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Abstract:

ABR traffic management for point-to-multipoint connections entails that the source be controlled
to the minimum rate supported by all the leaves of the multicast tree. A number of algorithms
have been developed for extending ABR congestion avoidance algorithms to perform the feedback
consolidation operation. This contribution discusses the various design options and implementation
alternatives for the consolidation algorithms, and proposes a number of new algorithms that aim
at providing a faster transient response, while eliminating the noise that may be caused if the
feedback is returned before all leaves have responded. The performance of the proposed algorithms
is compared to the performance of the previous algorithms under a large variety of conditions. In
particular, configurations with varying bottleneck locations, link lengths, traffic and background
traffic types are used to demonstrate the tradeoffs among the different algorithms. The results
indicate that the new algorithms we propose completely eliminate the noise, while exhibiting a
very fast transient response. Hence, although the algorithms have a slightly higher implementation
complexity, they offer significant performance improvement.
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Notice:

This contribution has been prepared to assist the ATM Forum. It is offered to the Forum as a basis
for discussion and is not a binding proposal on the part of any of the contributing organizations.
The statements are subject to change in form and content after further study. Specifically, the
contributors reserve the right to add to, amend or modify the statements contained herein.
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1 Introduction

In point-to-point ABR flow control, the source is controlled to the minimum rate that can be sup-
ported by all the switches on the path from the source to the destination [3]. The natural extension
of this strategy for point-to-multipoint connections is controlling the source to the minimum rate
that can be supported by the switches on the path from the source to all of the leaves in the mul-
ticast tree. This is because the minimum rate is the technique most compatible with the typical
data requirements: no data should be lost, and the network can take whatever time it requires to
deliver the data intact.

The operation of feedback consolidation employed at branch points can be explained with the aid
of figure 1. The consolidation operation is required to avoid the feedback implosion problem, where
the number of backward RM cells received by the source is proportional to the number of leaves in
the multicast tree. In addition, the source allowed cell rate (ACR) should not fluctuate due to the
varying feedback received from different leaves.

Beanch Point |:|
Leaf 2

-
H:FRM H:data I:BRM

Figure 1: Point-to-multipoint connections

A number of consolidation algorithms have been proposed in [1, 12, 8, 9]. All the algorithms control
the source rate to the minimum rate indicated by the backward resource management (BRM) cells.
The RM cells could be turned around by the branch point [9, 12], or by the destination [1, 8]. The
condition that triggers the branch point to send a BRM cell is also different in different algorithms:
some of the algorithms wait for feedback to arrive from all the leaves, while some send the feedback
when a forward RM (FRM) cell or a BRM cell is received.

Several design and implementation considerations come into play when developing a consolidation
algorithm. There is a tradeoff between the complexity of the algorithm and its performance.
Moreover, the transient response of the algorithm should not be sacrificed to reduce the noise
occurring when feedback from some of the leaves is not incorporated into the BRM cell returned.
Finally, the scheme must be scalable to very large multicast trees. The implementation complexity,
feedback delay, and the overhead of the backward RM cells, should not increase with the increase
of the number of levels or leaves of the multicast tree.

In this contribution, we propose a set of consolidation algorithms that aim at providing a fast
transient response, while eliminating consolidation noise. We examine the performance of the pro-
posed algorithms and compare it to the previously proposed ones in complexity, transient response,
consolidation noise, and scalability. The remainder of this contribution is organized as follows. The
next section summarizes the previous work on point-to-multipoint ABR flow control. A discussion
of the various design and implementation issues involved is presented next, followed by a detailed
description and pseudocode of the previously proposed algorithms, and the new ones we propose.



All the algorithms are then simulated and their performance is analyzed under a variety of configu-
rations. The contribution concludes with a detailed discussion of the performance and complexity
tradeoffs among the different algorithms.

2 Background and Related Work

In [9], a simple point-to-multipoint ABR framework was proposed where the source in a point-to-
multipoint virtual connection (VC) sends at the minimum of the rates allowed by all the destination
nodes. The algorithm works as follows. A register to store the minimum explicit rate feedback,
MER, is set to the minimum of its current value and the ER in the BRM cell whenever a BRM cell
is received from one of the branches. When an FRM cell is received, it is multicast to all branches,
and a BRM is returned with the MER value as the ER. MER is then set to the ER value in the
FRM cell (typically PCR). Thus the minimum of the rates supported by the branches is returned
to the source [9, 10, 11]. However, only those branches that returned BRM cells since the last BRM
cell was sent are represented in the feedback.

Several variations on the previously described algorithm were proposed in [8]. Some of the new
schemes are simpler to implement than the previous proposal that required the branch point to
generate a returning RM cell for every forward RM cell. Other schemes attempt to achieve better
performance.

The early proposal suffers from the “consolidation noise” problem, where a BRM generated by a
branch point may not consolidate feedback from all tree branches [4]. In fact, if a BRM generated
by a branch point does not accumulate feedback from any branch, the feedback can erroneously be
given as the peak cell rate (if that branch point itself is not overloaded). A simple enhancement
to alleviate this problem is to maintain a flag, and only generate the BRM cell if a BRM has been
received from a leaf since the last BRM was sent by the branch point [8, 12].

Another idea proposed in [8] reduces the complexity of the algorithm as follows. The backward RM
cells are generated by the destinations and not by the branch points, which is similar to the case
of unicast [7]. The motivation behind this modification is as follows. If branch points turn around
RM cells, the implementation may have a high cost. In the previously described algorithms, the
number of BRMs generated by branch points per forward RM cell from the source is proportional
to the number of branch points in a multicast tree. The new algorithm does not generate BRM
cells at branch points whenever FRM cells are received, but simply sets a flag indicating the receipt
of the FRM cell, and multicasts it to all leaves. When a BRM cell is received from a branch, it is
passed back to the source (after using the minimum allocation), only if the flag was set. The flag
is then reset, and the MER value set to the peak cell rate [8].

