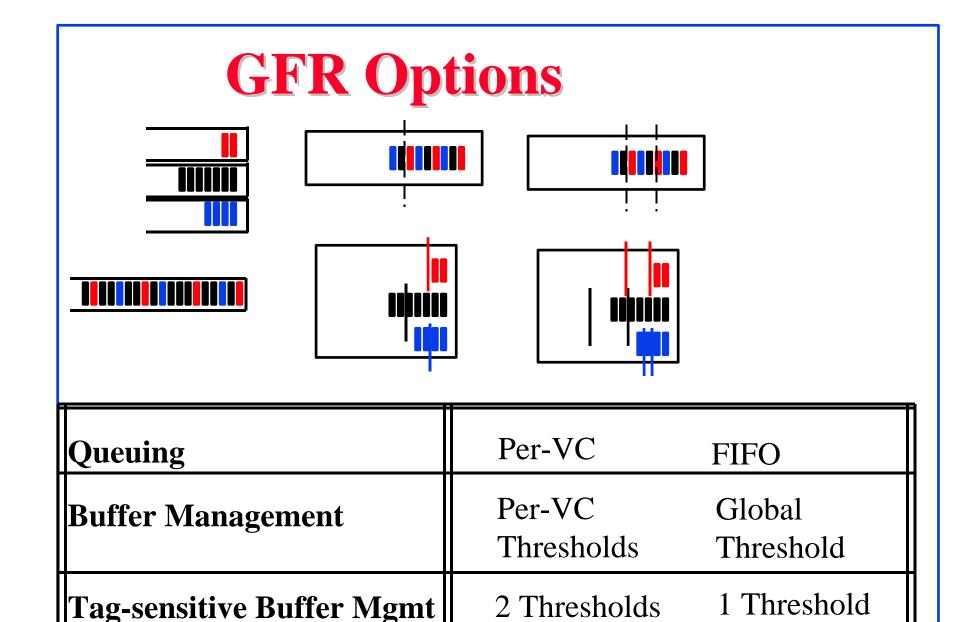
98-0405 Buffer Management for the GFR Service

Rohit Goyal, Raj Jain, Sonia Fahmy, Bobby Vandalore

Raj Jain is now at Washington University in Saint Louis Jain@cse.wustl.edu

http://www.cse.wustl.edu/~jain/

The Ohio State University



- □ Buffer Management for GFR
- DFBA Description
- DFBA Simulation Results

The Ohio State University

Raj Jain

2

The Ohio State University

Options (Cont)

- FIFO queuing versus per-VC queuing
 - Per-VC queuing is too expensive.
 - FIFO queuing should work by setting thresholds based on bandwidth allocations.
- Buffer management policies
 - Per-VC accounting policies need to be studied
- Network tagging and end-system tagging
 - End system tagging can prioritize certain cells or cell streams.
- Network tagging used for policing -- must be requested by the end system.

 The Ohio State University

Buffer Management

- Accounting: Per-VC, Global Multiple or Single
- □ Threshold: Single or Multiple
- □ Four Types:
 - Single Accounting, Single threshold (SAST)
 - Single Accounting, Multiple threshold (SAMT)
 - Multiple Accounting, Single threshold (MAST)
 - Multiple Accounting, Multiple threshold (MAMT)

Buffer Mgmt Schemes

Group	Examples	Threshold	Drop Type	Tag Sensitive
SA ST	EPD, PPD	Static	Deterministic	No
	RED	Static	Probabilistic	No
MA ST	FRED Selective Drop,FBA	Dynamic	Probabilistic	No
	VQ+DEPD	Dynamic	Deterministic	No
MA MT	PME+ ERED	Static	Probabilistic	Yes
	DFBA	Dynamic	Probabilistic	Yes
SAMT	Priority Drop	Static	Deterministic	Yes

TCP Window Control

- □ TCP throughput can be controlled by controlling window.
- □ FIFO buffer ⇒ Relative throughput per connection is proportional to fraction of buffer occupancy.
- Controlling TCP buffer occupancy
 - \Rightarrow May control throughput.
- \square High buffer utilization \Rightarrow Harder to control throughput.
- □ Formula does not hold for very low buffer utilization Very small TCP windows
 - ⇒ SACK TCP times out if half the window is lost

