

in admission control – i.e., in determining whether to accept or reject incoming jobs

based on whether they will meet their deadlines or not. This follows since the

completion time computed by our approach is much smaller than the one computed

by the approximation approach of (Lin et al., 2007b, 2007c), and it is hence far more

likely that our approach will meet any given job’s deadline.

Although we do not present any simulation results concerning the likelihood

of meeting or missing deadlines, it is easy to observe why this is likely to be the case

from our graphs when 12n = , 16n = and 20n = . Consider, for example the

20n = case, and consider jobs of the different sizes all with a deadline of 1500.

None of these jobs would be deemed to meet their deadlines by the approximation

approach. As a result, the scheduler will simply reject these jobs even though, as

indicated by our efficient test, they would in fact have met their deadlines.

50 60 70 80 90 100 110 120 130 140 150
1000

1200

1400

1600

1800

2000

2200

Load Size

C
om

pl
et

io
n

Ti
m

e

N=16, Cm=1, Cp=100

LP Solution
Approx Solution

Figure 5.7: Comparison - computed completion time when 16n =

105

50 60 70 80 90 100 110 120 130 140 150
1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

Load Size

C
om

pl
et

io
n

Ti
m

e

N=20, Cm=1, Cp=100

LP Solution
Approx Solution

Figure 5.8: Comparison - computed completion time when 20n =

We also studied the behavior of our LP-based approach with different cluster

parameters. In the simulations depicted in Figure 5.9, we set mC to values of 1, 3, 5,

7, 9 while maintaining 100pC = . And for each set of this simulation we increased

the load size in steps of 10 units. In the simulations depicted in Figure 5.10 we ran

sets of simulations with pC values set to 100, 110, 120, 130, 140 while

maintaining 1mC = . As observed, the completion time increases as mC or pC

increases.

106

100 110 120 130 140 150 160 170 180 190
1000

1500

2000

2500

3000

3500

Load Size

C
om

pl
et

io
n

Ti
m

e

N=8, Cp=100

Cm=1
Cm=3
Cm=5
Cm=7
Cm=9

Figure 5.9: Computed completion time with various mC values

100 110 120 130 140 150 160 170 180 190
1000

1500

2000

2500

3000

3500

Load Size

C
om

pl
et

io
n

Ti
m

e

N=8, Cm=1

Cp=100
Cp=110
Cp=120
Cp=130
Cp=140

Figure 5.10: Computed completion time with various pC values

107

5.5.2 Heterogeneous Platforms

As we mentioned in section 5.3, our LP is easily modified to compute the

earliest completion time upon more general heterogeneous platforms. Following is an

example of the LP specification for heterogeneous clusters of 4n = .

(1) 1 2 3 4 1α α α α+ + + =

(2)

1 1

2 2

3 3

4 4

r s
r s
r s
r s

≤
≤
≤
≤

(3)
2 1 1 1

3 2 2 2

4 3 3 3

m

m

m

s s C
s s C
s s C

α σ
α σ
α σ

≥ +

≥ +
≥ +

(4)

1 1 1 1

2 2 2 2

3 3 3 4

4 4 4 4

()

()

()

()

m p

m p

m p

m p

s C C

s C C

s C C

s C C

α σ ξ

α σ ξ

α σ ξ

α σ ξ

+ + ≤

+ + ≤

+ + ≤

+ + ≤

Note that, to specify a heterogeneous platform, the only modifications are in the

Constraint numbers (3) and (4), where mC and pC values are involved. Recall that

mC is the data communication cost and pC is the computation cost for each

processor in a cluster.