Tt is natural to extend this idea to only send back the BRM cell when BRM cells from all branches
are received. This can be easily implemented by maintaining a separate bit for each branch that
indicates if a BRM cell has been received since the last BRM cell was sent. Clearly this method
incurs additional complexity, compared to the previous one. Moreover, it has to deal with the
problems of failure of one of the branches by implementing timeouts. The four variations of the
algorithm were compared in [8].

A similar method to the one last described was proposed in [1]. Again, the algorithm only allows



feedback to return to the source when BRM cells have been received from all branches. However,
the scheme proposes to add a sequence number to the RM cells. The BRM cell that is allowed to
pass back to the source is the last BRM cell to be received with a certain sequence number. This
guarantees that among all BRM cells with the same sequence number, one and only one BRM cell
passes back to the source.

3 Design and Implementation Issues

As pointed out in the previous section, there are several different ways to implement the point-
to-multipoint consolidation algorithms. Each method offers a tradeoff in complexity, scalability,
overhead, transient response, and consolidation noise. In addition, several guidelines and met-
rics can be used to evaluate the performance of the algorithms. The tradeoffs and issues can be
summarized as follows:

e Which component generates the BRM cells (i.e. turns around the FRM cells)? Should the
branch point or the destination perform that operation? If the branch point turns around
the BRM cells, the scheme may incur more overhead.

e Should the branch point wait for feedback from all the branches before passing the BRM
cell upstream? Although this eliminates the consolidation noise problem, it incurs additional
overhead, and increases the transient response of the scheme, especially after idle or low rate
periods. This can have severe implications in case of sudden overload, since the queues can
substantially grow while the branch point is still waiting for feedback from distant leaves.

e How can the ratio of FRM cells generated by the source to BRM cells returned to the source
be controlled? Some algorithms send a BRM cell when an FRM cell is received, when an
FRM cell is received after a BRM cell has been received, or when a BRM cell is received after
an FRM cell has been received. This guarantees that the number of BRM cells is less than or
equal to the number of FRM cells. If the scheme waits for feedback from all leaves, the BRM
to FRM ratio is guaranteed to be less than or equal to one if all the leaves are responsive.
What if the scheme does not wait for feedback from all leaves in the case of overload? The
ratio must be controlled by other means in this case.

e A related issue is the ratio of BRM cells in the network to the number of source-generated
FRM cells. Algorithms that turn around RM cells at the branch points increase the number
of BRM cells inside the network. The number becomes dependent on the number of branch
points and the number of levels of the multicast tree. This has adverse effects on the overhead
and the scalability of the scheme.

e Another issue is the operation of the branch point when the branch point is also a switch and
queuing point. In this case, the coupling of the switch and the branch point functions must be
considered: When should the actual rate computation algorithm be performed? The point-
to-point algorithm should simply be a special case of the point-to-multipoint algorithm, when
the number of branches is equal to one. In our experiments in this contribution, the ERICA
switch algorithm [6, 5] is executed just before the BRM cell is sent. Thus the algorithm is
performed only once per BRM cell returning to the source (and not per-BRM cell arriving



at the destination). This makes the point-to-multipoint algorithm scalable to large numbers
of leaves or branch points. When the BRM cell is to be sent out, the ERICA algorithm has
to be performed for each of the branches to account for overload on each of the outgoing
ports, and the minimum of all these values should be indicated in the returning RM cell. But
what happens when there is sudden overload at this switch and the branch point is waiting
for BRM cells from all leaves? Should the branch point invoke ERICA and if overload is
detected, not wait for all branches?

Some algorithms wait for an FRM cell to be received to send feedback. What are the implica-
tions of this on the scalability of the scheme? Will the feedback delay grow with the number
of branches? For example, figure 2 illustrates a configuration where there are two branch
points on the path from the source to one of the leaves of the multicast tree. If you have to
wait for the next FRM cell at each of the branches, the time to return a BRM cell can increase
with the number of levels of the multicast tree, which is an undesirable property. This is also
dependent on the FRM cell rate, the BRM cell rate, and their relationships during transient
phases. Schemes that return the BRM cell received from the last branch do not suffer from
this problem, so they are less sensitive to number of branch points.
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Figure 2: Multiple branch points

All the consolidation algorithms use some registers at the branch point to store values such
as the minimum rate given by all the leaves in the current iteration, flags to indicate whether
an RM cell has been received since the last one was sent, and many others. It is important to
note that values such as minimum explicit rate, the flags, the number of BRM cells received,
should not be stored per output port like all the other metrics that point-to-point algorithms
are using for rate calculation. In fact, values such as the CCR (or ACR in case the branch
point is a source) should not be stored per output port either, since it is the same for all
branches. Hence the CCR, minimum values and flags should be stored only once per point-
to-multipoint VC. However, the flags indicating that a BRM cell has been received from
a certain branch and values related to the timeout algorithm (described in the next issue)
should be stored per output port, like the other port-related values (for example, overload
factor, target capacity, input rate, number of active sources).

If the consolidation scheme waits for feedback from all the branches before sending it to the
source, an algorithm must be developed to determine when a branch becomes non-responsive
and handle such non-responsive branches. If a branch becomes non-responsive, then sending



feedback should not be delayed indefinitely waiting for feedback from that non-responsive
branch. Clearly, a timeout mechanism must be implemented. Thus, a timeout value must
be associated with each branch. The timeout value depends on the round trip time from
the branch point to the leaf. This value must be continuously measured and updated, since
the queuing delay of the switches on the path from the branch point to the leaf (and in the
opposite direction) is a continuously changing quantity. When the timeout value for a branch
is exceeded, the branch is declared to be in the non-responding state, and the branch point
does not account for that branch in its feedback information, until the branch returns to the
responding state.

These issues are discussed further is later sections.

