khkhkkhkhkhhkhkhhhkhhhkhhhkhhhhhhhhdhhhhhhhhhhhhhhhkhhhkhhhhhhhhhhhdhhhkhdhkhdhrkkdrkkx*x*x

ATM For um Docurment Nunber: ATM Foruni 95-0178R1

LR R R R R R R R R I R S I R R I I R I O

Title: A Sample Switch Al gorithm

EE R I I I I I I I I I R I I S I R I I S R R I R S R I R R I O I R

Abstract:

Describes the switch al gorithm devel oped at OSU. The algorithmis fully
conpatible with the | atest source and switch requirenments and has been
t horoughly tested. The text to be included in the TM docunent appendi x
is presented.

EIE IR IR R I I I I R I I I I I I R I I I I I I R I I I I R I I I I I I I I I I I I I I I I I b I I I I I
Sour ce:

Raj Jain, Shiv Kal yanaraman, Ram Vi swanat han, and Rohit CGoyal
The Chio State University

Faj Jainis now at Washington Umdversity it Saint Lowds, jain@cse woastleds hitp owww cse wustledu'~jainf

The presentation of this contribution at the ATM Forumis sponsored by
NI ST.

EE R I I I I I I I I I R I I S I R I I S R R I R S R I R R I O I R

Dat e: February 6-10, 1995

khkhkkhkhkhhkhkhhhkhhhkhhhkhhhhhhhhdhhhhhhhhhhhhhhhkhhhkhhhhhhhhhhhdhhhkhdhkhdhrkkdrkkx*x*x

Di stribution: ATM Forum Techni cal Wrking G oup Menbers
(Traf fi c Managenent)

EE R I I I R I I I R R I I R S I S R I R S R I R I R I R O

Notice: This contribution has been prepared to assist the ATM
Forum It is offered to the Forumas a basis for discussion and
is not a binding proposal on the part of any of the contributing
organi zations. The statenents are subject to change in form and
content after further study. Specifically, the contributors
reserve the right to add to, amend or nodify the statenents

cont ai ned herein.

khkhkkhkhkhhkhkhhhkhhhkhhhkhhhhhhhhdhhhhhhhhhhhhhhhkhhhkhhhhhhhhhhhdhhhkhdhkhdhrkkdrkkx*x*x

It is proposed that the followi ng text be added as an appendix to
the TM docunent .

Appendi x: A Sanple Switch Al gorithm

The traffic managenent requirenents for switches allow
considerable flexibility to vendors in deciding what feedback to
give to the sources. This appendi x describes a sanmple switch
feedback algorithmthat is conpatible with the current source,
switch, and destination requirements. It is designed for
explicit rate switches. It has been tested thoroughly in
simulations. It is included here only as an exanple.

Raj Jain
Horizontal extra long

Desi gn Goals: The switch algorithmis nanmed Explicit Rate
I ndi cation for Congestion Avoi dance (ERI CA) algorithm The design
goals of this algorithmwere to provide the follow ng features:

1. Congestion Avoi dance: The algorithmtries to keep cell queue
I engths small while keeping the link utilization high. Snal
gueue lengths results in snmall cell transfer delay (CTD) and
smal |l cell transfer delay variation (CTDV).

2. Max-Mn Optinality: The ERICA al gorithm converges to the nmax-
mn optimal. Variations of this algorithmfor other optimality
criteria can be easily devel oped.

3. Fast Response: Small queue lengths result in fast feedback to
the source. Under overload, the rates come down fast. During
underl oad, the rates go up fast, thereby, optimzing the

transi ent perfornance.

4. Smal|l Nunber of Paraneters: Switches inplenenting ERI CA have
only two paraneters: target utilization and | oad averagi ng
interval. The utilization paraneter should be set close to 95%
A higher value would result in higher queue |ength under
overload. The load averaging interval is specified in nunber of
cells. For 155 Mops links, the default value is 30 cells.

5. Insensitivity to Parameters: |If the user sets the paraneter
incorrectly, the perfornmance degrades gracefully. For exanple, if
the target link utilization is set to 80% the link stil

operates but the maxi mumutilization under steady state is 80%
O course, during overloads the link may be fully utilized.

6. Easy to set paraneters: Setting the switch paraneters is easy.
Most network system managers are familiar with the termlink
utilization and can set the paraneter correctly.

7. High-Start Feasible: One side benefit of fast response is that
the rates (and hence the queue | engths) decrease rapidly during
overload. The sources can start at any rate including the peak
cell rate. The queues may build up but are reduced quickly al ong
with the allowed cell rates. Although, high-start nay not be
recommended under nany circunstances, the scheme works even if
the VCs start at PCR Starting at PCR may be desirable in the
LAN envi ronment .

