1. Write the negation of the statement in good English. Don’t write “It is not true that”

(a) Some bananas are yellow

Solution: No bananas are yellow

(b) All integers ending in the digit 7 are odd.

Solution: There exists an integer ending in the digit 7 that is even

(c) No tests are easy.

Solution: There are easy tests

(d) Roses are red and violets are blue

Solution: Roses are not red or violets are not blue

(e) Some skiers do not speak Spanish

Solution: All skiers speak Spanish
2. Suppose \(p, q \) and \(r \) are proposition variables. That is, they are true or false. Using proposition logic, write a proposition that is true when \(p \) and \(q \) are true and \(r \) is false, but false otherwise. You may use any or all of the logical operators \(\lor, \land, \neg, \rightarrow \). Show that your proposition gives the desired result by writing a truth table.

Solution:

\[(p \land q) \land \neg r\]

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(r)</th>
<th>(p \land q)</th>
<th>(\neg r)</th>
<th>((p \land q) \land \neg r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>
3. Suppose the variable x represents students and y represents courses, and

- $F(x) : x$ is a freshman
- $A(x) : x$ is a part-time student
- $T(x, y) : x$ is taking y

Write the following statements in good English without using variables in your answers.

(a) $F($Mikko$)$

Solution: Mikko is a freshman

(b) $\neg \exists y T($Joe, y)

Solution: There is no class that Joe is taking.

(c) $\exists x (A(x) \land \neg F(x))$

Solution: There is a part-time student who is not a freshman.

4. Suppose the variable x represents students and the variable y represents courses, and

- $T(x, y) : x$ is taking y
- $P(x, y) : x$ passed y

Write the statement in good English. Do not use variables in your answers.

(a) $\neg P($John, CSE 101$)$

Solution: John did not pass CSE 101

(b) $\exists y \forall x T(x, y)$

Solution: There is a course all students are taking.
(c) $\forall x \exists y T(x, y)$

Solution: Every student is taking some course

5. Is the following a valid argument? If n is a real number such that $n > 1$, then $n^2 > 1$. Suppose that $n^2 > 1$. Then $n > 1$. Explain your answer.

 Solution: Not valid, fallacy of affirming the conclusion.

6. Given any 40 people, prove that at least four of them were born in the same month of the year.

 Solution: Assume not for sake of contradiction. Then there are most three people born in each month. Then there are at most $3 \cdot (12) = 36$ people, a contradiction.
7. Prove that the following is true for all positive integers \(n \): \(n \) is even if and only if \(3n^2 + 8 \) is even.

Solution: We need to prove both directions since it is an if and only if.

Say \(n \) is even. Then \(n = 2k \) for some fixed integer \(k \). Hence,

\[
3((2k)^2) + 8 = 12k^2 + 8 = 2(6k^2 + 4)
\]

Thus, \(n^2 \) must be even when \(n \) is even. It remains to show that if \(3n^2 + 8 \) is even then \(n \) is even. To do this, we use the contrapositive. We will show that if \(n \) is odd then \(3n^2 + 8 \) is odd. By assumption, \(n \) is odd so we can write \(n = 2k + 1 \) for some fixed integer \(k \). Now we have that,

\[
3((2k + 1)^2) + 8 = 12k^2 + 12k + 11 = 2(6k^2 + 6k + 5) + 1
\]

Thus, \(n^2 \) is odd, proving the contrapositive.
8. Prove that \((q \land (p \rightarrow \lnot q)) \rightarrow \lnot p\) is a tautology using propositional equivalence. Do not use a truth table. (Hint: Replace the first ‘implies’ before the second)

Solution:

\[
(q \land (p \rightarrow \lnot q)) \rightarrow \lnot p \\
\Rightarrow (q \land (\lnot p \lor \lnot q)) \rightarrow \lnot p \\
\Rightarrow ((q \land \lnot p) \lor (q \land \lnot q)) \rightarrow \lnot p \\
\Rightarrow (q \land \lnot p) \rightarrow \lnot p \\
\Rightarrow \lnot (q \land \lnot p) \land \lnot p \\
\Rightarrow (\lnot q \lor \lnot \lnot p) \land \lnot p \\
\Rightarrow (\lnot q \lor p) \land \lnot p \\
\Rightarrow \lnot q \lor (p \land \lnot p) \\
\Rightarrow \lnot q \lor T \\
\Rightarrow T
\]
Scratch Paper