4 Feedback Consolidation Algorithms

In the four algorithms presented next, the ERICA algorithm [5, 6] is employed immediately before
sending a BRM on the link. This ensures that the most recent feedback information is sent. The
algorithms at the branch point operate as explained in the following subsections.

4.1 Algorithm 1

This is a modified version of the algorithm presented in [9]. A register MER, and two flags MCI
and MNI are maintained for each multipoint VC. The variables store the minimum of the explicit
rate (ER), congestion indication (CI) and no increase (NI) indicated in the BRM cells which were
received after the last BRM cell was sent. Three temporary variables: MXER, MXCI, and MXNI
are also used when an FRM cell is received (their values do not persist across invocations of the
algorithm). They store the ER, CI and NI from the FRM cell. The algorithm operates as follows.

Upon the receipt of an FRM cell:

1. Multicast FRM cell to all participating branches

2. Let MXER = ER from FRM cell, MXCI = CI from FRM cell, MXNI = NI from FRM cell
3. Return a BRM with ER = MER, CI = MCI, NI = MNI to the source

4. Let MER = MXER, MCI = MXCI, MNI = MXNI

Upon the receipt of a BRM cell:

1. Let MER = min (MER, ER from BRM cell), MCI = MCI OR CI from BRM cell, MNI =
MNI OR NI from BRM cell

2. Discard the BRM cell

When a BRM is about to be scheduled:
Let ER = min (ER, ER calculated by ERICA for all branches)



4.2 Algorithm 2

This is a modified version of the second algorithm in [8]. The only change from Algorithm 1 is
ensuring that at least one BRM cell has been received from a leaf before turning around an FRM.
For this purpose, a boolean flag, AtLeastOneBRM is set to true when a BRM cell is received from
a branch, and it is reset when a BRM is sent by the branch point. As before, MER, MCI, MNI,
and here, AtLeastOneBRM, are stored for each multipoint VC. Again, MXER, MXCI, MXNTI are
just temporary variables.

Upon the receipt of an FRM cell:

1. Multicast FRM cell to all participating branches
2. IF AtLeastOneBRM THEN

e Let MXER = ER from FRM cell, MXCI = CI from FRM cell, MXNI = NI from FRM
cell

e Return a BRM with ER = MER, CI = MCI, NI = MNI to the source
e Let MER = MXER, MCI = MXCI, MNI = MXNI
e Let AtLeastOneBRM = 0

Upon the receipt of a BRM cell:

1. Let AtLeastOneBRM =1

2. Let MER = min (MER, ER from BRM cell), MCI = MCI OR CI from BRM cell, MNI =
MNI OR NI from BRM cell

3. Discard the BRM cell

When a BRM is about to be scheduled:
Let ER = min (ER, ER calculated by ERICA for all branches)

4.3 Algorithm 3

This is a modified version of the third algorithm in [8]. The main idea here is that the branch point
does not turn around the FRMs, but the BRM that is received from a leaf immediately after an
FRM has been received by the branch point is passed back to the source, with the minimum values.
A boolean flag, AtLeastOneFRM, indicates that an FRM cell has been received by the branch point
after the last BRM cell was passed to the source. Again, MER, MCI, MNI, and AtLeastOneFRM
are stored per multipoint VC.

Upon the receipt of an FRM cell:

1. Multicast FRM cell to all participating branches

2. Let AtLeastOneFRM =1



Upon the receipt of a BRM cell:

1. Let MER = min (MER, ER from BRM cell), MCI = MCI OR CI from BRM cell, MNI =
MNI OR NI from BRM cell

2. IF AtLeastOneFRM THEN

e Pass the BRM with ER = MER, CI = MCI, NI = MNI to the source
e Let MER = PCR, MCI = 0, MNI =0
e Let AtLeastOneFRM = 0

ELSE Discard the BRM cell

When a BRM is about to be scheduled:
Let ER = min (ER, ER calculated by ERICA for all branches)

4.4 Algorithm 4

A variation of this algorithm was presented in [8] as algorithm 4, and another variation using
sequence numbers in RM cells was proposed in [1]. The main idea here is that a BRM is passed to the
source only when BRM cells have been received from all branches. To count the number of branches
from which BRM cells were received at the branch point (after the last BRM cell was passed by
the branch point), a counter, NumberOfBRMsReceived is incremented the first time a BRM cell
is received from each branch. As before, the MER, MCI, MNI, and NumberOfBRMsReceived
registers are maintained per multipoint VC. The value of the NumberOfBRMsReceived counter is
compared to the value of another counter, NumberOfBranches, every time a BRM cell is received
by the branch point. NumberOfBranches stores the number of branches of the point-to-multipoint
VC at this branch point. The register NumberOfBranches is also stored for each VC, and is
initialized during connection setup. In addition, if leaf initiated join is allowed (as in UNI 4.0),
NumberOfBranches must be updated every time a branch is added to a branch point. If the value
of NumberOfBRMsReceived is equal to NumberOfBranches, the BRM cell is passed back to the
source, carrying the values of the MER, MCI and MNI registers.

A flag, BRMReceived, is needed for each branch to indicate whether a BRM cell has been received
from this particular branch, after the last BRM cell was passed. The flag is stored for each output
port and not for each VC, since it is needed for each branch.

Upon the receipt of an FRM cell:
Multicast FRM cell to all participating branches

Upon the receipt of a BRM cell:

1. IF NOT BRMReceived THEN
Let BRMReceived = 1
Let NumberOfBRMsReceived = NumberOfBRMsReceived + 1

2. Let MER = min (MER, ER from BRM cell), MCI = MCI OR CI from BRM cell, MNI =
MNI OR NI from BRM cell



3. IF NumberOfBRMsReceived is equal to NumberOfBranches THEN

e Pass the BRM with ER = MER, CI = MCI, NI = MNI to the source
e Let MER = PCR, MCI = 0, MNI =0

e Let NumberOfBRMsReceived = 0

e Let BRMReceived = 0 FOR all branches

ELSE Discard the BRM cell

When a BRM is about to be scheduled:
Let ER = min (ER, ER calculated by ERICA for all branches)

Note that a timeout mechanism must be implemented to ensure that BRM cell flow is not stopped
in the case of non-responding branches.

