Residential Broadband (RBB)

Raj Jain

Professor of Computer and Information Science

Raj Jain is now at Washington University in Saint Louis Jain@cse.wustl.edu

http://www.cse.wustl.edu/~jain/

The Ohio State University

Service Aspects and Applications (SAA)

- q Voice and Telephony over ATM (VTOA)
- q Residential broadband services (RBB)
- q Audiovisual multimedia services (AMS) Phase 1: Video on demand
- q AMS Phase 2: Video conferencing
- q ATM Name Service (ANS)
- q Native ATM Services (API)

- q Technologies for high-speed access to home
- q ATM over these technologies
- q IEEE 802.14 standard

The Ohio State University

Raj Jain

3

Residential Broadband (RBB)

- q Also, Residential and Small Business Broadband (RSB) in the marketing arm of ATM Forum
- q High-speed access to homes
- q RJ-11 like universal interface to devices
- q Existing cable TV has the media but no switching
- q Existing phone service has switching but not enough bandwidth

The Ohio State University Raj Jain

4

Potential Applications

- video on demand (VOD)
- q Near video on demand (NVOD) staggered starts
- q Distance learning
- q Home shopping
- q Telecommuting
- q Teleconferencing
- q Meter reading
- q Security
- q Telemedicine

ADSL

- q Asymmetric Digital Subscriber Line
- q Asymmetric ⇒ upstream << Downstream
- q Modem technology
- q 6 Mbps downstream, 640 kbps upstream
- q Using existing twisted pair lines
- q No interference with phone service (0-3 kHz)
 - ⇒ Your phone isn't busy while netsurfing
- q Up to 7500 m
- q Being standardized by ADSL forum
- q Quickest alternative for Telcos

Very High Speed DSL (VDSL)

- q Up to 50 Mbps downstream, 5 Mbps upstream
- **q** Up to 1500 m
- q Larger bandwidth for shorter distances and vice versa
- q 51.84 Mbps at 300 m, 25.92 at 1000 m, 12.96 at 1500 m
- q Reuse existing telephone twisted pair wiring
- q Point-to-point topology \Rightarrow Bandwidth not shared
- q Co-exist with POTS or ISDN on the same pair
- q Twisted pair \Rightarrow EMI \Rightarrow withstand legal 400W radio transmissions at 10 m

Hybrid Fiber Coax (HFC)

- q Reuse existing cable TV coax
- q Replace trunks to neighborhoods by fibers
- q 500 to 1200 homes per HFC link
- q 45 Mbps downstream, 1.5 Mbps upstream
- q MAC protocol required to share upstream bandwidth
- g Several homes share the cable TV
- q Sharing \Rightarrow Security issues
- q IEEE 802.14 is standardizing MAC and PHY

HFC Spectrum

Upstream Upstream Analog Broadcast
Video Telephony

Video Digital Video Telephony

5-15 22-42 54-552 552-672 672-700

- q Use 0-50 MHz for upstream, 50-450 MHz for analog broadcasts, 450-750 MHz for downstream
- q Can use phone, TV, and Internet simultaneously
- q Low upstream band \Rightarrow more noise
- q Broadband ⇒ frequency multiplexing ⇒ Each home tunes
 to its channel
- Quadrature amplitude modulation (QAM-64) can give 27
 Mbps over 6 MHz channel

Fiber to the Curb (FTTC)

Headend Digital Terminal

or TP

- q Also known as switched digital video (SDV)
- q Coax and twisted pair for the last 100-300 m
- q Coax is used for analog video, TP is used for POTS
- q Baseband \Rightarrow No frequency multiplexing
- q Passive optical network ⇒ signal is optically broadcast to several curbs ⇒ Time division multiplexing
- q Up to 50 Mbps downstream, Up to 20 Mbps upstream
- q Co-exist with POTS or ISDN on the same cable pair
- q Twisted pair \Rightarrow EMI \Rightarrow withstand legal 400W radio transmissions at 10 m

The Ohio State University

FTTC MAC

- q Downstream uses periodic frames
- q Upstream should consist of fixed size slots containing one ATM cell
- one upstream slot per n downstream frames
- g Some slots are reserved, others are for contention
- q Contention slots are used by devices undergoing activation

Cable Modems

- q Modulate RF frequencies into cable
- q Signal received at the headend and converted to optical
- q Cost \$395 to \$995
- q Internet access at 500 kbps to 4 Mbps
- q If cable is still one-way, upstream path is through POTS
- q \$30 to \$40 per month flat service charge
- q Successful trials in Canada using 500 kbps modems
- q After the trial 75% users decided keep the service and pay
- q TCI formed @Home http://www.home.net
- g Servers at headend to avoid Internet bottleneck
- q Plans to create high-speed cable backbone across the US

Fiber to the Home (FTTH)

- q Fully optical \Rightarrow No EMI
- q Initially passive optical network
 - ⇒ Time division multiplexing
- q Upstream shared using a MAC
- q 155 Mbps bi-directional
- q Need new fiber installation

Passive Optical Networks (PONs)

