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Scalable Configurations

2 ATM testing equipment are expensive.

2 Scalable Configurations permit to
simulate the desired basic configuration using a
limited number of generators.

2 But there are many ways to set up the scalable
connections configurations and the results could vary
with the set up.
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A Sample 4-to-4
Configuration

2 Different implementations could provide
different results.

2 P1-P2-P3-P4-P1 Four module crossings
2 P1-P3-P4-P2-P1 Two module crossings
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Problem w/ Current Text

2 Some switches set only bidirectional VCs

Can't have the same V CI on the same port
fortwoVCs. __ + ¢ v
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i i Module 1
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VCC Chain

2 Performance testing requires setting up
connections between ports of the switch.

2 Some connections are internal through the switch
fabric and others are external through wires or fibers.

2 An external connection between two switch portsis
referred in this appendix asawire W.

2 The sequence of concatenated connections (internal
and external) iscalled a VCC Chain.

2 The proposed algorithm permits to create standard
V CC Chains for any number of generators and any
number of ports P Scalable and basic (both)
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Example

2 4-to-4 configuration with one generator
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VCC Chain
| mplementation

2 Implementation of External Connections
1. Numbering the ports

2. |dentifying the ports connected to generators and
analyzers

3. Numbering the wires
2 Implementation of Internal Connections
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1. Port Numbering

Module #
| \
1) | PL P3 P5 P7 P9 P11 P13P14

- Group 1

2) | P2 P4 P6 P8 P10 P12

3) | P15 P16 P17P18 P19 P20 P21P22 |  Group 2

2 Need to group modules by technology and speed

2 This port numbering helps creating VCC chains that
cross modules using a simple agorithm
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2. Generator/Analyzer
Ports

2 ldentifying the ports connected to the
generator and/or analyzers

o Avoid having only one port |eft over in a group.
(That port cannot be connected externally to any
other port)

o This condition does not apply if the switch allows
loopbacks.

2 Note: The algorithm works with |oopbacks al so.
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3. Numbering the Wires

2 In each group start with the first output
port available. Connect it to the next port
whose input is available. (Note: With loopbacks, the
output of a port can be connected to the input of the
same port. Therest of the methodology is same.)

2 Continue until all ports have been connected.

2 Numbered the wires sequentially asW1, W2, ...with
the restriction that the end of wire Wi and the
beginning of W(i+1) must be different ports.

2 May need to skip some wires and include them in the
next round.
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Example

2 Straight 7-to-7, 1 Gen.
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Algorithm

f=1
for (k=1tor, step 1) -
{if>) f=1+ § NW()
d=1
for (j =1tom, step 1)
{ if(j>1) f = mod*(CH(1,-1,k)+1, TNW);
for (i =1to NW(k), step 1)
{
CH(1,J,K)=W(f);
f = mod* (f+1, TNW);
}endfor |
} endfor |
} end for k.
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Algorithm Rules

2 Each chain generally goes sequentially
fromwirei to wirei+1 unless the wire
has already been fully used by other chains. Use
modulo N arithmetic.

2 Multiple ChaingGenerator: Each new VCC chainis
obtained from the previous one shifting by one its
wire number

2 Multiple Generators. Divide the wires between the
generators. Each generator will start its traffic from its
Wires.
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Throughput and L atency
M easur ements

2 Performance testing requires two kinds of virtual
channel connections (VCCs). foreground VCCs
(traffic that 1s measured) and background VCCs
(traffic that ssimply interferes with the foreground
traffic).

2 Weneed in throughput measurements foreground
traffic, and both foreground and background traffic in
latency measurements.
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Throughput and L atency
M easur ements (Cont)

2 Foreground traffic in Latency measurements uses only
two ports, one source and one destination.

2 For scalable configurations in Latency Measurements,
foreground and background traffic share portsin
opposite directions.
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8-10-8 Straight
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8-t0-8 Straight, 1 Gen.
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Throughput Foreground

d

8-to-2 Partial Cross
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8-to-2 Partial Cross, 2 Gen.
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7-t0-2 Partial Cross, 2Gen.
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M odificationsto Sections
3.1.7and 3.2.7

2 Existing Figure 3.3: 8-t0-8 straight
configuration, 1 Gen.
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New Figure 3.3
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M odifications to Sections
3.1.7and 3.2.7 (Cont.)

2 Similarly, change Figure 3.4 and 3.5
2 Replace “loopbacks’ by “wires”

2 Exchange “w” and “n” for consistency
Throughout the document: n=# of ports.
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2 New Methodology:

o Allows both loopback and non-loopback external
connections.

o Allows any number of generators.
P Can be used for both scalable and basic
configurations.

o Algorithm can be implemented as a computer
program.
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Motion

2 Adopt the text of 97-1089 as Appendix B
of Performance Testing Baseline Text.

2 Adopt the appropriate modifications to Section 3.1.
and 3.2.7 of the Baseline text.
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