97-1086R1: Per-VC Rate
Allocation Techniques
For ABR Feedback In
VS/VD Networks

Rohit Goyal, Xiangrong Cai, Raj Jain, Sonia Fahmy,

Bobby Vandalore

-

Raj Jain is now at

Jain@cse.wustl.edu
http://www.cse.wustl.edu/~jain/

%

Washington University in Saint Louis

J

The Ohio State University

Ra Jain

1



Raj Jain
Horizontal small


Virtual Source/ Virtual
Destination (VS/ VD)

(0
)

2 Segments the end-to-end ABR control [oop.
2 Coupling between loops is implementation specific.

2 VS/VD can help in buffer management across the
network.

2 ABR switches separated by non-ATM network
could also implement VS/VD.
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Goals

2 Describe aVSVD switch architecture.
2 Discussissues in designing rate
allocation schemes for VS/VD switches.
2 Present aper-VC rate allocation scheme for VS/VD.

2 Discuss how VS/VD can help in buffer management
across the network.
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VS/VD Switch
Architecture
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VS/VD Switch
Architecture

2 Each switch port :
o Class queue for each service category.
(optional)
o Per-V C queues drain into class queue or link
2 When acell isreceived :
o Datacell : forwarded to destination port (VS).
> FRM céll : turned around as BRM (VD).
> BRM cdll : ER Isnhoted (VS).
2 VSsendsdata+ FRM cellsat ACR to class queue.
2 A scheduler services the per-V C queues.
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A SmpleVSVD Mod«
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2 Internal SerV| ce Rate = f(External/Downstream
~eedback, Local congestion)

2 Local Congestion =1(Q;); Q =¢q, +Sg;
2 Upstream feedback = Internal service rate

1 Example: Downstream = 100 Mbps,
Internal =90 Mbps = Upstream Feedback
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SimpleVSVD Model

2 Desired input rate to class queue is also fed back to
the upstream switch.

2 Problem:

o Transient per-V C gueues cannot drain.
Input rate s; = Output rate r;

o Queues that build up during open loop phase do not
drain.
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Correct VS/VD Model

di
Qr\‘ —>R|
) Q
9% =
ERIF Tback ERijinternal ER. jexternal

2 Intgrnal Service Rate = f(External/Downstream
Fegdback, Switch algorithm using q)

a2 ACR;; = f(Interna service rate, end system rules)
2 Upstream feedback =f(q;)ACR;;

2 Example: Downstream = 100, Service =90, ACR=80,
Upstream feedback=70 Mbps
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Per-VC ERICA+

2 BRM recelved :
o ER;&tma := ERin RM cell
2 FRM received
5 ERINRM := ER,;feedback
2 At the end of each averaging interval :
o ERijinternaI
= Min{ Max (r;/Overload, g(q;)R/N), ER;&tema}
o Output rate
ACR; =r; .= fn{ ER;/"e™d, end system rules}
o ERyfeedba:= g(q)r;
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Simulation M odel
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Parameters

2 VS/VD and Non-V S/VD configurations.
2 First hop = Satellite hop with 1 way delay:
o LEO=50ms
o> GEO =27/5ms
2 Link 2 =45 Mbps (Bottleneck Link).
2 All other links = 155.52 Mbps (149.76 with SONET)
2 Persistent ABR sources: ICR = 30 Mbps

2 Persistent TCP sources. Timer granularity = 500 ms.
At 45 Mbps, 100 ms causes timeouts in GEO.
Known problem with TCP Std deviation measurement.
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ERICA+ Non-VS/VD
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ERICA+ Non-VS/VD
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ERICA+ Non-VS/VD
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ERICA+ Non-VS/VD
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ERICA w/ SimpleVS/VD
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ERICA w/ SimpleVS/VD
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ERICA+VSVD LEO
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ERICA+VSVD LEO
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VS/VD GEO Swil Queue
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ERICA+VSVD GEO
TCP
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ERICA+VSVD GEO
TCP
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Simulation Results

VSVD Sw. Feedback B/w M ax M ax

delay diff. Exp.Q Obs Q
(cellg) (cellg)

OFF Swl 120 0 0 0

OFF Sw2 120 100 3*28K 30K

ON Swl 100 100 325K 30K

ON Sw2 10 100 324K 3K

OFF Swl 570 0 0 0

OFF Sw2 570 100 3*135 K 140K

ON Swl 550 100 3*130K 140K

ON Sw2 10 100 324K 3K
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Observations

2 Without VS/VD:
o Single control loop for the entire connection.
o All queues are in the bottleneck switch.

o Buffer requirements for terrestrial switch are
proportional to satellite propagation delay.

2 WithVS/VD:
o Control loop broken at each switch.

o Queues remain at the switch between the satellite
and the terrestrial loop (satellite switch).

o Terrestrial switch only requires small buffers.
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Summary

ii
2 VSVD switch architecture:

o Per-VC queues drain at an ACR based only on the
external congestion and class Q

o Feedback to upstream queue must include external
congestion, class Q, and per-VC Q.

o Each queue must monitor its input and output rate.
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‘Summary (Cont)

@ _/\_Switch Switch
1 2
2 With correct implementation of VS/VD:
Maximum queue at each switch
< Bandwidth delay product of the previous loop
P Can help isolate long-delay hops from short-delay
hops.

2 Workgroup switches on satellite paths will not need
buffering proportional to round-trip even if they are
the bottleneck.

2 Motion: Add sample VS/VD scheme to baseline text
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Future Work

2 More complex configurations.

2 Presence of VBR background.

2 Analysis of complexity of VSVD switch.

2 Scheduling policies for per-VC and class queues.
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M otion

2 Add the following two paragraphs to

|.5.4 of the baseline text.
1.5.4 A Sample Explicit Rate VS/VD Switch Algorithm

One simple method to implement VS/VD isto have a separate queue
(per-V C queue) for each VC. A server at the head of each of these
gueues monitors the input rate of the queue, provides feedback to the
upstream gqueue, and controls the output rate of the queue based on the
feedback from the corresponding downstream server. When providing
feedback, each server only allocates up to therate at whichit is
allowed to output (ACR). However, if queues are large, the server may
allocate only a part of its ACR to the previous hop so that its queues
can drain quickly. The main features and options of the algorithm are
similar to the ERICA+ algorithm. ERICA+ is an extension of the
ERICA algorithm, and uses queue length to dynamically set the target
ABR capacity.
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Motion (contd.)

The basic rate allocation algorithm consists of the following steps at
the end of every averaging interval. The port overload is calculated as
the ratio of the total measured service rate of the per-V C queues and
the target ABR capacity. The fair share term for VCsis calculated as
the ratio of the target ABR capacity to the number of active ABR
VC. VCshareis calculated for each VC as the ratio of its measured
service rate to the overload. The ER for each VCiscalculated as ER
= Min(Max(Fair Share, VC share), ER from downstream node). The
ACR at which the VC's queue drains is determined from this ER as
well as the source-end-system rules for the VS. The feedback to the
previous hop for the VC is calculated as afraction (based on the VC's
gueue length) of the calculated ACR.
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