30. a) We cannot conclude that \(A = B \). For instance, if \(A \) and \(B \) are both subsets of \(C \), then this equation will always hold, and \(A \) need not equal \(B \).

b) We cannot conclude that \(A = B \); let \(C = \emptyset \), for example.

c) By putting the two conditions together, we can now conclude that \(A = B \). By symmetry, it suffices to prove that \(A \subseteq B \). Suppose that \(x \in A \). There are two cases. If \(x \in C \), then \(x \in A \cap C = B \cap C \), which forces \(x \in B \). On the other hand, if \(x \notin C \), then because \(x \in A \cup C = B \cup C \), we must have \(x \in B \).

32. This is the set of elements in exactly one of these sets, namely \(\{2,5\} \).

34. The figure is as shown; we shade that portion of \(A \) that is not in \(B \) and that portion of \(B \) that is not in \(A \).

36. There are precisely two ways that an item can be in either \(A \) or \(B \) but not both. It can be in \(A \) but not \(B \) (which is equivalent to saying that it is in \(A \setminus B \)), or it can be in \(B \) but not \(A \) (which is equivalent to saying that it is in \(B \setminus A \)). Thus an element is in \(A \oplus B \) if and only if it is in \((A \setminus B) \cup (B \setminus A) \).

38. a) This is clear from the symmetry (between \(A \) and \(B \)) in the definition of symmetric difference.

b) We prove two things. To show that \(A \subseteq (A \oplus B) \oplus B \), suppose \(x \in A \). If \(x \in B \), then \(x \notin A \oplus B \), so \(x \) is an element of the right-hand side. On the other hand if \(x \notin B \), then \(x \in A \oplus B \), so again \(x \) is in the right-hand side. Conversely, suppose \(x \) is an element of the right-hand side. There are two cases. If \(x \notin B \), then necessarily \(x \in A \oplus B \), whence \(x \in A \). If \(x \in B \), then necessarily \(x \notin A \oplus B \), and the only way for that to happen (since \(x \in B \)) is for \(x \) to be in \(A \).