Headend Digital Terminal NT

- q Optical part of HFC, FTTC, FTTH
- q Up to 10 km
- q 150 Mbps or more downstream
- q 50 Mbps or more upstream
- q Downstream signal is broadcast to all NTs
- **q** Downstream traffic has a destination address
- q Upstream transmission is controlled by optical line terminal (OLT)
- q Upstream bandwidth shared using a MAC
- q Timing reference transmitted downstream

The Ohio State University

Comparison of RANs

Technology	Typical	Typical	Maximum	Homes Per
	Downstream	Upstream	Distance	Optical
	Rate	Rate		Unit
HFC	45 Mbps	1.5 Mbps	N/A	500
	Shared	Shared		
FTTC	25-50 Mbps	25-50 Mbps	100 m	10-50
FTTH	155 Mbps	155 Mbps	N/A	10-200
ADSL	6 Mbps	640 kbps	4000 m	1,000
VDSL	13-50 Mbps	1.6-5 Mbps	2,000 m	100

RBB Reference Configuration

RBB Charter

- q To define:
 - q Home UNI (HUNI)
 - q UNI_x (where x = HFC, FTTC, FTTH, ADSL, ...)
- q Support end-to-end ATM
- q Point-to-point and point-to-multipoint VCs
- q All TM4.0 services: CBR, VBR, ABR, UBR

IEEE 802.14

- q CATV MAC and PHY Protocol working group
- g Started November 1994
- q Defining PHY and MAC for 2-way HFC
- q 17 MAC protocol proposals have been submitted
- **q** Downstream PHY: 1-to-n broadcast
- q Upstream PHY: n-to-1
- q Up to 50 miles (80 km) \Rightarrow 400 microsecond one-way

The Ohio State University

IEEE 802.14 MAC Requirements

- q Support both connectionless and connection-oriented services
- q Support QoS
- q Support CBR, VBR, ABR
- q Support Unicast, multicast, broadcast services

The Ohio State University

Raj Jain

20

IEEE 802.14 PHY

- q 500 homes as a reference design point
- Support sub-split (5-40 MHz upstream), mid-split (5-120 MHz upstream), and high-split (800-1000 MHz upstream)
- q Frequency reuse in upstream
- Q Decided to use Quadrature Amplitude Modulation (QAM)64 for downstream.
- q QAM-64 gives 6 bits/Hz \Rightarrow 30 Mbps on 6 MHz \Rightarrow 27 Mbps after FEC
- q Quadrature Phase Shift Keying (QPSK) may be selected for upstream to sustain high noise \Rightarrow 1.5 to 3 Mbps on 2 MHz
- q Several upstream channels per downstream channel

IEEE 802.14 Protocol Stack

802.2

802.1

AAL

ATM

802.14Access

PHY

All ATM

802.2

802.1

ATM

802.14Access

PHY

ATM Friendly

The Ohio State University

IEEE 802.14 Issues

- **q** ATM based?
- **q** Which forward error correction algorithm?
- q Size of slots?
- q Upstream sharing requires ranging of homes. How precise?
- q Security and encryption
- q Error handling by MAC
- q Station addressing

Home ATM Network (HAN) NT Home **ATM** Network Network A Raj Jain The Ohio State University

Home ATM Network

- q Allow intra-home device communications
- q Access network not required for intra-home communications
- q 20-50 Mbps, symmetric, full-duplex
- q Reach of 50 m
- q At least 128 addressable devices
- q Position independent operation
- q Allow firewall between HAN and access network

Summary

- q High Speed Access to Home: HFC, FTTC, FTTH, ADSL, VDSL
- q 6 to 155 Mbps downstream, 1.5 Mbps upstream
- q Both cable and telecommunication companies are trying to get there with minimal modification to their infrastructure

Acronyms: RBB

q ADSL Asymmetric Digital Subscriber Line

q ANI Access Network Interface

q CATV Cable TV

q EMI Electromagnetic Interference

q FTTC Fiber to the curb

g FTTH Fiber to the home

q HAN Home ATM Network

q HFC Hybrid Fiber Coax

q NT Network termination

q ONU Optical network unit

q STB Set top box

q TII Technology independent interface

q VDSL Very high speed digital subscriber line

q VOD Video on demand

The Ohio State University

Raj Jain

28

References: RBB

- q L. Wojnarowski, "Baseline text for the Residential Broadband Working Group," ATM Forum/95-1416R3, June 1996.
- q L. Wojnarowski, "Requirements/Criteria for Residential Broadband," ATM Forum/95-1397R5, June 1996.
- q T. Kwok, "A vision for Residential Broadband Services: ATM to the Home," IEEE Network, September/October 1995, pp. 14-28.
- q M. Laubach, "To Foster Residential Area Broadband Internet Technology," ConneXion, December 1995, pp. 18-30.

- q D. Zgodzinski, "The Cable Chase," Internet World, June 1996, pp. 63-66.
- q "Cable Modems Frequently Asked Questions," http://www.cox.com/modemfaq.html

References: IEEE 802.14

- q IEEE 802.14 working group, http://www.com21.com/pages/ieee-802.14.html
- q IEEE 802.14 WG, "Cable-TV Functional Requirements and Evaluation Criteria," IEEE 802.14/94-002R2, February 1995.