5 New Algorithms

The main problem with algorithm 4 described in the previous section is its slow transient response.
Even when high overload has been detected, the algorithm has to wait for feedback from (possibly
distant) leaves before indicating the overload information to the source. By that time, the source
might have transmitted a large number of cells which would be dropped due to buffer overflow,
leading to performance degradation. This situation is especially problematic when the source has
been idle for some time, and then suddenly sends a burst, so there are no RM cells initially in the
network.

The main idea behind the algorithms presented next is that the slow transient response problem
should be avoided when an overload situation has been detected. In this case, there is no need
to wait for feedback from all the leaves, and the overload should be immediately indicated to the
source. In cases of underload indication from a leaf, it is better to wait for feedback from all the
leaves, since another branch may be overloaded. This is somewhat similar to the idea behind the
backward explicit congestion notification (BECN) cells sent by the switches.

Overload is detected when the feedback to be indicated is much less than the last feedback returned
by this branch point (the “much less” condition can be tested using an additive or multiplicative
value or factor). An alternative method would be to compare the feedback to be indicated to the
current cell rate (CCR) or ACR of the VC. Although this may be better because it accounts for
upstream bottlenecks, and prevents the transmission of unnecessary BRM cells in such cases, the
CCR information may be stale due to the delay from the source to the branch point (it may also
be much larger when the source becomes idle or becomes a low rate source after the last FRM was
sent), and a large number of BRMs may be sent in such cases. The last feedback indicated by
the branch point is a more current value. The minimum of the CCR and last feedback given can
be used in the comparison, but this involves some additional complexity, and may slow down the
overload response when the CCR happens to have been small, but is currently large.

Note that when a BRM cell is returned due to overload detection before feedback has been received
from all branches, the counters and the register values are not reset.
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5.1 Fast Overload Indication (Algorithm 5)

In this algorithm, the LastER register maintains the last explicit rate value returned by this branch
point. The registers MER, MCI, MNI, NumberOfBRMsReceived, NumberOfBranches and LastER,
are stored per multipoint VC. As before, BRMReceived is stored per output port.

Two temporary variables: SendBRM and Reset are used. SendBRM is set only if a BRM cell is
to be passed to the source by the branch point. Reset is not true, only if a BRM cell is used
to indicate overload conditions, and hence the counters and register values should not be reset.
FRMminusBRM is not a real variable; it is only used for accounting purposes, and will not exist
in a real implementation.

Upon the receipt of an FRM cell:

1. Multicast FRM cell to all participating branches

2. Let FRMminusBRM = FRMminusBRM + 1

Upon the receipt of a BRM cell:

—

. Let SendBRM = 0

N

. Let Reset = 1

3. IF NOT BRMReceived THEN
Let BRMReceived = 1
Let NumberOfBRMsReceived = NumberOfBRMsReceived + 1

4. Let MER = min (MER, ER from BRM cell), MCI = MCI OR CI from BRM cell, MNI =
MNI OR NI from BRM cell

5. IF MER << LastER THEN (* overload is detected *)
IF NumberOfBRMsReceived < NumberOfBranches THEN
Let Reset =0
Let SendBRM =1
ELSE IF NumberOfBRMsReceived is equal to NumberOfBranches THEN
Let SendBRM =1

6. IF SendBRM THEN

e Pass the BRM with ER = MER, CI = MCI, NI = MNI to the source

e IF Reset THEN
Let MER = PCR, MCI = 0, MNI = 0
Let NumberOfBRMsReceived = 0
Let BRMReceived = 0 FOR all branches

o Let FRMminusBRM = FRMminusBRM — 1

ELSE Discard the BRM cell
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When a BRM is about to be scheduled:

1. Let ER = min (ER, ER calculated by ERICA for all branches)

2. Let LastER = ER

5.2 RM Ratio Control Option (Algorithm 6)

The previous algorithm may increase the BRM cell overhead, since the ratio of source-generated
FRM cells to BRM cells received by the source can be more than one. To avoid this problem,
we introduce the register SkipIncrease which is maintained for each multipoint VC, and initialized
to zero. SkipIncrease is incremented whenever a BRM cell is sent before feedback from all the
branches has been received. When feedback from all leaves indicates underload, and the value of
the SkipIncrease register is more than zero, this particular feedback can be ignored and SkipIncrease
is decremented. Note that the value of the SkipIncrease counter will not increase to large values,
since the congestion avoidance algorithm (such as ERICA) arrives at the optimal allocation within
very few iterations, and the rate allocations cannot continue decreasing indefinitely.

A problem with this approach, though, is that the BRM cells at a branch point may be exhausted
for some time, and hence new ones discarded in underload situations, even when there is sudden
overload upstream, and the BRMs are needed. However, as seen in the performance analysis in the
next sections, this situation rarely arises since few BRMs are actually discarded, and SkipIncrease
always has small values. Observe that this situation can be alleviated if the CCR value (and not
the last ER returned) was being compared to the MER (since the CCR contains information about
the feedback given from upstream switches).