OVERVI EW OF THE SCHEME

The schenme consists of switches nonitoring the | oad on each
outgoi ng link and determ ning the overload factor and the number
of active VCs. The switch neasures the tine until the Nth cel
arrives. If this time is T seconds, the input rate is NT cells
per second. If the rated capacity of the link is C cells per
second and the desired target utilization is U, the overload
factor is computed as foll ows:

Input Rate = NN T cps
Target Cell Rate = U*C cps
Overl oad Factor = Input Rate/ Target Cell Rate = N (T*U*Q)

During the next neasurenent interval of N cells, the switch may
simply ask all VCs to change (increase or decrease) their |oad by
the overload factor. Based on |oading considerations only, the
explicit rate for a VCwith current cell rate of CCRis given by:

ER based on | oad = ER1L = CCR/ Overl oad Fact or

Fairness is achieved by ensuring that every VC gets at |east the
Fair_Share, which is conputed as foll ows:

Fair Share = Target Cell Rate/Nunber of Active VCs

The nunber of active VCs is the number of distinct VCs that were
seen during the |ast neasurenent interval (of N cells).

Conbining the fair share with the explicit rate based on | oad we
get:

ER based on | oad and fairness = ER2 = Max{Fair Share, ER based on | oad}

If this conmputed value is |lower than the explicit rate field in
the RMcell, the switch replaces the explicit rate field in the
cell with the conputed val ue.

ERin Cell = Mn{ERin Cell, ER based on |oad and fairness}
There are a few fine details that should be pointed out:

1. The input rate, nunber of active VCs, and overload is neasured
in the forward direction while the feedback is sent in RMcells
going in the reverse direction. The CCR value in the RMcells
going in the forward direction is nore current and has a direct
relationship with the overload. The CCR value in RMcells
returning in the reverse direction may be out of date. It is
therefore inportant to use the latest value of CCR in conputing
ER1. The switches note this value in the VC table for al
forward-going RMcells and use it when conputing explicit rate

i ndication for reverse-going RMcells.

2. The switches nmeasure | oad over one neasurenent interval of N
cells and use it over the next neasurenent interval of N cells.

I f several reverse-going RMcells froma VC are seen during one
interval, they should all carry the same explicit rate indication
to the VC. The switches, therefore, store ER2 in the VC table and
al so keep an indication that a reverse-RM cell has been seen for
the VC in that measurenent interval. Not following this rule
results in oscillatory behaviour due to confusing feedback given
to the source.

3. In conputing the explicit rate based on | oad and fairness,

ERI CA al gorithm all ows the *maxi nunt of the Fair_Share and the
explicit rate based on I oad alone. This prevents VCs from bei ng
unnecessarily danped and allows fast response tinme. Not follow ng
this rule may result in low rate VCs not being able to come up

4. The switch generated BECN option can be optionally used during
the first round-trip on new VCs. This is particularly helpful in

WAN configurati ons where the round-trip feedback delay may be

| arge. Although the standard allows BECNs after the first round-

trip, there is little advantage in using it.

PSEUDO CODE

1. Paraneters: For each output port (or link), the system nmanager
sets the the follow ng paraneters:

int Measurenent _Interval _In_Cells; /* Measurenent Interval in Cells */
real Target_Utilization; /* Target Utilization between O and 1 */
real Link Cell _Rate; /* Link capacity in cells per second */

The default suggested val ues of the first two paranmeters are 30

cells and 0.95, respectively. For a 155 Moips link, the link cell
rate is 155, 000, 000/ (8*53) or 365,566 cells per second.

2. Data Structure: The switch maintains the follow ng vari abl es:
A. For each output port (or link):

int In_Count; /* Nunber of cells received for that link */
real Target Cell Rate; /* Target cell rate in cps */

int Nunmber O VGCs; /* Total nunmber of VCs on this link */

int Number_OF _Active_VCs; /* VCs seen in the last interval */
real Measurement Interval _Start Tine;

B. For each VC

bool ean Cells_Seen; /* One or nore cells were seen
in this measurenent interval*/
real Last_Seen CCR /* CCR last seen in the forward direction */
bool ean Reverse RM Cells Seen In _This Interval;
real Last_ER;, /* Last explicit rate feedback given for this VC */

3. Initialization:
/* For all ports, initialize the nunber of cells received */
for(i=0; i<Number O Ports; i++){
Qut put_Port[i].In_Count = 0;
/* Length of switch neasurenment interval in cells */
Initialize Qutput_Port[i].Measurenent_Interval _In_Cells;

