1. Devise a recursive algorithm to find a^{2^n}, where a is a real number and n is a positive integer. [Hint: Use the equality $a^{2^{n+1}} = (a^{2^n})^2$.]

2. Give a recursive algorithm for finding the sum of the first n positive integers.

3. Let x and y be real numbers. Consider the program

 \[
 \text{if } x < y \\
 \quad \text{min} = x \\
 \text{else} \\
 \quad \text{min} = y
 \]

 Prove that $((x \leq y) \land \text{min} = x) \lor ((x > y) \land \text{min} = y)$ is true after this code is executed. Be careful to consider the case where $x = y$.

4. Give an example of a function from the set of integers to the set of integers that is

 (a) one-to-one but not onto.
 (b) onto but not one-to-one.
 (c) both onto and one-to-one (but different from the identity function).
 (d) neither one-to-one nor onto.

5. Give a recursive algorithm for finding a mode of a list of integers. (A mode is an element in the list that occurs at least as often as every other element.)