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OverviewOverview

q General Fairness: Definition

q Relationship to Pricing/Charging Policies

q Achieving General Fairness

q Example modification to a Switch Algorithm

q Simulation: Configuration and Parameters

q Simulation: Results

q Conclusion
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 Notation Notation
q Define following [Notation from TM4.0]:

m A = Total available bandwidth

m U = Sum of bandwidth of underloaded connections

m B = A - U, excess bandwidth

m Na = Number of active connections

m Nu = Number of active connections bottlenecked
elsewhere

m n    = Na - Nu,
number of active connections bottlenecked on this
link
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Notation (Cont)Notation (Cont)
m M   = Sum of MCRs of active

connections

m B(i)  = Generalized Fair allocation for connection i

m MCR(i) = MCR of connection i

m w(i) = pre-assigned weight associated with i
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TM4.0 DefinitionsTM4.0 Definitions
1. B(i)=B/n

2. B(i)=MCR(i)+(B-M)/n

3. B(i) = Max{MCR(i), Max-Min Share}

4. B(i) = B*(MCR(i)/M)

5. B(i) = w(i)*B/Sum(w(j))

q Definition 5 does not always guarantee MCR

q Definition 3  may result in total of fairshare being
more than the capacity
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 General Definition General Definition
q FairShare

B(i)  = MCR(i) + w(i) (B - M)
                         Σj=1,n w(j)

q This definition is a superset of 1, 2, 4 in TM4.0

q Always ensures MCR
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Mapping to TM 4.0Mapping to TM 4.0
q w(i) = w, MCR(i)=0: B(i)  = B/n

This is Definition 1 (Max-min Fair).

q  w(i) = w: B(i) = MCR(i) + (B - M)/n
This is Definition 2 (MCR plus equal share)

q w(i) = MCR(i):
B(i)  = MCR(i) + (B-M) MCR(i) / M
        = B* (MCR(i)/M)
This is Definition 4 (Proportional to MCR)
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Pricing FunctionPricing Function
q T  = Small time interval, W = Number of bits

R  = Average rate W/T

q Cost C  = f (W,R). If C is restricted to continuous
differentiable functions:  C = Σij aij WiRj

q For all values of W and R:

m C > 0 ∂C/∂W > 0 ∂C/∂R > 0

m ∂(C/W)/∂W < 0 [Economy of Scale]
m ∂(C/R)/∂R < 0   [Economy of Scale]

q The only function that satisfies all 5 conditions is:

C = a00 + a10W + a01R + a11 WR
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A Simple Pricing FnA Simple Pricing Fn
q f() is non-decreasing w.r.t to W

f() is non-increasing w.r.t to T ⇒ non-decreasing w R

q A simple function satisfying these requirements is:
C = c + w W + r R
Here, c  = Fixed cost per connection

w = Cost per bit (How much)
r   = Cost per Mbps (How fast)
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Pricing With MCRPricing With MCR
q Let L = MCR

q Cost C  = c + w W + r (R-L) + m L
Here, m = dollars per Mbps of MCR

r = dollars per Mbps of extra bandwidth.

q Consider two users with MCRs L1, L2. Rates R1, R2

and bits transmitted W1, W2 (assume W1 > W2)
C1 = c + w W1 + r (R1-L1) + m L1

C2 = c + w W2 + r (R2-L2)  + m L2

q Economy of Scale: C/W is a decreasing function of W
                     C1/W1  < C2/W2
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Pricing (Pricing (contcont.).)
q c/W1 + w + r (R1 - L1)/W1 + mL1/W1  <

c /W2+w+r(R2-L2)/W2+mL2/W2

q Using Ri = Wi/T

q c/(R1T) + w + r(R1-L1)/(R1T)+ mL1/(R1T)  <
c /(R2T)+w+ r(R2-L2)/(R2T)+mL2/(R2T)
c/R1 -rL1/R1+mL1/R1 < c/R2 -r L2/R2+mL2/R2

    (c+(m-r)L1)/(c+(m-r)L2) < R1/R2

    (R1-L1)/(R2-L2) > (a+L1)/(a+L2)

q Here, a = c/(m-r)
⇒ Weight should be a linear function of MCR.
This is the policy used in this contribution.
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Achieving Achieving GenGen. Fairness. Fairness
q B(i)  = MCR(i) + w(i) (B - M)/Σj=1,n w(j)

q Switch allocates MCR and a weighted
share of the excess bandwidth

q ACR(i)  = MCR(i) + ExcessFairshare(i)

q ExcessFairshare(i) = w(i) (B-M)/Σj=1,n w(j)

q ACR(i) - MCR(i) should converge to
ExcessFairshare(i)
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Activity LevelActivity Level
q The allocation should also consider

activity level of a source.
There is no point in giving extra bandwidth to sources
not using it.