/* Eg: 30 cells */
/* But may depend on |ink bandw dth */

Initialize Qutput_Port[i].Nunmber O Active_VCs;
/* Initialize the nunber of active VCs at each port */

Qutput _Port[i].Target _Cell Rate
= Target _Utilization * Link _Cell_ Rate;

Qutput_Port[i].Fair_Share = (Qutput_Port[i].Target_ Cel | _Rate/
Qut put_Port[i].Nunber O Active VGCs);

/* Reset Cells_Seen */
For(j=0; j < Number_O _VGCs; | ++)

Qutput _Port[i].Reverse_ RM Cells_Seen_In_This Interval[j] = O;
/* Cells_Seen is used to count the nunber of active VCs */
For(j=0; j < Number_ O _VCs; | ++)
Qut put_Port[i].Cells_Seen[j] = 0;

/* measuring a switch interval */
Qut put_Port[i].Measurenent _Interval _Start_Tinme = now,

i{f(CeII_Recei ved(i,j))

/* This neans that cell for vc j has been received at port i */
Qut put_Port[i]. I n_Count++;

/* For counting the nunber of active VCs */
Qutput _Port[i].Cells_Seen[j] = 1,

If (Qutput_Port[i].ln_Count >= Qutput_ Port[i].
Measurenent _Interval _In_Cells)
End O Interval Calcul ations(i);

—————————————————— RM cell processing ----------------------------*/f
if(RMcell is received){
if(cell->DIR == forward) { [* forward path */

/* i th output port */
/* Note the latest rate seen on the forward path */
Qut put_Port[i].Last_Seen CCR[cell->VC Number] = cell->CCR,

/* Include the BECN option here if it is being inplemented */
}

else if(cell->DIR == backward) { /* reverse path */

/* Port corresponding to the forward |ink */
i = Forward_Link Port;

/* New feedback only if an RM cell of this VC has not yet been
seen in this interval */

if(Qutput_Port[i].
Reverse RM Cel |l _Seen In_This_Interval[cell->VC Nunber] != 1)
{

/* core algorithm?*/

ER1 = (Qutput_Port[i].Last_Seen_CCR cel | ->VC Nunber]/
Qut put_Port[i].Overl oad);

ER2 = Max(ER1, Qutput Port[i].Fair_Share);

New ER = M n(CQutput_Port[i].Target_Cell _Rate, ER2);

i f(New ER < cell->ER)
cell ->ER = New_ ER;

/* Switches conmpute only one feedback per neasurenment interval */
/* Sanme feedback is given if other RMcells follow */

Qutput_Port[i].
Reverse RM Cells_Seen_In_This_interval [cell->VC Nunber] = 1;

/* Switches dont inhibit other switches' feedback if
They have shorter intervals */

/* They sinply advertise one rate per VC throughout
The interval */

Qut put _Port[i].Last_ER cell->VC Nunmber] = New ER;

} /* end:First reverse RMcell in this interval */

el se{
/* More than one reverse RMcell seen in this interval */
/* Gve out the same ER for all RMs of this VC */
New ER = Qutput_Port[i].Last _ER cell->VC Nunber] ;
i f(New ER < cell->ER)
cell ->ER = New ER;
} /* end : Second RMcell seen in the sane interval */

} /* end : reverse direction */
New VC = 0;
} /* end : RM cell */

A L end of interval processing ------------------ */

End O Interval Calculations(int i)
{

Interval _Length = now -
Qut put _Port[i].Measurenent _Interval _Start_Time;
Qut put_Port[i].Measurenent _Interval _Start_Tine = now,

/* overload conputation */
Qut put_Port[i].Overload = (Qutput_Port[i].In_Count /
(Qutput_Port[i].Target Cell Rate*Interval Length));

Qut put_Port[i].Nunber O Active VCs = Get_Nunber O Active VCs(i);

Qutput_Port[i].Fair_Share = (Qutput_Port[i].Target_Cell _Rate/
Qut put_Port[i].Nunber O Active VGCs);

Qut put_Port[i].In_Count = 0;

/* Init RMcells */
For(j=0; j < CQutput_Port[i].Nunber O VCs; j++)
Qutput_Port[i].Reverse RMCells _Seen In This Interval Cell[]j]=0;

}
Get _Number OF _Active VCs(int i)
{

int count = O;

int j;

for (j =0; j< Qutput_Port[i].Nunber_ O VCs; j++){
if(Qutput Port[i].Cells_Seen[j] ==1)

count = count + 1;
Qutput_Port[i].Cells_Seen[j] = 0;

