98-0154: Determining the
Number of Active ABR
Sourcesin Switch
Algorithms

Sonia Fahmy, Raj Jain, Shivkumar Kalyanaraman,

Rohit Goyal, and Bobby Vandalore
Depa :
epar Raj Jain is now at Y
Washington University in Saint Louis
| Jain@cse.wustl.edu
\ http://www.cse.wustl.edu/~jain/

J

The Ohio State University Ra Jain

1



Raj Jain
Horizontal small


ERICA

New algorithm
Examples

Proof

Simulation Results

o o o o o

The Ohio State University Ra Jain




Original ERICA

End of measurement interval:

q Target ABR Capacity
= Target Utilization x Available Bandwidth

q Load Factor z= ABR Input Rate/Target ABR Capacity

q FarShare
= Target ABR Capacity/Number of Active VCs

g VC' s Share = Current Cell Rate/L.oad Factor z

BRM to be sent:
g ER Calculated = Max (FairShare, VC's Share)
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Number of ActiveVCs

q FarShare
= Target Capacity/Number of Active VCs

g Number of Active VCs. Number of VCsthat sent
one or more cellsin thelast DT interval
P A VCtha sends 1 cdll is counted as an active

VC
A VC that sends 1000 cells s aso counted as an

active VC
g Activity of aVCisadiscrete variable: O or 1
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Effective Number of VCs

g

The Ohio State University

dea: Activity can be a continuous variable.
D A VC can have activity level anywhere

petween O and 1

Effective Number of VCs

= S Activity of it VC

FairShare = Target Capacity/Effective Number of
VCs

Example: 3 sources with activity of 0.5, 0.75, 1
Avallable capacity = 149 Mbps

Target Utilization = 0.9

FairShare = 0.9x149/(0.5+0.75+1) = 59.6 Mbps
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Deter mining Activity Level

q Activity level = Min (1, Source rate/FairShare)
P VCsoperating 3 FairShare are each counted as 1,
V Cs operating < FairShare only contribute a fraction

q Effective number of VCs= S Activity level of VC 1
g FarShare =

Target ABR Capacity/Effective Number of VCs
g Definitions are recursive

q However, starting with any arbitrary value of
—alrShare, the procedure converges quickly
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Example 1 (Stability)

S SO

° Link 1 g2 Lo SW3

o &
q Target capacity for Link 1 and Link 2= 150 Mbps
q For Sw2, (S15, S16, S17) = (10, 70, 70)

q lteration 1. FairShare = 70 Mbps

q Activity = (10/70, 70/70, 70/70) = (1/7, 1, 1)

q Effective#of VCs=1+1+ 1/7=15/7

q lteration 2. FairShare = Target capacity/Effective
Number of VCs = 150/2.14 » 70 Mbps
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Example 2 (Rising from a
Low FairShare)

s S Lo

=

q Rates= (10, 50, 90)

g Assume FairShare = 50

q lteration 1:
g Activity = (10/50, 50/50, 1) = (0.2, 1, 1)
q Effective#of VCs=02+1+1=22

g lteration 2: FairShare = 150/2.2 » 70 Mbps
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Example 3 (Dropping from
a High Fair Share

g Same configuration, rates = (10, 50, 90),
FairShare = 75 Mbps
g lteration 1:

q Activity = (10/75, 50/75, 1) = (0.13, 0.67, 1)

q Effective#of VCs=0.13+067+1=1.8
Iteration 2: FairShare = 150/1.8 = 83 Mbps
Assume sources send at new rates, except for S15
Activity = (10/83, 83/83, 83/83) = (0.12, 1, 1)
Effective#of VCs=0.12+1+1=212
FairShare = 150/2.12 » 70 Mbps
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Pr oof

g Claim: This procedure |leads to max-min
fairnessin all cases

q Proof: Two Steps
1. Thisisequivalent to MIT scheme

2. MIT scheme leads to max-min
fairness [ Charny95]
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Derivation of Step 1

qg MIT Scheme: FairShare = [ABR Capacity
- Si=1toNu Rui]/No where:
R, = Rate of i underloading source (LE£i £ N)

N, = # of underloading VCs, N, = # of overloading VCs

q FairShare* N, =ABR Capacity - S;_ 1, nu R

q FairShare* N, + S, _; , vy Ry = ABR Capacity

q FairShare* [N, + S_;,ny Ri/FarShare] = ABR
Capacity

q FairShare = ABR Capacity/N 4, where:
Nett = No + S; = 110w Ru/Falrshare
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Benefits

g Simulation results show that:

q Method works even with short
measurement intervals and low rate sources

g Max-min fairnessis achieved even without the
previous fairness sol ution:

MaxAllocPrevious = maximum allocation
In the previous interval, initialized to FairShare

|F (load factor z > 1 + d)
THEN
ER = Max (CCR/z, FairShare)
ELSE

ER = Max (CCR/z, MaxAllocPrevious)
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Link 15 S2 Link 2

Simulation Setup

Sw3

S
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03

g " links: bandwidth = 155.52 Mbps, length = 1000 km
g All VCsare bidirectional

q Sl isbottlenecked at 10 Mbps, ICR for S2 = 30
Mbps, for S3 = 110 Mbps, S1+S2+S3=150 Mbps

q Testsif S2 and S3 reach same ACR, using bandwidth
left over by S1
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Simulation Setup (cont.)

Linkgs?

Link 2

Sw2 Sw3

<=
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g Same as configuration used in examples, except that
S1 VCisbottlenecked at Sl itself (not Link 1), to

show effect of source bottlenecks
qg RIF=1, TBE =large

q Switch target utilization parameter = 90%
g Switch interval = min (time (100 cells), 1 ms)
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Results: ERICA

WAN Bottlenecked: ACRSs
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ERICA with MaxAllocPrevious solution attains fairness
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Results: New M ethod
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New method also attains fairness. Note faster convergence
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Conclusions

g New method distinguishes underloading and
overloading connections to compute activity levels,
effective # of active connections, and fair share.

g Method is provably max-min fair, and maintains

the fast transient response, queuing delay control,
and ssmplicity of ERICA. It overcomes the need for

the ERICA fairness steps and is less sensitive to
measurement interval length.
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