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Abstract:

The main goals of a switch scheme are high utilization, low queuing delay and fairness. To achieve
high utilization the switch scheme can maintain non-zero (small) queues in steady state which can
be used if the sources do not have data to send. It is very important to design and analyze the
queue control function which is used in such a scheme. In this contribution we study various queue
control functions and present analytical explanation of its behavior and simulation results. From
the study, we conclude that a simple linear queue control function performs satisfactorily.
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1 Introduction

The goals of rate allocation schemes are maintaining high utilization, small queuing delay, small cell
loss, and fairness among competing sources. In order to support (low quality) video sources over
ABR (Available Bit Rate) service, it is also desirable that in steady state the rates and queuing
delay be constant.

One way to achieve high utilization and low queuing delay is to vary the target rate as a function of
queue length. The function should be a decreasing function of queue length. The function should
also be simple so that it can be implemented in hardware.

In this contribution, we study several queue control functions which satisfy the above needs. We
present analytical explanation for performance of these functions. Then we present simulation
results which are consistent with the analysis. The various trade-offs between the queue control
functions is studied using appropriate metrics. The ERICA+ [6] switch scheme is used in the
simulation.

2 Switch Scheme Model

There are many ABR switch schemes ([1, 2, 3, 4, 6]). This section gives an overview of the switching
scheme model on which this study is based.

e An ABR switch scheme achieves the goals by giving explicit feedback to the sources to adjust
their source rates. These are usually known as Ezplicit Rate Feedback switches. The other
common switch model is the Ezplicit Forward Congestion Indication (EFCI) switch. We
assume that an Explicit Rate Feedback switch is used.

e One way to achieve high utilization (100%) and control queuing delay by quick draining of
queues is, to vary the target ABR rate dynamically. During steady state, the target ABR
rate is 100% while it is lower during transient state. Higher overloads result in even lower
target rates (thereby draining the queues faster). In other words:

Target rate = f(queue length) x function (current rate, link rate, HPR rate)

The HPR rate is the total rate of higher priority classes like VBR (variable bit rate) and
CBR (constant bit rate). The “f(queue length)” has to be a decreasing function of the queue
length. The switch scheme uses the above queue control function to adjust the allocated rate
depending on the current switch queue size.

e The switch measures the load, queue length and gives explicit feedback of target rate at
fixed intervals. This interval is called the “averaging interval”. The measurements are done
using the FRM cells and the feedback is given using the BRM cells. We assume that only one
feedback is given in each averaging interval to the sources. This avoids unnecessary conflicting
feedbacks to the sources.

The ERICA+ algorithm used in this study fits the above model.



3 Queue control functions

In this section the relationship between the queue length and queue control function is presented
for the above switch model. Then various queue control functions to achieve the desirable goals are
presented.

The following terms are used in the discussion:

N number of sources.
ts “averaging interval”, the period at which feedback to the sources is calculated at the switch.
CCR;(t) current rate of source i.
ACR;(t) allowed cell rate calculated at switch.
t, propagation time from the source to switch.
t; feedback delay is twice t,,.
R; link rate (for simplicity, assume all links have same rate)
Q(t) switch queue length (in cells)
R;(t) aggregate input rate seen at switch. R;(t) = SN COR;(t)
C(t) (conversion function) number of cells transmitted in time ¢ at link rate. C(t) = (R; x t)/424

if Ry is given in Mbps.

Note : X(t) denotes that X is a function of time.

3.1 Queue Length Function

The current rate is seen at the switch after ¢, time, so CCR;(t — t,) is rate of source i seen at
the switch. The sources adjust their rates based on the feedback information of the switches, ie.,
CCR;(t) = ACR;(t —tp).

In one averaging interval Q(t) is drained by R; x C(ts) cells. The queue builds up at input rate.
Then Q(t) can be expressed as follows :

N
Q(t) = Q(t - ts) + (Z CCRZ(t - tp) - RZ)C(ts)

=1

N
Qt) =Q(t —t5) + (Z ACR;(t - tf) — R)C(ts)

=1

Q(t) = Qt —ts) + (Ri(t) — Ri)ts



The switch scheme tries to adjust the input rate R;(¢) to match output rate depending on current
queue size, ie., R;(t) = f(Q(t)) x Available ABR Capacity, if we assume no HPR then R;(t) =
f(Q(t)) x R;. Hence,

Q(t) = Q(t — ts) + (f(Q(t — ts) — )R C(ts)

and (f(Q(t —ts) — 1)R;) is the rate at which the queue changes.

3.2 Explicit Rate
The sources adjust their rates ACR(t) based on explicit rate feedback from the switch. The source

rates lag from the explicit rate by Ty Hence ACR(t) (source rate) can be expressed using the
following function;

ACR(t) = f(Q(t —tf)) x F(ACR(t — ts), Link Rate, HP rate)

For simplicity we assume there is no HPR traffic (Note in the presence of bursty VBR sources there
might not be any steady state of the system). So the above function becomes

ACR(t) = f(Q(t — t) x F(ACR(t — t;), Link Rate)

For our ERICA + scheme the above function is as follows

ACR(t — ty) x Link Rate Link Rate)

Input Rate n

ACR(t) = f(Q(t —ty)) x max(

where Input Rate is the ABR input rate measured at the switch. The other terms used in FRICA +
are ignored since this is the only term which has the queue control function. The scheme tries to
match the input rate to the link rate, by over allocating the rates if the queue is small. If queues
are large then they are drained quickly by using part of the link capacity. The function f(Q) is a
fraction which modifies the link rate to achieve the above.