Upon the receipt of an FRM cell:

1. Multicast FRM cell to all participating branches

2. Let FRMminusBRM = FRMminusBRM + 1
Upon the receipt of a BRM cell:

1. Let SendBRM = 0
2. Let Reset =1

3. IF NOT BRMReceived THEN
Let BRMReceived = 1
Let NumberOfBRMsReceived = NumberOfBRMsReceived + 1

4. Let MER = min (MER, ER from BRM cell), MCI = MCI OR CI from BRM cell, MNI =
MNI OR NI from BRM cell

5. IF MER > LastER AND SkipIncrease > 0 AND NumberOfBRMsReceived is equal to Num-
berOfBranches THEN
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Let SkipIncrease = SkipIncrease — 1
Let NumberOfBRMsReceived = 0
Let BRMReceived = 0 FOR all branches
ELSE IF MER << LastER THEN
IF NumberOfBRMsReceived < NumberOfBranches THEN
Let SkipIncrease = SkipIncrease + 1
Let Reset = 0
Let SendBRM =1
ELSE IF NumberOfBRMsReceived is equal to NumberOfBranches THEN
Let SendBRM =1

6. IF SendBRM THEN

e Pass the BRM with ER = MER, CI = MCI, NI = MNI to the source

e IF Reset THEN
Let MER = PCR, MCI = 0, MNI = 0
Let NumberOfBRMsReceived = 0
Let BRMReceived = 0 FOR all branches

e Let FRMminusBRM = FRMminusBRM — 1

ELSE Discard the BRM cell

When a BRM is about to be scheduled:

1. Let ER = min (ER, ER calculated by ERICA for all branches)

2. Let LastER = ER

5.3 Immediate Rate Calculation Option (Algorithm 7)

The previously discussed algorithms can offer very fast congestion relief when an overload is detected
in a branch of the multicast tree. However, they do not account for the potential overload situation
at the branch point itself, since if the branch point is a switch, the ERICA algorithm is only
performed when the BRM cell is about to be scheduled on the link. In cases when the branch
point is itself a switch and a queuing point, the immediate rate calculation option invokes ERICA
whenever a BRM is received, and not just when a BRM will be sent. Hence overload at the branch
point can be detected and indicated according to the fast overload indication option as previously
described. However, this option involves some additional complexity.

The algorithm presented next is the same as Algorithm 6 in the previous subsection, except for the
addition of the ERICA invocation (italicized below).

Upon the receipt of an FRM cell:

1. Multicast FRM cell to all participating branches

13



2. Let FRMminusBRM = FRMminusBRM + 1
Upon the receipt of a BRM cell:

1. Let SendBRM = 0
2. Let Reset =1

3. IF NOT BRMReceived THEN
Let BRMReceived = 1
Let NumberOfBRMsReceived = NumberOfBRMsReceived + 1

4. Let MER = min (MER, ER from BRM cell), MCI = MCI OR CI from BRM cell, MNI =
MNTI OR NI from BRM cell

5. Let MER = minimum ER calculated by ERICA for all branches

6. IF MER > LastER AND SkipIncrease > 0 AND NumberOfBRMsReceived is equal to Num-
berOfBranches THEN
Let SkipIncrease = SkipIncrease — 1
Let NumberOfBRMsReceived = 0
Let BRMReceived = 0 FOR all branches
ELSE IF MER << LastER THEN
IF NumberOfBRMsReceived < NumberOfBranches THEN
Let SkipIncrease = SkipIncrease + 1
Let Reset =0
Let SendBRM =1
ELSE IF NumberOfBRMsReceived is equal to NumberOfBranches THEN
Let SendBRM =1

7. IF SendBRM THEN

e Pass the BRM with ER = MER, CI = MCI, NI = MNI to the source

e IF Reset THEN
Let MER = PCR, MCI = 0, MNI =0
Let NumberOfBRMsReceived = 0
Let BRMReceived = 0 FOR all branches

o Let FRMminusBRM = FRMminusBRM — 1

ELSE Discard the BRM cell

When a BRM is about to be scheduled:

1. Let ER = min (ER, ER calculated by ERICA for all branches)

2. Let LastER = ER

14



6 Performance Analysis

This section provides a performance comparison among all the consolidation algorithms, in a variety
of configurations with bursty and non-bursty traffic, with and without VBR, and with various link
lengths, bottleneck locations, and number of leaves. A large number of other configurations was
also tested (see [2, 5] for some of the configurations), but only a sample of the results is shown here.
In particular, configurations with a large number of leaves at varying distances in the multicast
tree were simulated, and the results were consistent with the other results.

The results are presented in the form of two graphs for each configuration:

e (a) Graph of allowed cell rate (ACR) in Mbps over time for each source

e (b) Graph of ABR queue lengths in cells over time at each switch

6.1 Parameter Settings

Throughout our experiments, the following parameter values are used:

1. All links have a bandwidth of 155.52 Mbps (149.76 Mbps when SONET overhead is accounted
for).

2. Except where indicated, all links are 1000 kms in length.

3. All point-to-multipoint traffic flows from the root to the leaves of the tree. No traffic flows from
the leaves to the root, except for RM cells. The same applies for point-to-point connections.

4. The source parameter Rate Increase Factor (RIF) is set to one, to allow immediate use of the
full explicit rate indicated in the returning RM cells at the source. ICR is also set to a high
value (almost Peak Cell Rate). These factors are set to such high values to simulate a worst
case load situation.

5. The source parameter Transient Buffer Exposure (TBE) is set to large values to prevent rate
decreases due to the triggering of the source open-loop congestion control mechanism. This
was done to isolate the rate reductions due to the switch congestion control from the rate
reductions due to TBE.

6. The switch target utilization parameter was set at 90%.

7. The switch averaging interval was set to the minimum of the time to receive 100 cells and
1 ms (the recommended value for WANS).

8. All sources are deterministic, i.e., their start/stop times and their transmission rates are
known. The bursty traffic sources send data in bursts, where each burst starts after a request
has been received from the client.

