1. In the (Uncapacitated) Metric Facility Location problem, we are given as input a set \(D \) of clients and a set \(F \) of facilities. Each facility \(i \in F \) has an opening cost \(f_i \). For any \(i, j \in (F \cup D) \) there is a distance \(c_{ij} \) between them. We assume the distances form a metric; that is, \(c_{ii} = 0 \), \(c_{ij} = c_{ji} \), and \(c_{ij} + c_{jk} \geq c_{ik} \) for all \(i, j, k \in (F \cup D) \). The goal is to find a subset \(S \subseteq F \) of facilities to open such that the following cost is minimized:

\[
\text{cost}(S) = \sum_{i \in S} f_i + \sum_{j \in D} c(j, S),
\]

where \(c(j, S) = \min_{i \in S} c_{ij} \) is the connection cost of client \(j \in D \) and \(S(j) := \arg \min_{i \in S} c_{ij} \) is the facility that client \(j \) is connects to.

In the class, we learned a 6-approximation using linear programming and rounding (See Anupam Gupta’s (CMU) lecture notes): We first obtained an optimal LP solution \((x^*, y^*)\); and converted \((x^*, y^*)\) into another feasible solution \((x', y')\). This was done by defining \(\Delta_j := \sum_{i \in V} c_{ij}x_{ij}^* \). Then for each client \(j \in D \) and a facility \(i \in F \) we set \(x'_{ij} = 2x_{ij}^* \) if \(c_{ij} \leq 2\Delta_j \) and otherwise \(x'_{ij} = 0 \). We then set \(y'_i = \max_j x'_{ij} \). We argued that \((x', y')\) is a feasible LP solution and it has cost at most twice that of the optimal LP solution.

Then, we defined the neighborhood \(N_j \) of a client \(j \) to be all facilities within distance \(2\Delta_j \) of \(j \). The algorithm then performed the following steps:

- Find the client \(j \) such that \(\Delta_j \) is minimized
- Open the cheapest facility \(i \) in \(N_j \)
- Let \(E_j \) be the extended neighborhood of \(j \) which in includes any client \(j' \) where \(N_j \cap N_{j'} \neq \emptyset \)
- Assign all clients in \(E_j \) to \(i \)
- Remove all clients in \(E_j \) and all facilities from \(N_j \)
- Recurse

Intuitively, one can think of the facilities in \(N_j \) as the facilities contained in a ‘ball’ of radius \(2\Delta_j \) around client \(j \). Then, the clients in \(E_j \) are clients we remove because their ‘balls’ (of radius \(2\Delta_{j'} \) for \(j' \in E_j \)) intersect \(j \)’s balls.

Now one may one wonder why we remove any client \(j' \) whose ball intersects \(j \)’s ball and, instead, didn’t just remove clients that are ‘inside’ \(j \)’s ball (that is, clients \(j' \) where \(c_{jj'} \leq 2\Delta_j \)). Consider altering the algorithm in the following way that formalizes this intuition.

- Find the client \(j \) such that \(\Delta_j \) is minimized
• Open the cheapest facility \(i \) in \(N_j \)
• Let \(C_j \) be the close neighborhood of \(j \) which includes any client \(j' \) where \(c_{jj'} \leq 2\Delta_j \)
• Assign all clients in \(C_j \) to \(i \)
• Remove all clients in \(C_j \) and all facilities from \(N_j \)
• Recurse

This algorithm does not give an \(O(1) \)-approximation. Explain why.

2. Assume that you have a fair coin that yields either a head or tail, each with probability 1/2. Let \(n > 0 \) be a parameter. For simplicity, assume that \(\log n \) and \(n \) are both integers. Repeat flipping the coin \(k \) times sequentially. What is the (asymptotically) minimum \(k \) where you observe at least one head with probability at least \(1 - \frac{1}{n} \)? Also, what is the minimum \(k \) where you observe at least \(\log n \) heads with probability at least \(1 - \frac{1}{n} \)?