Differential Fair Buffer Allocation

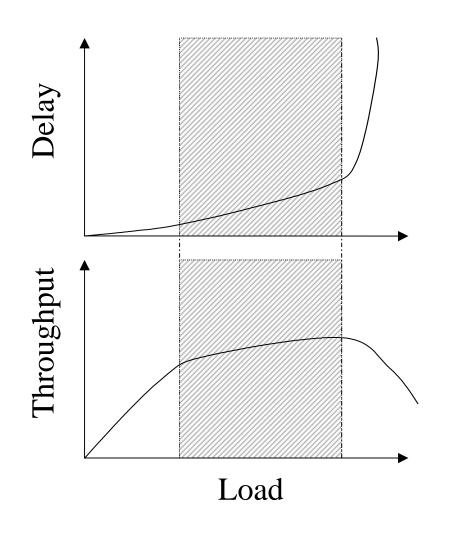
f K f H f L f U

$$X > L \Rightarrow Drop all CLP1$$
.

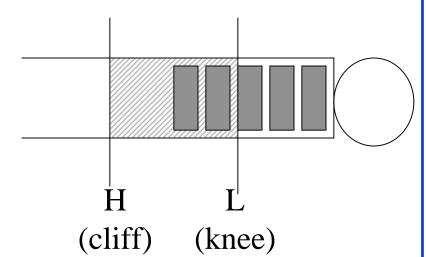
$$X \le L$$

$$\Rightarrow$$
 EPD

$$X > L$$
 and $X_i > X*W_i/W \Longrightarrow$

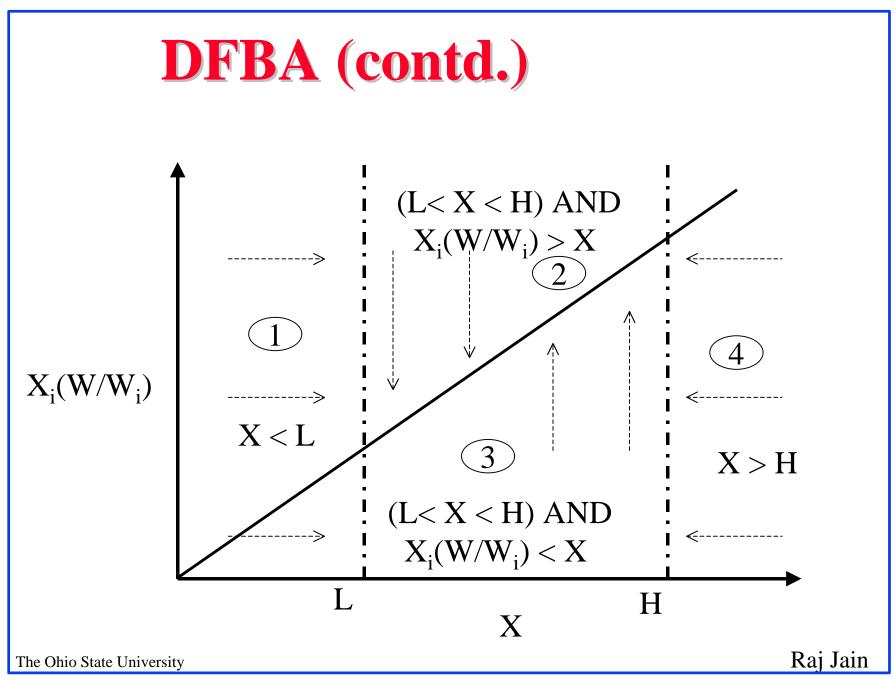

$$\Rightarrow$$
 No Loss

Probabilistic Loss of CLP0


- \square W_i = Weight of VC_i = MCR_i/(GFR Capacity)
- \square $W = \sum W_i$
- □ L = Low Threshold. H = High Threshold
- \square $X_i = \text{Per-VC buffer occupancy.} (X = \Sigma X_i)$
- \square $Z_i = Parameter (0 \le Z \le 1)$

The Ohio State University

DFBA Operating Region



Buffer occupancy (X)

Desired operating region

The Ohio State University

DFBA (contd.)