9. VBR sources are on for 20 ms and off for 20 ms.

10. Simulation time ranges from 200 ms to 800 ms to allow the system enough time to reach
steady state.
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6.2 Simulation Results

This section discusses the performance of the consolidation algorithms by comparing them in a set
of configurations. Figures 6 through 12 illustrate the performance of the seven different algorithms
in a situation where there is both variable capacity and variable demand. These situations offer
the toughest challenge for rate allocation algorithms [5, 2]. The configuration simulated is shown
in figure 3. The source indicated by W is a bursty source, I is a persistent (infinite) source, while

@\@

Swl Sw2 dSwl dv1

>t
B e i, N

Figure 3: WAN parking lot configuration with bursty, infinite and VBR connections

The rate graphs for algorithms 1, 2, and 3 show a lot of fluctuations and inaccurate (around 140
Mbps) feedback given in the initial 150 ms. This leads to large queues. Algorithm 4 gives more
accurate feedback, but the feedback is given after around 50 ms, which results in large initial
queues. Algorithms 5 and 6 produce identical results to algorithm 4, since the bottleneck link is
attached to the branch point. Algorithm 7, on the other hand, exhibits a fast transient response,
and gives relatively accurate feedback to both sources. Hence, it offers the best performance since
it combines the benefits of algorithm 4 with a fast transient response.

Figures 13 through 19 show the situation for a similar configuration. The configuration is the same
as the previous one (figure 3), but, instead of a bursty source and an infinte one, there are 2 infinte
sources (source name W is retained to distinguish the 2 connections, but it is also a persistent
source).

It is clear that all algorithms exhibit less fluctuations since the demand is not variable in this
configuration. However, figure 16 illustrates how the slow transient response of algorithm 4 again
leads to large queues. Algorithms 5 and 6 are again similar since the bottleneck link is again
attached to the branch point. It is clear that algorithm 7 avoids those problems due to its fast
transient response, and hence, the queue lengths are much smaller in this case. Also note that the
high initial cell rate (ICR) and rate increase factor (RIF) [3] values are the reason for the unusually
large queues.

The chain configuration, illustrated in figure 4 consists of a point-to-multipoint connection where
one of the links on the route to the farthest leaf is the bottleneck link. Also the link lenghts are
increasing by an order of magnitude in the last two hops.

As seen in figures 20 through 26, this configuration is an ideal configuration for illustrating the con-
solidation noise problem. The problem is severe for algorithms 1, 2 and 3 (especially 3) (see figures
20 through 22), and leads to rate oscillations, instability, unbounded queues and unfairness against
source S4 whose rate remains at half of the bandwidth, while the rate of S1 continues to oscillate
around a mean of about 103 Mbps. Although using a scheme such as ERICA+ leads to stability
and bounded queues in this case, the persistent rate oscillations lead to unacceptable performance
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Figure 4: WAN Chain configuration

and unfairness. Algorithms 4, 5 and 6 (figures 23 through 25) avoid the noise completely, but suffer
from a slow transient response. The rate of the source S1 only drops after around 60 ms, and by
that time, large queues have built up at the switches). Algorithm 7 yields optimal performance in
this case, since the rate of the source S1 immediately drops to its optimal value, as soon as the
overload is detected.

Observe that algorithms 5 and 6 also yield near optimal performance (as algorithm 7) if the desti-
nation dS3 was further than dS1 (see the configuration in figure 5), as illustrated in the figures 27
through 33. In figures 27 through 33, the configuration simulated is modified such that the bottle-
neck link is closer to the branch point at switch Sw2 than another leaf, namely dS3, as in figure

@ 2000 Kan /

Swl Swi oK Sw3 Swd

Figure 5: Modified chain configuration

In this case, as seen in figure 30, algorithm 4 wastes a long time waiting for feedback from dS3,
while it has already received the bottleneck feedback from Sw3. In this case, algorithms 5, 6, and
7 send the feedback as soon as the overload situation is indicated by the BRM cell coming from
switch Sw3, and do not needlessly wait for the BRM from dS3. Hence, the 3 algorithms perform
near optimally since the rate of the source S1 goes to the optimal value after only around 20 ms
for algorithms 5 and 6, and less than 10 ms for algorithm 7. The maximum queue lengths are also
much smaller than for algorithm 4 (> 16000 cells): for algorithms 5 and 6, they are around 7000
cells and for algorithm 7, they are only 3500 cells.

We have observed a similar, but more pronounced behavior when we simulated configurations
with a larger number of leaves at varying distances and at varying levels of the multicast tree.
The situation was much worse there with algorithms 1, 2, and 3, which had much more severe
noise problems. Algorithm 4 had an extremely slow transient response, while algorithms 5, 6, and
especially 7 exhibited fast rate changes to the optimal values, and small queues at the switches.
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7 Comparison and Interoperability of the Algorithms

This section summarizes the main conclusions from the comparison of the various algorithms.
All the algorithms preserve the fairness and efficiency of the point-to-point congestion avoidance
algorithm employed. We compare the space and time complexity, transient response, consolidation
noise, algorithm overhead and scalability, and discuss the interoperability of various algorithms.

7.1 Implementation Complexity

Algorithms 1 and 2 are complex to implement because the branch point has to turn around the
RM cells. This is somewhat similar to the Virtual Source/Virtual Destination (VS/VD) concept.
Most studies argue that turning around RM cells has a high implementation complexity.

Algorithm 3 is definitely the simplest algorithm to implement, since it does not turn around RM
cells, and it keeps minimal per-VC accounting information. Algorithm 4 is more complex since it
has to maintain the number of branches and the number of branches from which BRMs have been
received and compare those numbers. In addition, it has to maintain a bit for each output port to
denote whether a BRM cell has been received from this branch, and some timeout-related values.

Algorithms 5 and 6 are slightly more complex since they may also store the last ER sent by the
branch point. Alternatively, they can use the CCR of the source, which is already stored and
used by most congestion avoidance algorithms (it is used in the ERICA algorithm which we have
employed in this study). The additional complexity mainly stems from the comparison of the
MER value to the last ER sent or the CCR value, and maintaining the SkipIncrease counter. An
additional comparison and integer register do not incur much overhead though.