q Activity level AL(i)
= min{1, (SrcRate(i)-MCR(i))/ExcessFairshare(i)}

q  ExcessFairshare(i) = w(i)AL(i)(B-M)/Σj=1,nw(j) AL(j)

q Recursive definition. Converges in just a few
iterations.



Raj JainThe Ohio State University

14

End of Averaging Interval:

q Total ABR Capacity= Link Capacity - VBR Capacity

q Target ABR Capacity = F(Q) x Total ABR Capacity
F(Q) is a function of queue length.
1-F(Q) of the capacity is used to drain the queues

q Overload z =  ABR Input Rate/(Target ABR Capacity)

q Effective # of active sources = Σj=1,n AL(j)

q Fairshare
= Target ABR Capacity /Eff. # of active sources

ERICA+ERICA+



Raj JainThe Ohio State University

15

ERICA+ (ERICA+ (contcont.).)
When a BRM is received:

q FairShare(i) = AL(i)Fairshare*

q For Efficiency: VCShare(i)  = (SrcRate(i))/z*

q ER(i)  =  max (FairShare(i), VCShare(i))*

q ERin_RM_Cell

     =  min{ERin_RM_Cell, ER(i), TargetABRCap}

q Near steady state the VCShare(i) term converges to
Fairshare(i), achieving max-min fairness and
efficiency.

*Done only on first BRM



Raj JainThe Ohio State University

16

End of Averaging Interval:

q Total ABR Cap= Link Cap - VBR Cap
                 - Σj=1,n min{SrcRate(i), MCR(i)}

q Target ABR Cap = F(Q) x Total ABR Cap

q Input Rate
= ABR Input Rate - Σj=1,n min{SrcRate(i), MCR(i)}

q Overload z =  Input Rate/(Target ABR Capacity)

q Effective weight of active sources = Σj=1,n w(j)AL(j)

q ExcessFairshare
= Target ABR Cap /Eff. weight of active sources

Modified ERICA+Modified ERICA+



Raj JainThe Ohio State University

17

Mod. ERICA+ (Mod. ERICA+ (contcont.).)
When a BRM is received:

q ExcessFairShare(i) = w(i)AL(i)ExcessFairshare

q For Efficiency: VCShare(i)  = (SrcRate(i) - MCR(i))/z

q ER(i)
=  MCR(i) + max {ExcessFairshare(i), VCShare(i)}

q ERin_RM_Cell

     =  min{ERin_RM_Cell, ER(i), TargetABRCap}

q Near steady state the VCShare(i) term converges to
ExcessFairshare(i), achieving generalized fairness and
efficiency.
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Destination 1Source 1

Source 2

Source N

Destination 2

Destination N

Sw1 Sw2

Bottleneck
   Link

1000 Km 1000 Km1000 Km

Configuration 1Configuration 1
 Simple configuration

q N infinite ABR source,
N ABR destinations (N = 3 in simulations)

q One way traffic. From sources to destination
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Sw3

dS1

Sw2Sw1
LINK1

LINK2 LINK3

Configuration 2Configuration 2
Source Bottleneck configuration

q Source S1 is bottlenecked at 10 Mbps
(i.e., it always sends data at a rate of upto 10 Mbps,
irrespective of its ACR)

dS2

dS3

 S1

 S3

 S2
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D(1) E(2) F(1) H(2) A(3) C(3) G(7)

SW1 SW2 SW3 SW4 SW5 SW6 SW7A(1)

D(1) B(1)E(2)

A(1)

A(1)B(1) F(1)B(1) H(2) C(3) G(7)

Congested 
link for A VCs

Congested 
link for C VCs

Congested 
link for B VCs

4D D2D DD 2D

50 100 50 150 150 50
Mbps Mbps Mbps MbpsMbps Mbps

Configuration 3Configuration 3
Generic Fairness Configuration (GFC-2)

q D - distance of links = 1000 Km

q All links between switches are bottleneck links
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Configuration
Name