Region	Condition	Action
1	Underload	Improve
		efficiency
2	Mild congestion,	Drop low priority
	more than fair	packets, bring
	share	down to fair share
3	Mild congestion,	Drop low priority
	less than fair share	packets, bring up
		to fair share
4	Severe congestion	Reduce load
The Ohio State Universi	у	Raj Jain

DFBA Algorithm

- □ When first cell of frame arrives:
- \Box IF (X < L) THEN
 - Accept frame
- \Box ELSE IF (X > H) THEN
 - Drop frame
- \square ELSE IF ((L < X < H) AND (X_i \le X×W_i/W))
 - Drop CLP1 frame
- \square ELSE IF ((L < X < H) AND (X_i > X×W_i/W))
 - Drop CLP1 frame
 - Drop CLP0 frame with

$$P\{Drop\} = Z_i \left(\alpha \times \frac{X_i - X \times W_i / W}{X(1 - W_i / W)} + (1 - \alpha) \times \frac{X - L}{H - L_{Raj \ Jain}} \right)$$
The Ohio State University

Drop Probability

□ Fairness Component $(VC_i$'s fair share $= X \times W_i/W$)

$$\frac{X_i - X \times W_i/W}{X \times (1 - W_i/W)}$$

Increases linearly as X_i increases from $X \times W_i/W$ to X

Efficiency Component

$$\frac{X-L}{H-L}$$

Increases linearly as X increases from L to H

Drop Probability (contd.)

- Z_i allows scaling of total probability function
 - Higher drop probability results in lower TCP windows
 - TCP window size $W \propto 1/\sqrt{P\{Drop\}}$ for random packet loss [Mathis] $\frac{MSS}{TCP \text{ data rate } D \propto \frac{MSS}{RTT \times \sqrt{P(drop)}}$
 - o To maintain high TCP data rate for large RTT:
 - Small P(Drop)
 - Large MSS
- \Box Choose small Z_i for satellite VCs.
- \Box Choose small Z_i for VCs with larger MCRs.

DFBA Simulation Configuration <u>Destination</u> Switch witch Destination 20 witch y km 10 km x kmVC5 1 km Destination 81 Switch witch Destination 100 Raj Jain The Ohio State University

DFBA Simulation Configuration

- □ SACK TCP, 50 and 100 TCP sources
- 5 VCs through backbone link.
- □ Local switches merge TCP sources.
- \Box x = Access hop = 50 μ s (Campus), or 250 ms GEO
- □ y = Backbone hop = 5 ms (WAN or LEO) or 250 ms (GEO)
- □ GFR capacity = 353.207 kcells/sec (≈ 155.52 Mbps)
- $\alpha = 0.5$

Simulation Configuration (contd)

- 50 TCPs with 5 VCs (50% MCR allocation)
 - \circ MCR_i = 12, 24, 36, 48, 60 kcells/sec, i=1, 2, 3, 4, 5
 - $\mathbf{W}_{i} = 0.034, 0.068, 0.102, 0.136, 0.170$
 - Σ (MCR_i /GFR capacity) = Σ W_i = W ≈ 0.5

Simulation Configuration (contd)

- □ 50 and 100 TCPs with 5 VCs (85% MCR allocation)
 - o MCR_i = 20, 40, 60, 80, 100 kcells/sec, i=1, 2, 3, 4, 5
 - $\mathbf{W}_{i} = 0.0566, 0.1132, 0.1698, 0.2264, 0.283$
 - Σ (MCR_i /GFR capacity) = Σ W_i = W ≈ 0.85