108

5.5.3 Effect of Number of Processors

In this section we study the behavior of this LP approach for different

numbers of processors in the cluster. We used the cluster parameters

1mC = and 100pC = , and ran 5 sets of simulations with 4n = , 8n = , 12n = , 16n =

and 20n = . In each set we increased the load size in steps of 10 units. As shown in

Figure 5.11, the completion time decreases significantly with increasing n ,

particularly for larger load sizes. And when 20n = , the completion time for each

job does not increase much with increasing load size. For a certain kind of system,

where there are jobs with hard deadlines to be met, it makes sense to allocate more

processors to these jobs so that they will finish their executions earlier, and release

the processors for other incoming jobs. This reinforces a finding first reported in

(Chuprat and Baruah, 2007) and described in Chapter 3 of this dissertation, that a

scheduling framework which allocates all processing nodes to one job at a time

performs very well when compared to a scheduling framework which allocates the

minimum number of nodes needed to just meet the job’s deadline

100 110 120 130 140 150 160 170 180 190
500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Load Size

C
om

pl
et

io
n

Ti
m

e

Cm=1, Cp=100

N=4
N=8
N=12
N=16
N=20

Figure 5.11: Computed completion time with various n values

109

5.6 Summary

In this chapter, we studied scheduling problems in RT-DLT when applied to

clusters in which different processors become available at different time-instants.

We proposed an LP based formula to efficiently determine the earliest completion

time for the job on a given processors. Through extensive experimental evaluation,

we have shown that this LP based formula significantly improves on the heuristic

approximations that were the only techniques previously known for solving these

problems.

110

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Summary

Many future computing applications such as automated manufacturing

systems, military systems, high speed telecommunication systems, flight control

systems, etc., have significant real-time components. Such real-time application

systems demand complex and significantly increased functionality and are

increasingly being implemented upon multiprocessor platforms, with complex

synchronization, data-sharing and parallelism requirements.

However, current formal models of real-time workloads were designed within

the context of uniprocessor real-time systems; hence, they are often not able to

accurately represent salient features of multiprocessor real-time systems.

Furthermore, they may impose additional restrictions (“additional" in the sense of

being mandated by the limitations of the model rather than the inherent

characteristics of the platform) upon system design and implementation. One

particular restriction that has been extended from uniprocessor models to

multiprocessor ones is that they do not allow task parallel execution.

111

Researchers have recently attempted to overcome this shortcoming by

applying workload models from Divisible Load Theory (DLT) to real-time systems.

The resulting theory, referred to as Real-time Divisible Load Theory (RT-DLT). RT-

DLT holds great promise for modeling an emergent class of massively parallel real-

time workloads. However, the theory needs strong formal foundations before it can

be widely used for the design and analysis of hard real-time safety-critical

applications.

This thesis presents our works in obtaining such formal foundations, by

generalizing and extending recent results and concepts from multiprocessor real-time

scheduling theory. We summarize the contributions presented in this thesis in

Section 6.2. We list a number of open questions that together comprise a future

research agenda arising from this thesis in Section 6.3.

6.2 Contributions and Significance

The research performed as part of this thesis significantly advances the state

of the art of RT-DLT. Most prior work has been simulation-based and hence not

applicable to the design and analysis of hard-real-time systems (where even a single

deadline failure is unacceptable and hence guarantees are required during system

design time that all timing constraints will be met); to our knowledge, the work

reported in this thesis is the first to be able to make such guarantees. As a

consequence, we have enabled the use of RT-DLT for the design and analysis of

safety-critical systems.

112

The specific technical contributions obtained during this research are:

i. We have investigated the application of Divisible Load Theory (DLT)

models to real-time workloads. Specifically, we have examined the

initial work of Lin et al. (2006a, 2006b and 2007a) and their

apparently anomalous findings with respect to a scheduling

framework integrating DLT and EDF.

ii. We have used recent results from traditional multiprocessor

scheduling theory to provide satisfactory explanations for the

apparently anomalous observations identified by Lin et al. in (2006a,

2006b and 2007a).

iii. We have investigated the application of DLT to real-time scheduling

and report the findings in Chapter 4 and 5. Specifically, we addressed

the scheduling problems in RT-DLT when applied to clusters in

which different processors become available at different time-instants.

iv. We have devised an efficient algorithm to determine the minimum

number of processors that must be assigned to a job in order to

guarantee that it meets its deadline — on clusters in which all

processors are not simultaneously available. We have also shown that

our solution significantly improved the approximate algorithms found

in (Lin et al., 2007b, 2007c).

v. We have formulated the problem of determining the completion time

of a given divisible job upon a specified number of processors as a

Linear Programming (LP) problem. Based on this LP approach, we

have improved the non-optimal approximate algorithms found in (Lin

et al., 2007b, 2007c).