Algorithm 7 is somewhat more complex than algorithms 5 and 6, since it invokes the ERICA
algorithm for all the branches whenever a BRM cell is received, and not only when a BRM cell is
to be sent.

7.2 Transient Response

Algorithm 1 exhibits a very fast transient response. Algorithms 2 and 3 also have a reasonable
transient response, since, even if there are no RM cells in the network, the feedback is quickly
returned on the first BRM arrival.

Algorithm 4 has a slow transient response, since it waits for feedback from all the leaves before
sending BRMs. This is especially severe in cases when there are few or no RM cells already in
the network, such as during startup periods and for bursty sources. Therefore feedback can be
delayed up to a function of the longest round trip times of the leaves. Algorithms 5, 6 and 7 tackle
this problem for overload situations. The transient response of the schemes is very fast when an
overload is detected downstream (for algorithms 5 and 6), or at this branch and downstream (for
algorithm 7). In such cases, the transient response of the scheme is reasonably fast, and potential
cell loss and retransmissions are alleviated.
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7.3 Comnsolidation Noise

Algorithms 1, 2, and 3 suffer from severe consolidation noise problems. In particular, algorithms
1 and 3 (especially 3) suffer from unacceptable consolidation noise in some cases (recall figures 20
and 22). Algorithm 2 somewhat alleviates these problems, since BRMs are not sent if no feedback
has been received from any of the downstream components. However, it still exhibits considerable
noise.

Algorithms 4, 5, 6, and 7 eliminate this problem by waiting for feedback from all branches. Although
algorithms 5, 6, and 7 do not wait for feedback from all leaves in cases of overload, this does
not introduce noise, since the RM cells that are sent faster than the usual cells carry overload
information, which would have been conveyed by the next minimum value anyway.

7.4 Scalability Issues

Algorithms should be scalable in the sense that their overhead and feedback delay should not grow
with the growth of the number of branch points or levels of the multicast tree:

e RM cell overhead: The number of FRM cells generated by the source and the number of
BRM cells received by the source should be approximately the same. Algorithm 1 generates
a BRM cell at the branch point for every FRM cell it receives, thereby guaranteeing that the
BRM to FRM ratio remains one. Algorithms 2 and 3 maintain a BRM to FRM ratio of less
than or equal to one as follows. Algorithm 2 generates a BRM for an FRM only if a BRM
has been received from a leaf since the last BRM was sent by the branch point. Algorithm
3 allows a BRM to pass to the source only if an FRM cell has been received by the branch
point after the last BRM cell was forwarded by the branch point. Therefore both algorithms
maintain a ratio that is less than or equal to one (actually, it is strictly less than one for
algorithm 2, since the first FRM cell will never be turned).

Algorithm 4 also maintains a ratio close to one, since one BRM cell is returned when BRM
cells have been received from all branches. Algorithm 5 does not guarantee that the ratio
remains at one, since RM cells carrying overload indication are allowed to quickly return to
the source. Algorithms 6 and 7 fix this problem by maintaining a counter that is incremented
for every extra RM cell passed, and then decremented (and the BRM cell is discarded) in cases
of RM cells carrying underload information, when that counter exceeds zero. Hence, over the
long run, the ratio is maintained at one. Clearly, the counter cannot increase indefinitely,
since the rates cannot decrease indefinitely. In all cases we have examined, the counter did
not increase beyond a small value, since the ERICA algorithm quickly arrives at the optimal
allocation and exhibits a fast transient response.

In addition to the BRM to FRM ratio at the source, the number of BRM cells generated
in the network per source-generated FRM cell should be controlled. In algorithms 1 and 2,
the switch turns around the FRM cells and produces BRM cells, but the same FRM cells
are multicast to other branch point and to the leaves, and these also turn around the FRMs.
Hence, the number of BRMs in the network can grow with the increase of the number of
branch points. This is extremely undesirable. Algorithms 3, 4, 5, 6, and 7 solve this problem,
since switches do not turn around the FRM cells.
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e Sensitivity to the maximum number of branch points on a path (levels of the tree):
Algorithm 1 waits for an FRM cell to arrive before it can send the feedback information it
has consolidated from the BRM cells. This has to be done at every branch point, leading to a
delay that increases with the number of levels of the multicast tree. Algorithm 2 suffers from
the same drawback, since the algorithm also sends a BRM cell at the branch point when an
FRM cell is received.

Algorithm 3 is less sensitive to the number of levels of the multicast tree (contrary to what [1]
argues). The BRM cell is passed to the source only if an FRM cell has been received since
the last BRM cell was sent by the branch point. However, it is passed without additional
delay.

Algorithms 4, 5, 6, and 7 also do not suffer from high sensitivity to the multicast tree levels
since the delay (the time between the transmission of the FRM cell at the source until the
source receives the corresponding BRM cell) is only dependent on the round trip times from
the source to the leaves at that particular time. Observe that the round trip times to the
leaves can vary with time, dependent on the queuing delay of the switches on the path of the
multicast tree. Also note that more than one leaf can have an effect on that delay since BRM
cells arrive asynchronously at the branch points. However, is independent of the number of
levels or number of branch points of the multicast tree.

7.5 Interoperability of the Algorithms

The various consolidation algorithms should be able to interoperate with each other if no one
algorithm is standardized. It is necessary to examine how the algorithms will work together. It
seems that all the algorithms can interoperate smoothly with each other, but the performance of a
network with different algorithms at the different branch points, and point-to-multipoint VCs that
branch at several branch points with different algorithms will need further study if a consolidation
algorithm is not standardized.