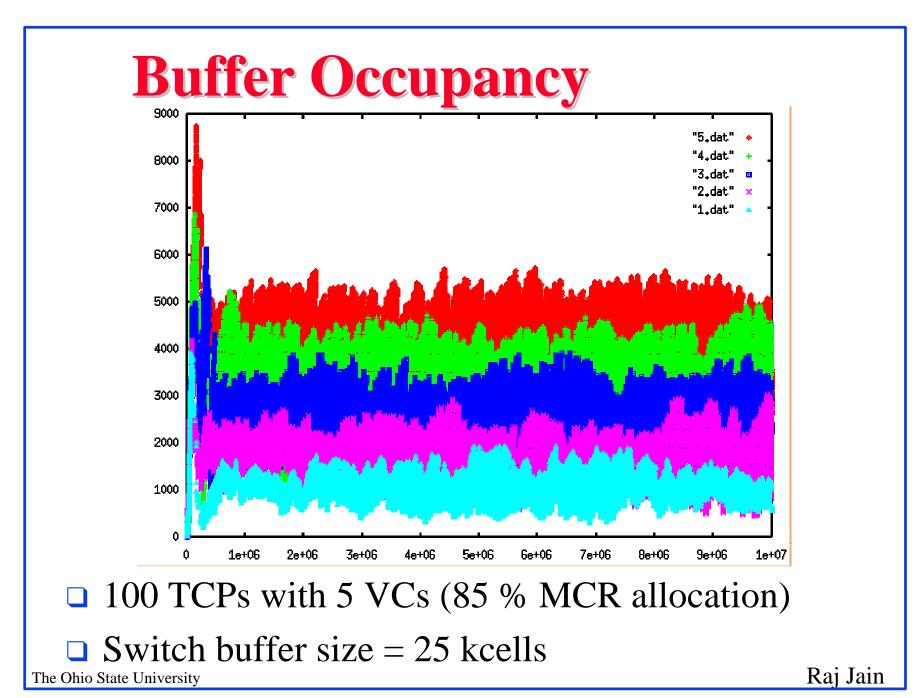
Simulation Results

MCR	Achieved	Excess	Excess /
	Throughput		MCR
4.61	11.86	7.25	1.57
9.22	18.63	9.42	1.02
13.82	24.80	10.98	0.79
18.43	32.99	14.56	0.79
23.04	38.60	15.56	0.68
69.12	126.88	57.77	

- □ 50 TCPs with 5VCs (50% MCR allocation)
- □ Switch buffer size = 25 kcells
- \square $Z_i=1$, for all i
- MCR guaranteed. Lower MCRs get higher excess.

 Raj Jain

Effect of MCR Allocation


MCR	Achieved	Excess	Excess/MCR
	Throughput		
7.68	12.52	4.84	0.63
15.36	18.29	2.93	0.19
23.04	25.57	2.53	0.11
30.72	31.78	1.06	0.03
38.40	38.72	0.32	0.01
115.2	126.88	11.68	

- □ 50 TCPs with 5 VCs (85% MCR allocation)
- □ Switch buffer size = 25 kcells
- \square $Z_i=1$, for all I
- MCR guaranteed. Lower MCRs get higher excess Raj Jain

Effect of Number of TCPs

MCR	Achieved	Excess	Excess/MCR
	Throughput		
7.68	11.29	3.61	0.47
15.36	18.19	2.83	0.18
23.04	26.00	2.96	0.13
30.72	32.35	1.63	0.05
38.40	39.09	0.69	0.02
115.2	126.92	11.72	

- □ 100 TCPs with 5 VCs (85 % MCR allocation)
- □ Switch buffer size = 25 kcells
- \square $Z_i=1$, for all i
- Independent of the number of sources

Effect of Buffer Size

MCR	Achieved	Excess	Excess/MCR
	Throughput		
7.68	11.79	4.11	0.54
15.36	18.55	3.19	0.21
23.04	25.13	2.09	0.09
30.72	32.23	1.51	0.05
38.40	38.97	0.57	0.01
115.2	126.67	11.47	

- □ 100 TCPs with 5 VCs (85 % MCR allocation)
- □ Switch buffer size = 6 kcells
- \square $Z_i=1$, for all I
- MCR guarantees for small buffer size
 The Ohio State University

Effect of Buffer Size

MCR	Achieved	Excess	Excess/MCR
	Throughput		
7.68	10.02	2.34	0.30
15.36	19.31	3.95	0.26
23.04	25.78	2.74	0.12
30.72	32.96	2.24	0.07
38.40	38.56	0.16	0.00
115.2	126.63	11.43	

- □ 100 TCPs with 5 VCs (85 % MCR allocation)
- Switch buffer size = 3 kcells
- \square $Z_i=1$, for all I
- MCR guarantees for small buffer size

Effect of Z_i

$Z_i =$	$Z_i = 1-W_i/W$		$Z_i = (1-W_i/W)^2$	
Excess	Excess/MCR	Excess	Excess/MCR	
3.84	0.50	0.53	0.07	
2.90	0.19	2.97	0.19	
2.27	0.10	2.77	0.12	
2.56	0.08	2.39	0.08	
0.02	0.02	3.14	0.08	

- □ 100 TCPs with 5 VCs (85 % MCR allocation)
- Switch buffer size = 6 kcells
- □ Small Z_i for large MCR enables MCR proportional sharing of excess capacity
 The Ohio State University

- □ Buffer Management Policy: DFBA for GFR
 - Allocates MCR proportional buffers.
 - Guarantees throughput and provides fairness
- □ Survey and classification of buffer management schemes.