We summarized the research the contributions made and list of publications

in Figure 6.1.

113

Start

Preliminary Work:
Developed 3 Deadline-

based Scheduling
Algorithms &

Conducted series of
simulations

Preliminary
Investigation:

Task Scheduling
With Critical Deadlines

Further Investigation:
Real-time System &

Real-time Scheduling

Multiprocessor
Scheduling

Further Investigate:
Parallel Execution

Upon
Multiprocessor

Dynamic Algorithm
(Manimaran and

Murthy, 1998)

Work Limited
Parallelism

(Collete, Cucu and
Goossens, 2007, 2008)

Maximum Workload
Derivative First with

Fragment Elimination
(Lee et al., 2003)

Real-time Divisible
Load Theory (RT-DLT)

(Lin et al., 2006a,
2006b, 2007a)

Investigated RT-DLT and
discovered anomaly

observations

Explain anomaly
findings of RT-DLT
using existing Real-

time scheduling theory

Enhanced Real-time
Divisible Load Theory

(RT-DLT)
(Lin et al., 2007b,

2007c)

Further Investigation on
RT-DLT:

Cluster with varying
start time

Developed MINPROCS
to determine the

minimum number of
processor needed for

meeting a task deadline

Developed MIN-
that compute

the completion time of
a task with given

number of processors

Conducted series of
simulation using Visual

C++

Conducted series of
simulation using the

MATLAB

Simulation results show
our algorithm
outperform

the existing one

Simulation results show
our algorithm

significantly improve
the existing one

End

(1)
Proceeding Paper
(Chuprat, Salleh,

2006)

(3)
Proceeding Paper
(Chuprat, Baruah,

2007) (4)
Proceeding Paper
(Chuprat, Salleh,

Baruah, 2007)

(5)
Proceeding Paper
(Chuprat, Baruah,

2008)

(6)
Proceeding Paper
(Chuprat, Salleh,

Baruah, 2008)

(2)
Proceeding Paper
(Chuprat, Salleh,

2007)

(7)
Book Chapter

(Chuprat, Salleh,
2008)

(8)
Book Chapter

(Chuprat, Salleh,
Baruah 2008)

(9)
Submitted to Int. Journal of
Computers & Application
(Chuprat, Salleh, Baruah)

(11)
To appear in ICPP 2009 -

XRTS Workshop
(Chuprat, Salleh,
Goddard 2009)

(10)
Submitted to Int.Journal of

Applied Maths and
Comp.Science

(Chuprat, Salleh, Baruah)

Figure 6.1: Summary of Contributions and Publications

114

6.3 Future Research

Real-time divisible load theory (RT-DLT), as developed by Lin et al. (2006a,

2006b, 2007a, 2007b, 2007c), has the potential to provide a solid theoretical

foundation for the provision of real-time performance guarantees while executing

arbitrarily divisible workloads on parallel computing clusters. However this is an

emerging area of research; therefore, there are many open areas of research only

some of which were addressed in this thesis. In this subsection, we briefly list some

potential avenues for future research extending the results of this thesis.

i. Task model

In this thesis we have only considered the sporadic task model. Periodic and

aperiodic task models are among other widely used task models in real-time

systems. It would be worth extending this work to be applicable for these

additional models as well.

ii. Real-time Scheduling Algorithms

We have mainly discussed the EDF scheduling algorithm and integrated this

algorithm into the RT-DLT scheduling framework. There are many other

algorithms that can potentially be integrated; among these are the Earliest

Deadline Zero Laxity (EDZL) and Deadline Monotonic (DM) scheduling

algorithms.

iii. Multi-round DLT

We have so far investigated and developed a single-round DLT algorithm.

