64. Each application of the function \(f \) divides its argument by 2. Therefore iterating this function \(k \) times (which is what \(f^{(k)} \) does) has the effect of dividing by \(2^k \). Therefore \(f^{(k)}(n) = n/2^k \). Now \(f_1^*(n) \) is the smallest \(k \) such that \(f^{(k)}(n) \leq 1 \), that is, \(n/2^k \leq 1 \). Solving this for \(k \) easily yields \(k \geq \log n \), where logarithm is taken to the base 2. Thus \(f_1^*(n) = \lceil \log n \rceil \) (we need to take the ceiling function because \(k \) must be an integer).

SECTION 5.4 Recursive Algorithms

2. First, we use the recursive step to write \(6! = 6 \cdot 5! \). We then use the recursive step repeatedly to write \(5! = 5 \cdot 4! \), \(4! = 4 \cdot 3! \), \(3! = 3 \cdot 2! \), \(2! = 2 \cdot 1! \), and \(1! = 1 \cdot 0! \). Inserting the value of \(0! = 1 \), and working back through the steps, we see that \(1! = 1 \cdot 1 = 1 \), \(2! = 2 \cdot 1! = 2 \cdot 1 = 2 \), \(3! = 3 \cdot 2! = 3 \cdot 2 = 6 \), \(4! = 4 \cdot 3! = 4 \cdot 6 = 24 \), \(5! = 5 \cdot 4! = 5 \cdot 24 = 120 \), and \(6! = 6 \cdot 5! = 6 \cdot 120 = 720 \).

4. First, because \(n = 10 \) is even, we use the else if clause to see that

\[
mpower(2, 10, 7) = mpower(2, 5, 7)^2 \mod 7.
\]

We next use the else clause to see that

\[
mpower(2, 5, 7) = (mpower(2, 2, 7)^2 \mod 7 \cdot 2 \mod 7) \mod 7.
\]

Then we use the else if clause again to see that

\[
mpower(2, 2, 7) = mpower(2, 1, 7)^2 \mod 7.
\]

Using the else clause again, we have

\[
mpower(2, 1, 7) = (mpower(2, 0, 7)^2 \mod 7 \cdot 2 \mod 7) \mod 7.
\]

Finally, using the if clause, we see that \(mpower(2, 0, 7) = 1 \). Now we work backward: \(mpower(2, 1, 7) = (1^2 \mod 7 \cdot 2 \mod 7) \mod 7 = 2 \), \(mpower(2, 2, 7) = 2^2 \mod 7 = 4 \), \(mpower(2, 5, 7) = (4^2 \mod 7 \cdot 2 \mod 7) \mod 7 = 4 \), and finally \(mpower(2, 10, 7) = 4^2 \mod 7 = 2 \). We conclude that \(2^{10} \mod 7 = 2 \).

6. With this input, the algorithm uses the else clause to find that \(\gcd(12, 17) = \gcd(17 \mod 12, 12) = \gcd(5, 12) \). It uses this clause again to find that \(\gcd(5, 12) = \gcd(12 \mod 5, 5) = \gcd(2, 5) \), then to get \(\gcd(2, 5) = \gcd(5 \mod 2, 2) = \gcd(1, 2) \), and once more to get \(\gcd(1, 2) = \gcd(2 \mod 1, 1) = \gcd(0, 1) \). Finally, to find \(\gcd(0, 1) \) it uses the first step with \(a = 0 \) to find that \(\gcd(0, 1) = 1 \). Consequently, the algorithm finds that \(\gcd(12, 17) = 1 \).

8. The sum of the first \(n \) positive integers is the sum of the first \(n - 1 \) positive integers plus \(n \). This trivial observation leads to the recursive algorithm shown here.

\[
\text{procedure } \text{sum of first}(n : \text{positive integer})
\]
\[
\text{if } n = 1 \text{ then return } 1
\]
\[
\text{else return } \text{sum of first}(n - 1) + n
\]

10. The recursive algorithm works by comparing the last element with the maximum of all but the last. We assume that the input is given as a sequence.

\[
\text{procedure } \text{max}(a_1, a_2, \ldots, a_n : \text{integers})
\]
\[
\text{if } n = 1 \text{ then return } a_1
\]
\[
\text{else}
\]
\[
\quad m := \text{max}(a_1, a_2, \ldots, a_{n-1})
\]
\[
\quad \text{if } m > a_n \text{ then return } m
\]
\[
\quad \text{else return } a_n
\]