One of the problems below will be chosen at random in class for a quiz.

1. Use strong induction to show that every positive integer \(n \) can be written as a sum of distinct powers of two, that is, as a sum of a subset of the integers \(2^0 = 1, 2^1 = 2, 2^2 = 4 \), and so on. Note each power of two can only be used once. [Hint: For the inductive step, separately consider the case where \(k + 1 \) is even and where it is odd. When \(k + 1 \) is even, note that \((k + 1)/2 \) is an integer.]

2. Suppose you begin with a pile of \(n \) stones and split this pile into \(n \) piles of one stone each by successively splitting a pile of stones into two smaller piles. Each time you split a pile you multiply the number of stones in each of the two smaller piles you form, so that if these piles have \(r \) and \(s \) stones in them, respectively, you compute \(rs \). Show that no matter how you split the piles, the sum of the products computed at each step equals \(n(n - 1)/2 \).

3. Find the least integer \(n \) such that \(f(x) \) is \(O(x^n) \) for each of the following functions.

 (a) \(f(x) = 2x^2 + x^3 \log x \)

 (b) \(f(x) = 3x^5 + (\log x)^4 \)

 (c) \(f(x) = (x^4 + x^2 + 1)/(x^4 + 1) \)

 (d) \(f(x) = (x^3 + 5 \log x)/(x^4 + 1) \)

4. Find the flaw with the following “proof” that \(a^n = 1 \) for all nonnegative integers \(n \), whenever \(a \) is a nonzero real number.

 Basis Step: \(a^0 = 1 \) is true by definition of \(a^0 \).

 Inductive Step: Assume that \(a^j = 1 \) for all nonnegative integers \(j \) with \(j \leq k \). Then note that \(a^{k+1} = \frac{a^k \cdot a^k}{a^k} = \frac{1 \cdot 1}{1} = 1 \)

5. Prove that 6 divides \(n^3 - n \) whenever \(n \) is a nonnegative integer.

6. Prove that if \(A_1, A_2, \ldots, A_n \) and \(B_1, B_2, \ldots, B_n \) are sets such that \(A_j \subseteq B_j \) for all \(j \in [n] \) then \(\bigcup_{j=1}^{n} A_j \subseteq \bigcup_{j=1}^{n} B_j \).