We observe that, some more complex problems such as scheduling with

blocking/reservation (Mamat et al., 2008) may be efficiently solvable with

Multi-round DLT algorithm.

115

iv. Network model

In this thesis, we have restricted our attention to the single-level tree

topology. However, there are several different network topologies, such as

stars, meshes, and trees that have been extensively studied in DLT. We

believe exploring these additional network topologies in the context of RT-

DLT offers vast opportunities for further research.

v. Network with Front-end Processor

Recall that, one assumption in Lin et al. (2006a, 2006b, 2007a) which we

note is a bit different from the original work of DLT is that the head node is

assumed to lack of front-end processing capabilities and hence not participate

in the computation. It would be interesting to extend this work to allow for

head-nodes with front-end processing capabilities.

116

REFERENCES

Anderson, J. and Srinivasan, A. (2004). Mixed Pfair/ ERfair scheduling of

asynchronous periodic tasks. Journal of Computer and System Sciences,

68(1):157–204.

ATLAS (AToroidal LHC Apparatus) Experiment, CERN (European Lab for Particle

Physics). ATLAS Web Page. http://atlas.ch/.

Baker, T.P. and Baruah, S. (2007). Schedulability analysis of multiprocessor

sporadic task systems. Handbook of Real-Time and Embedded Systems.

Chapman Hall/ CRC Press.

Baker, T. P., Cirinei, M. and Bertogna, M. (2008). EDZL scheduling analysis. Real-

Time Systems. 40(3): 264-289.

Balafoutis, E., Paterakis, M., Triantafillou, P., Nerjes, G., Muth, P. and Weikum, G.

(2003). Clustered Scheduling Algorithms for Mixed Media Disk Workloads in

a Multimedia Server. Special issue of Cluster Computing on Divisible Load

Scheduling, Kluwer Academic Publishers, 6(1):75-86.

Barlas, G. and Bharadwaj, V. (2000). Theoretical and Practical aspects of multi-

installment distribution for the processing of multiple divisible loads on bus

networks. Proceedings of International Conference on Computing and

Information.

Barlas, G. and Bharadwaj, V. (2004). Quantized Load Distribution for Tree and Bus-

connected Processors. Parallel Computing, 30(7): 841-865.

117

Baruah, S., Mok, A. and Rosier, L. (1990). Preemptively scheduling hard-real-time

sporadic tasks on one processor. Proceedings of the 11th Real-Time Systems

Symposium, pages 182–190, Orlando, Florida. IEEE Computer Society Press.

Baruah, S., Koren, G., Mao, D., Mishra, B., Raghunathan, A., Rosier, L., Shasha, D.

and Wang, F. (1991). On the competitiveness of on-line real-time task

scheduling. Real-Time Systems, 4:125-144.

Baruah, S., Gehrke, J. and Plaxton, G. (1995). Fast scheduling of periodic tasks on

multiple resources. Proceedings of the Ninth International Parallel Processing

Symposium, pages 280–288. IEEE Computer Society Press.

Baruah, S., Cohen, N., Plaxton, G. and Varvel, D. (1996). Proportionate progress: A

notion of fairness in resource allocation. Algorithmica, 15(6):600–625.

Baruah, S. (2002). Robustness results concerning EDF scheduling upon uniform

multiprocessors. Proceedings of the EuroMicro Conference on Real-Time

Systems, 95–102, Vienna, Austria, June, IEEE Computer Society Press.

Baruah, S. and Goossens, J. (2003). Rate-monotonic scheduling on uniform

multiprocessors. IEEE Transactions on Computers, 52(7):966–970.

Baruah, S. (2004). Optimal Utilization Bounds for the Fixed-Priority Scheduling of

Periodic Task Systems on Identical Multiprocessors. IEEE Transactions on

Computers, 53(6):781-784.

Baruah, S. (2006). The Non-preemptive Scheduling of Periodic Tasks upon

Multiprocessors. Real-Time Systems, 32, 9–20.