Link
Distance

Averaging
Interval

Target
Delay

Three Sources 1000 Km 5 ms 1.5 ms
Source Bottleneck 1000 Km 5 ms 1.5 ms

GFC-2 1000 Km 15 ms 1.5 ms

Table 1: Simulation ParametersTable 1: Simulation Parameters
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Table 1: 3-Table 1: 3-Src Src ResultsResults

For all 3 cases, the algorithm achieves desired allocation

 Case
Number

Src
Num

MCR a Weight
Function

Expected
Fair

Share
Actual
Share

 1 1 0 ∞  1 49.92 49.92

2 0 ∞  1 49.92 49.92

3 0 ∞  1 49.92 49.92

 2 1 10 ∞  1 29.92 29.92

2 30 ∞  1 49.92 49.92

3 50 ∞  1 69.92 69.92

 3 1 10 5 15 18.53 16.64
2 30 5 35 49.92 49.92
3 50 5 55 81.30 81.30
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3-3-Src ACRsSrc ACRs
q Case 1: a = ∞, MCRs = 0. All  weights

are equal. Allocation is 149.76/3
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Table 3: 3-Table 3: 3-Src Src TransientTransient

q Source 2 (transient) is active only between 400-800
ms. Expected allocation achieved.

Case
Num.

Src
Num

MCR a weight
func.

Expected
Frshare

(non-
trans.)

Actual
(non-
trans)
share

Expted
Frshare
(trans.)

Actual
(trans.)

share

 1 1 0 ∞  1  74.88  74.83 49.92 49.92
2 0 ∞  1  -  - 49.92 49.92
3 0 ∞  1  74.88  74.83 49.92 49.92

 2 1 10 ∞  1  54.88  54.88 29.92 29.83
2 30 ∞  1  -  - 49.92 49.92
3 50 ∞  1  94.88  95.81 69.92 70.93

 3 1 10 5 15 29.92  29.23 18.53 18.53
2 30 5 35  -  - 49.92 49.92
3 50 5 55 119.84 120.71 81.30 81.94
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3-3-SrcSrc Transient Transient ACRs ACRs
q Case 2: a = ∞, MCRs ≠ 0. All  weights

are equal. Allocation is (29.92,39.92,69.92)
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Table 4: Source-BottleneckTable 4: Source-Bottleneck

q Rates converge only if measured source rate is used

 Case
Num

Src
Num

MCR a Wt.
Func.

Expectd
Fairshre

Using
CCR in
RMcell

Using
Measurd

CCR
 1 1 0 ∞  1 49.92 49.85 49.92

2 0  1 49.92 49.92 49.92
3 0 ∞  1 49.92 49.92 49.92

 2 1 10 ∞  1 29.92  - 29.62
2 30 ∞  1 49.92  - 49.60
3 50 ∞  1 69.92  - 71.03

 3 1 10 5 15 18.53  - 18.42
2 30 5 35 49.92  - 49.92
3 50 5 35 81.30  - 81.93

∞
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Source Bottleneck Source Bottleneck ACRsACRs
q Case 1: a = 5, MCRs ≠ 0. W(i)=5 + MCR

Allocation is (16.64, 49.92, 83.2)
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Table 5: GFC-2Table 5: GFC-2

q For all VCs, a = ∞ and MCR=0 (Max-min share).
Fairness is achieved in presence of link bottleneck

VC
type

 Expected
allocation

Actual
 Allocation

A  10  9.85
B  5  4.97
C  35  35.56
D  35  35.71
E  35  35.34
F  10  10.75
G  5  5.00
H  52.5  51.95
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GFC-2GFC-2 ACRs ACRs
q a = ∞, MCRs = 0. All  weights are equal.

Allocation as in table 5
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q Fair Allocation = MCR(i)
+ Weighted Share of Excess Bandwidth

q Different TM4.0 definitions map to general fairness

q Effective weight = Weight × Activity level of VCs

q Modified ERICA+ achieves general fairness

q Source bottleneck configuration need per VC
accounting to correctly measure the source rate

SummarySummary
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MotionMotion
Add the following to Section I.3 Example

  Fairness Criteria in TM4.0

6. MCR plus weighted share:
The bandwidth allocation for a connection is its MCR
plus a weighted share of the bandwidth B with used
MCRs removed.

B(i) = MCR(i) + (B-M)×(w(i)/sum w(j))

Comments: Max-Min, MCR plus equal share, and
Allocation proportional to MCR are special cases. The
weights may be defined independent of MCR or
dependent on MCR.