8 Summary and Conclusions

Table 1 shows a summary of the results of the comparison between the consolidation algorithms.
In terms of complexity, algorithm 3 is clearly the simplest. Algorithms 1 and 2 are simple, except
that the RM turn around operation is expensive. Algorithm 4 introduces additional complexity
to algorithm 3, since it maintains per-branch variables and performs comparisons. Algorithm 5
introduces a little more complexity to 4; algorithm 6 introduces a little more to 5, and algorithm
7 introduces some more to 6, but most of the increments are of small complexity.

The transient response of algorithm 1 is fast, but can be erroneous. Algorithms 2 and 3 offer
medium response, while algorithm 4 is clearly slow. Algorithms 5, 6, and especially 7, have a fast
response when overload is detected.

Consolidation noise is a problem with algorithms 1, 2, and 3, especially 1 and 3. The other
algorithms overcome that problem.

As for RM cell overhead, the ratio of BRM cells received by the source to FRM cells sent by the
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source is maintained at unity by algorithm 1. It is less than one for algorithm 2 (at least the first
FRM is not returned), and is less than or equal to one for algorithm 3. Algorithm 4 ensures the
ratio is maintained close to one. Algorithm 5 introduces additional BRM cells in case of overload,
while algorithms 6 and 7 ensure the ratio is one over the long run (lim in the table means the limit
as time goes to infinity).

Finally, the sensitivity of algorithms 1 and 2 to the number of branch points and the levels of the
multicast tree is high due to the additional delay waiting for an FRM cell at each branch point,
and the additional BRM cells that are turned around at each level. Algorithms 3 to 7 do not suffer
from these flaws.

Table 1: Comparison of consolidation algorithms

Algorithm 1 2 3 4 5 6 7
Complexity High High Low Medium >Medium >Medium >>Medium
Transient Fast for Fast for Very fast
Response Fast Medium Medium Slow overload overload for overload
Consolidation

Noise High Medium High Low Low Low Low
BRM to FRM

Ratio at Root 1 <1 <1 <1 maybe>1 lim =1 lim =1
Sensitivity to

# branch points  High High Low Medium >Medium Medium Medium

The comparison clearly indicates that algorithms 1 and 2 suffer from many problems. Algorithm
3 is good, except for the consolidation noise problems which lead to unacceptable performance as
seen in the figures (especially 22 and 29). Algorithm 4 provides reasonable performance, but has a
slow transient response, which is overcome by the algorithms we proposed (5, 6 and 7). Algorithm
4 and the new algorithms are slightly more complex than algorithm 3, but this can be well worth
the performance benefits gained, especially with algorithm 7. Algorithm 7 avoids congestion, while
eliminating the consolidation noise problem.
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Figure 12: Results for WAN parking lot configuration with bursty, infinite and VBR connections
[Algorithm 7]
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Figure 14: Results for a WAN parking lot configuration with 2 infinite and one VBR connections
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Figure 15: Results for a WAN parking lot configuration with 2 infinite and one VBR connections
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Figure 16: Results for a WAN parking lot configuration with 2 infinite and one VBR connections
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Figure 17: Results for a WAN parking lot configuration with 2 infinite and one VBR connections
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Figure 18: Results for a WAN parking lot configuration with 2 infinite and one VBR connections
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Figure 19: Results for a WAN parking lot configuration with 2 infinite and one VBR connections
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Figure 20: Results for a WAN chain configuration [Algorithm 1]
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Figure 21: Results for a WAN chain configuration [Algorithm 2]
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Figure 22: Results for a WAN chain
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Figure 24: Results for a WAN chain configuration [Algorithm 5]
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Figure 25: Results for a WAN chain configuration [Algorithm 6]
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Figure 26: Results for a WAN chain configuration [Algorithm 7]
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Figure 27: Results for a modified chain configuration [Algorithm 1]

32



ACRs

ACRs

ACRs

150b=1, =100/
1CR: 150.00 150,00 150,00 150,00 150.00 150.00/ X RM: 256,00 256,00 75.00 256,00 241.00 241,00  Graph: 2

WAN Modified Chain: ACRs

Date072497

Queue Lengths

4500
4000
3500
3000
2500
2000
1500
1000

500

151, : int=1000isw.i
1CR: 150,00 150,00 150.00 150,00 150,00 150,00/ XRM: 256,00 256.00 75,00 256.00 241.00 241,00 Graph: 2

WAN Modified Chain: Queue Lengths

Dae07I24/97

QueueLength for Switch1l —
Queue L ength for Switch 2
Queue Length for Switch3 - |

100 200 300 400 500 600
Timein milliseconds

(b) Queue Length

Figure 28: Results for a modified chain configuration [Algorithm 2]
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Figure 29: Results for a modified chain configuration [Algorithm 3]
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Figure 30: Results for a chain modified configuration [Algorithm 4]
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Figure 31: Results for a modified chain configuration [Algorithm 5]
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Figure 32: Results for a modified chain configuration [Algorithm 6]
151 ur—— oacon2w7 e e~ Daeoz497
1CR: 15000 15000 15000 150.00 15000 18000/ XRM: 255,00 255,00 75.00 256.00 24100 241001 Greph: 7 1CR: 1500 150.0 1500 150.0 150.0 150,00/ XRM: 256,00 256,00 75,00 255,00 241,00 241,00 Grapt 7
WAN Modified Chain: ACRs WAN Modified Chain: Queue Lengths
180 T T T T T 3500 T T T T T
ACRfor S1 — QueueLength for Switch1l —
ACR for 4 -——- 1 3000 + QueueLength for Switch2 —--- 1
i Queue Length for Switch3 -
2500 1
4 [%2)
5
] g 2000 | 1
—

1 3 1500 | 1

=3

4 (4

1000 | 1
40 F ]
20 - 1 500 ]
0 . . . . . 0 . . . . .
0 100 200 300 400 500 600 0 100 200 300 400 500 600

Timein milliseconds

(a) Transmitted Cell Rate

Timein milliseconds

(b) Queue Length

Figure 33: Results for a modified chain configuration [Algorithm 7]
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