Bharadwaj, V., Ghose, D. and Mani, V. (1995). Multi-installment Load Distribution

in Tree Networks with Delays. IEEE Transactions on Aerospace & Electronic

Systems, 31(2): 555-567.

118

Bharadwaj, V., Ghose, D., Mani, V. and Robertazzi, T.G. (1996). Scheduling

Divisible Loads in Parallel and Distributed Systems, IEEE Computer Society

Press, Los Alamitos CA, September.

Bharadwaj, V., Li, X. and Chung, K.C. (2000). On the Influence of Start-up Costs in

Scheduling Divisible Loads on Bus Networks. IEEE Transactions on Parallel

and Distributed Systems. 11(12): 1288-1305.

Bharadwaj, V. and Ranganath, S. (2002). Theoretical and Experimental Study of

Large Size Image Processing Applications using Divisible Load Paradigm on

Distributed Bus Networks. Image and Vision Computing, Elsevier Publishers,

20(13-14):917-936.

Bharadwaj, V., Ghose, D. and Robertazzi, T. G. (2003). Divisible load theory: A

new paradigm for load scheduling in distributed systems. Cluster Computing,

6(1):7-17.

Buttazzo, G., Lipari, G., Abeni, L. and Caccamo, M. (2005). Soft Real-Time

Systems: Predictability vs. Efficiency. Springer Science and Business Media,

Inc., 233 Spring Street, New York, NY 10013, USA.

Buttazzo, G. (2004). Hard Real-time Computing Systems: Predictable Scheduling

Algorithms and Applications. Springer Science and Business Media, Inc., New

York, NY 10013, USA.

Chuprat, S. and Baruah, S. (2007). Deadline-based scheduling of divisible real-time

loads. Proceedings of the ICSA International Conference on Parallel and

Distributed Computing Systems, Las Vegas, Nevada.

Chuprat, S. and Baruah, S. (2008). Scheduling Divisible Real-Time Loads on

Clusters with Varying Processor Start Times. Proceedings of 14th IEEE

International Conference on Embedded and Real-Time Computing Systems and

Applications, RTCSA, 15-24.

119

Chuprat, S., Salleh, S. and Baruah, S. (2008). Evaluation of a linear programming

approach towards scheduling divisible real-time loads. Proceedings of the

International Symposium on Information Technology (co-sponsored by the

IEEE), Kuala Lumpur, Malaysia.

Cirinei, M. and Baker, T. P. (2007). EDZL Scheduling Analysis. Proceedings of the

19th Euromicro Conference on Real-Time Systems (ECRTS), IEEE Computer

Society, Washington, DC, 9-18.

Collette, S., Cucu, L. and Goossens, J. (2008) Integrating Job Parallelism in Real-

Time Scheduling Theory. Information Processing Letters, vol. 106(5): 180-

187, May.

Collette, S., Cucu, L., and Goossens, J. (2007). Algorithm and complexity for the

global scheduling of sporadic tasks on multiprocessors with work-limited

parallelism. Proceedings of the 15th International Conference on Real-Time

Systems, Nancy, France, March.

Compact Muon Solenoid (CMS) Experiment for the Large Hadron Collider at CERN

(European Lab for Particle Physics). CMS Web Page.

http://cmsinfo.cern.ch/Welcome.html/.

Cottet, F., Delacroix, J., Kaiser, C. and Mammeri, Z. (2002). Scheduling in Real-

Time Systems. England: John Wiley & Sons Ltd.

Dantzig, G. B. (1963). Linear Programming and Extensions. Princeton University

Press, 1963.

Dertouzos, M. L. (1974). Control robotics: The procedural control of physical

processes. Information Processing. 74.

Dertouzos, M. L. and Mok, A.K. (1989). Multiprocessor on-line scheduling of hard

real-time tasks. Transactions on Software Engineering 15(12):1497-1506.

120

Dhall, S. K. and Liu, C. L. (1978). On a real-time scheduling problem. Operations

Research, 26:127–140.

Drozdowski, M. and Glazek, W. (1999). Scheduling Divisible Loads in a Three-

Dimensional Mesh of Processors. Parallel Computing, 25(4): 381-404.

