SECTION 2.2 Set Operations

2. a) \(A \cap B \)
 b) \(A \cap B \), which is the same as \(A - B \)
 c) \(A \cup B \)
 d) \(A \cup B \)

4. Note that \(A \subseteq B \).
 a) \(\{a, b, c, d, e, f, g, h\} = B \)
 b) \(\{a, b, c, d, e\} = A \)
 c) There are no elements in \(A \) that are not in \(B \), so the answer is \(\emptyset \).
 d) \(\{f, g, h\} \)

6. a) \(A \cup \emptyset = \{x \mid x \in A \lor x \in \emptyset\} = \{x \mid x \in A \lor F\} = \{x \mid x \in A\} = A \)
 b) \(A \cup U = \{x \mid x \in A \land x \in U\} = \{x \mid x \in A \land T\} = \{x \mid x \in A\} = A \)

8. a) \(A \cap A = \{x \mid x \in A \land x \in A\} = \{x \mid x \in A\} = A \)
 b) \(A \cap A = \{x \mid x \in A \land x \in A\} = \{x \mid x \in A\} = A \)

10. a) \(A - \emptyset = \{x \mid x \in A \land x \notin \emptyset\} = \{x \mid x \in A \land T\} = \{x \mid x \in A\} = A \)
 b) \(\emptyset - A = \{x \mid x \in \emptyset \land x \notin A\} = \{x \mid F \land x \notin A\} = \{x \mid F\} = \emptyset \)

12. We will show that these two sets are equal by showing that each is a subset of the other. Suppose \(x \in A \cup (A \cap B) \). Then \(x \in A \) or \(x \in A \cap B \) by the definition of union. In the former case, we have \(x \in A \), and in the latter case we have \(x \in A \) and \(x \in B \) by the definition of intersection; thus in any event, \(x \in A \), so we have proved that the left-hand side is a subset of the right-hand side. Conversely, let \(x \in A \). Then by the definition of union, \(x \in A \cup (A \cap B) \) as well. Thus we have shown that the right-hand side is a subset of the left-hand side.

14. Since \(A = (A - B) \cup (A \cap B) \), we conclude that \(A = \{1, 5, 7, 8\} \cup \{3, 6, 9\} = \{1, 3, 5, 6, 7, 8, 9\} \). Similarly \(B = (B - A) \cup (A \cap B) = \{2, 10\} \cup \{3, 6, 9\} = \{2, 3, 6, 9, 10\} \).

16. a) If \(x \) is in \(A \cap B \), then perforce it is in \(A \) (by definition of intersection).
 b) If \(x \) is in \(A \), then perforce it is in \(A \cup B \) (by definition of union).
 c) If \(x \) is in \(A - B \), then perforce it is in \(A \) (by definition of difference).
 d) If \(x \in A \) then \(x \notin B - A \). Therefore there can be no elements in \(A \cap (B - A) \), so \(A \cap (B - A) = \emptyset \).
 e) The left-hand side consists precisely of those things that are either elements of \(A \) or else elements of \(B \) but not \(A \), in other words, things that are elements of either \(A \) or \(B \) (or, of course, both). This is precisely the definition of the right-hand side.

18. a) Suppose that \(x \in A \cup B \). Then either \(x \in A \) or \(x \in B \). In either case, certainly \(x \in A \cup B \cup C \). This establishes the desired inclusion.
 b) Suppose that \(x \in A \cap B \cap C \). Then \(x \) is in all three of these sets. In particular, it is in both \(A \) and \(B \) and therefore in \(A \cap B \), as desired.
 c) Suppose that \(x \in (A - B) - C \). Then \(x \) is in \(A - B \) but not in \(C \). Since \(x \in A - B \), we know that \(x \in A \) (we also know that \(x \notin B \), but that won’t be used here). Since we have established that \(x \in A \) but \(x \notin C \), we have proved that \(x \in A - C \).
 d) To show that the set given on the left-hand side is empty, it suffices to assume that \(x \) is some element in that set and derive a contradiction, thereby showing that no such \(x \) exists. So suppose that \(x \in (A - C) \cap (C - B) \). Then \(x \in A - C \) and \(x \in C - B \). The first of these statements implies by definition that \(x \notin C \), while the second implies that \(x \in C \). This is impossible, so our proof by contradiction is complete.
 e) To establish the equality, we need to prove inclusion in both directions. To prove that \((B - A) \cup (C - A) \subseteq (B \cup C) - A \), suppose that \(x \in (B - A) \cup (C - A) \). Then either \(x \in (B - A) \) or \(x \in (C - A) \). Without loss of