Drozdowski, M. and Lawenda, M. (2005). On Optimum Multi-installment Divisible

Load Processing. Euro-Par 2005 Parallel Processing, Lecture Notes in

Computer Science 3648, Springer, 231-240.

Drozdowski, M. and Wolniewicz, P. (2006). Optimum divisible load scheduling on

heterogeneous stars with limited memory. European Journal of Operational

Research, Elsevier, 172(2): 545-559.

Glazek, W. (2003). A Multistage Load Distribution Strategy for Three Dimensional

Meshes. Special issue of Cluster Computing on Divisible Load Scheduling,

Kluwer Academic Publishers, 6(1):31-40.

Goossens, J., Funk, S. and Baruah, S. (2003). Priority Driven Scheduling of Periodic

Task Systems on Multiprocessors. Journal of Real-Time System, 25, 187-205.

Graham, R.L. (1976). Bounds on the performance of scheduling algorithms.

Computer and Job Scheduling Theory, 165-227. John Wiley and Sons.

Jeffay, K., Stanat, D., and Martel, C. (1991). On non-preemptive scheduling of

periodic and sporadic tasks. Proceedings of the 12th Real-Time Systems

Symposium, 129–139, San Antonio, Texas. IEEE Computer Society Press.

Karmakar. N. (1984). A new polynomial-time algorithm for linear programming.

Combinatorica, 4:373–395.

Khachiyan, L. (1979). A polynomial algorithm in linear programming. Dokklady

Akademiia Nauk SSSR, 244:1093–1096.

121

Lee, W., Hong, S. J. and Kim, J. (2003). On-line scheduling of scalable real-time

tasks on multiprocessor systems. Journal of Parallel and Distributed

Computing, 63(12):1315-1324.

Leung, J. and Whitehead, J. (1982). On the complexity of fixed-priority scheduling

of periodic, real-time tasks. Performance Evaluation, 2:237–250.

Lin, X., Lu, Y., Deogun, J. and Goddard, S. (2006a). Real-time divisible load

scheduling for cluster computing. Technical Report UNL-CSE-2006-0016,

Department of Computer Science and Engineering, The University of Nebraska

at Lincoln.

Lin, X., Lu, Y., Deogun, J. and Goddard, S. (2006b). Real-time divisible load

scheduling for clusters. Proceedings of the Real-Time Systems Symposium –

Work-In-Progress Session, pages 9–12, Rio de Janerio, December.

Lin, X., Lu, Y., Deogun, J. and Goddard, S. (2007a) Real-time divisible load

scheduling for cluster computing. Proceedings of the IEEE Real-Time

Technology and Applications Symposium (RTAS).

Lin, X., Lu, Y., Deogun, J. and Goddard, S. (2007b). Real-Time Divisible Load

Scheduling with Different Processor Available Times. Proceedings of

International Conference on Parallel Processing (ICPP), Xian, China,

September.

Lin, X., Lu, Y., Deogun, J. and Goddard, S. (2007c). Enhanced Real-Time Divisible

Load Scheduling with Different Processor Available Times. Proceedings of

14th International Conference on High Performance Computing (HiPC), Goa,

India, December.

Liu, C. and Layland, J. (1973). Scheduling algorithms for multiprogramming in a

hard real-time environment. Journal of ACM. 20(1) 46-61.

122

Liu, C. L. (1969). Scheduling algorithms for multiprocessors in a hard real-time

environment. JPL Space Programs Summary, 37-60, II:28-31.

Liu, J. W. S. (2000). Real-Time Systems. Prentice-Hall, Inc., Upper Saddle River,

New Jersey 07458.

Lopez, J., Diaz, J. and Garcia, L. (2004). Utlization Bounds for EDF Scheduling on

Real-Time Multiprocessor Systems. Real-Time Systems, 28:39-68.

Mamat, A., Lu, Y., Deogun, J. and Goddard, S. (2008). Real-Time Divisible Load

Scheduling with Advance Reservation. Proceedings of the Euromicro

Conference on Real-Time Systems (ECRTS), IEEE Computer Society,

Washington, DC, 37-46.

Manimaran, G. and Murthy, C. S. R. (1998). An efficient dynamic scheduling

algorithm for multiprocessor real-time systems. IEEE Transaction on Parallel

and Distributed Systems, 9(3):312–319.

Marchal, L., Yang, Y., Casanova, H. and Robert, Y. (2005). A Realistic

Network/Application Model for Scheduling Divisible Loads on Large-Scale

Platforms. Proceedings of International Parallel and Distributed Processing

Symposium (IPDPS).

Mok, A. K. (1983). Fundamental Design Problems of Distributed Systems for the

Hard-Real-Time Environment. PhD thesis, Laboratory for Computer Science,

Massachusetts Institute of Technology.

Phillips, C. A., Stein, C., Torng, E. and Wein, J. Optimal time-critical scheduling via

resource augmentation. (1997). Proceedings of the Twenty-Ninth Annual ACM

Symposium on Theory of Computing, pages 140-149, El Paso, Texas, 4-6 May.

Phillips, C. A., Stein, C., Torng, E., and Wein, J. (2002). Optimal time-critical

scheduling via resource augmentation. Algorithmica, 32(2):163–200.

123

Piriyakumar, D.A.L. and Murthy C.S.R. (1998). Distributed Computation for a

Hypercube Network of Sensor-Driven Processors with Communication Delays

Including Setup Time. IEEE Transactions on Systems, Man and Cybernetics-

Part A: Systems and Humans, 28(2): 245-251.

Ramamritham, K., Stankovic, J.A. and Shiah, P.F. (1990). Efficient scheduling

algorithms for real-time multiprocessor systems. IEEE Transaction on Parallel

and Distributed Systems, 1(2):184-194, April.

Robertazzi, T.G. (1993). Processor Equivalence for a Linear Daisy Chain of Load

Sharing Processors. IEEE Transactions on Aerospace and Electronic Systems,

29(4): 1216-1221.

Robertazzi, T. G. (2003). Ten reasons to use divisible load theory. Computer,

36(5):63–68.

Robertazzi, T.G. (2008). Divisible Load Scheduling Research Websites:

www.ee.sunysb.edu/~tom/dlt.html.

Salleh, S., Zomaya, A.Y, Olariu, S. and Sanugi, B. (2005). Numerical simulations

and case studies using Visual C++.Net. Wiley-Interscience, Hoboken, NJ,

USA.

Sohn, J. and Robertazzi, T.G. (1993). Optimal Load Sharing for a Divisible Job on a

Bus Network. Proceedings of the 1993 Conference on Information Sciences

and Systems, The Johns Hopkins University, Baltimore MD, 835-840.

Sohn, J. and Robertazzi, T.G. (1998a). An Optimal Load Sharing Strategy for

Divisible Jobs with Time-Varying Processor Speeds. Proceedings of the Eighth

International (ISCA) Conference On Parallel and Distributed Computing

Systems, September, Orlando, Florida, 27-32.

124

Sohn, J. and Robertazzi, T.G. (1998b). An Optimal Load Sharing Strategy for

Divisible Jobs with Time-Varying Processor Speeds. IEEE Transactions on

Aerospace and Electronic Systems, 34(3): 907-923.

Srinivasan, A. and Baruah, S., (2002). Deadline-based scheduling of periodic task

systems on multiprocessors. Information Processing Letters . 84, 93-98.

Stankovic, J.A. and Ramamritham, K., (1985). Evaluation of a Flexible Task

Scheduling Algorithm for Distributed Hard Real-Time Systems. IEEE

Transactions on Computers, C-34(12):1130-1143.

Yang. Y. and Casanova, H. (2003). UMR: A Multi-Round Algorithm for Scheduling

Divisible Workloads. Proceedings of the International Parallel and Distributed

Processing Symposium (IPDPS).

Yang. Y. and Casanova, H. (2005). Multi-round algorithms for scheduling divisible

workloads. IEEE Transactions on Parallel and Distributed Systems (TPDS),

16(11):1092–1102.

Xiaolin, L., Bharadwaj, V. and Ko, C.C. (2003). Distributed Image Processing on a

Network of Workstations. International Journal of Computers and

Applications, ACTA Press, 25(2): 1-10.

APPENDIX A

PAPERS PUBLISHED DURING THE AUTHOR’S

CANDIDATURE

From the material in this thesis there are, at the time of submission, papers which

have been published, presented or submitted for publication or presentation as

following:

Papers published

Suriayati Chuprat, Shaharuddin Salleh, and Sanjoy Baruah. Evaluation of a linear

programming approach towards scheduling divisible real-time loads. Proceedings of

the International Symposium on Information Technology (co-sponsored by the

IEEE), Kuala Lumpur, Malaysia. August 2008.

Suriayati Chuprat, Sanjoy Baruah. Scheduling Divisible Real-Time Loads on

Clusters with Varying Processor Start Times. Proceedings of the 14th IEEE

International Conference on Embedded and Real-Time Computing Systems and

Applications (RTCSA 2008), Kaohsiung, Taiwan, August 2008. (26% acceptance

rate)

Suriayati Chuprat, Shaharuddin Salleh, and Sanjoy Baruah. Deadline-based

Scheduling of Divisible Real-Time Loads with Setup costs and Load balancing

Considered, In Work-In-Progress Proceedings of the 28th IEEE Real-Time Systems

Symposium (RTSS 2007), Tucson, Arizona, USA, December 2007.

126

Suriayati Chuprat and Sanjoy Baruah. Deadline-based scheduling of divisible real-

time loads. In Proceedings of the ICSA International Conference on Parallel and

Distributed Computing Systems, Las Vegas, Nevada, September 2007.

Suriayati Chuprat and Shaharuddin Salleh. A Deadline-Based Algorithm For

Dynamic Task Scheduling With Precedence Constraints. In Proceedings of the

IASTED International Conference on Parallel and Distributed Computing and

Networks (PDCN2007), Innsbruck, Austria, February 2007.

Suriayati Chuprat and Shaharuddin Salleh. Scheduling Algorithms in the Soft Real-

Time Systems. Presented at the Computer Science and Mathematics Symposium

2006 (CSMS 2006), Terengganu, Malaysia, November 2006.

Book Chapters

Suriayati Chuprat and Shaharuddin Salleh. Deadline-Based Algorithms for Dynamic

Scheduling In Soft Real-Time Systems. In Book Chapters of Advances in Planning,

Scheduling and Timetabling Volume 2, Universiti Teknologi Malaysia, 2008.

Suriayati Chuprat, Shaharuddin Salleh and Sanjoy Baruah. Applying Divisible Load

Theory in Real-Time Multiprocessor Scheduling. In Book Chapters of Advances in

Planning, Scheduling and Timetabling Volume 2, Universiti Teknologi Malaysia,

2008.

127

Paper Accepted for Publication

Suriayati Chuprat, Shaharuddin Salleh and Steve Goddard. Real-time Divisible Load

Theory: A Perspective. To appear in Proceedings of the Workshop of Real-time

Systems on Multicore Platforms: Theory and Practice (To be held in conjunction

with ICPP'09 - The 2009 International Conference on Parallel Processing).

Papers Submitted

Suriayati Chuprat, Shaharuddin Salleh, and Sanjoy Baruah. A Linear Programming

Approach for Scheduling Divisible Real-time Workloads. Submitted to International

Journal of Applied Mathematics and Computer Science.

Suriayati Chuprat, Shaharuddin Salleh, and Sanjoy Baruah. Scheduling Divisible

Real-Time Workloads on Clusters with Arbitrary Processor Release Times.

Submitted to International Journal of Computers and Applications.

	INTRODUCTION
	Overview
	Research Problem and Motivation
	Research Objectives
	Scope of Research
	Research Methodology
	Thesis Organization