3.3 Design of Queue Control Function

The design considerations for the queue control functions are as follows:

o If queue length is very small it should be increased, so that the scheme can maintain some
small queue which can used when link is under utilized. This implies that f(Q) should be
greater than one.

e In steady state we desire constant queue length and target rate to be the max-min fairness
rate. The function Q(t) satisfies this goal if f(Q) =1 in steady state.

e If queue is large then part of the link capacity is used to drain the queues. Hence f(Q) should
be less than one. It is desirable not to use all the capacity to drain the queue. Therefore,
there is a minimum threshold, queue drain limit factor (QDLF), for f(Q).



e The f(Q) function has to continuous. Discontinuities imply sudden changes which give rise
to oscillations.

The queue control function with above properties will be of the form

>1 0<Q<Qo
=1 Qo< Q<@
<1 Q1 <Q< Q2
—QDLF Qs < Q <

where Qp < Q1 < Q2 < 00

Q) =

The following three functions are possible candidates.

Step function
The step function has multiple thresholds (See figure 1). This is most simplest to implement in
hardware (lookup table).

= Sa OSQSQO
=1 Qo <Q <@
= Sp Q1 <Q<Q2
=QDLF @2 <Q <

where s, > 1 and QDLF < s, < 1 are step parameters. In general it can have n steps. In the
above case n = 4.

Q) =

Linear function
The fraction f(Q) has linear relationship with queue length. (See figure 1)

=1-my{9%2 0<Q<Q

0

B -1 Q0<Q§Q1
f(Q)_ :1—ma(Q¢_27?1) Q1<Q§Q2
— QDLF Q2 <@ <0

where my, and m, are slope of the linear portions. This function can be implemented in a efficient
manner, using shift operations, if m, and my, are of the form 1/2* and the queue length is counted
in terms of Qq.

Hyperbolic function
The fraction f(Q) is a hyperbolic function of the queue length. (See figure 1)

= mhoras 0<Q<Qo

](_hb_l)Q‘i‘QO 0 Q<0
B — 0 < S W
f(Q) = =<ha_h‘f>% Q1 <Q<Q

= QDLF Q2 <@ <00

where h, and h; are parameters which control degree of curvature of the hyperbolic function. This
function takes more time to calculate, since it has a division operation. For high value of h, the
hyperbolic function becomes similar to step function. For h, value near 1, the hyperbolic function
approaches the linear function.



Note: f(Q2) = QDLF, so Q2 can be expressed in terms of QDLF and a parameter in the case of
linear and hyperbolic functions.

Hyperbolic
. / Linear
S I )
QDLF
Q, Q, Q,
Q (Queue Length)
Figure 1: Queue Control Functions
4 Metrics

To compare the performance of the queue control function the following metrics are chosen.

Convergence Time: The time the scheme takes to converge to steady state. To find the conver-
gence time, the variance and standard deviation of desired variable are calculated between
(i X tg,(14+1) x tg) for i = 0,1,..., where t; ( = 100ms) is a small time interval). Initially the
standard deviation is large due to oscillations. The convergence time is % x t; after which the
variance is small. Also the graphs of (mean+standard deviation) value of the variable versus
time are plotted. From the graph the convergence time can be calculated.

Standard Deviation: The standard deviation of various quantities like ACRs, queue length and
utilization is calculated. In order to separate the oscillations before steady state from affecting
the measurement, the variance is measured both before and after steady state is achieved.

Visual inspection of the graphs also gives a good idea about the convergence time and the variations.



5 Analytical Explanation

In this section we analyze the behavior of the proposed queue control functions. We assume a
simple configuration in our analysis. N infinite ABR sources (always has data to send) are sending
data to N ABR destinations (See figure 2). The performance study under more stressful conditions
is done by simulation using the Generic Fairness configuration - 2 [7] in the simulations section.

Source | Destination 1
Bott}eneck /O Destination 2
Source 2 Switch 1 Link Switch 2

0
Source N O Destination N

Figure 2: N Sources - N Destinations Configuration

In the beginning, the queue lengths grow depending on the initial ICR (initial cell rate). So the
maximum queue depends on the ICR and round trip time and is independent of the queue control
function used. The feedback information reaches the sources and the sources adjust their rates
accordingly. The switch initially estimates that the link is under utilized, so it asks the source
to increase their rates. But this gives rise to overloaded condition and increases the switch queue
lengths. When the queue length crosses )2 the queues are quickly drained by using (1-QDLF)
fraction of link capacity. In the meantime the feedback control loop is established, and the switch
gives reliable feedback to the sources. The feedback information tries to match the input rate to
output rate. As the input rate approaches output rate the oscillations die down and the network
reaches steady state. In steady state the rates and the queue lengths remain constant.

This behavior of the system is independent of the queue control function used, since all of them
have f(Q) = QDLF when Q(t) > Q2. So, in this analysis we assume that the initial convergence
period is over and the network is near the steady state.

The change in queue length in a averaging interval ¢ is given by:

AQ = F(Q(t —t7) — 1) x Ry x C(ty)



5.1 Step Function

If Q(t —tf) < Qo then f(Q(t —tf) = s, > 1, so the queue grows till feedback information is
passed to the sources asking them to decrease their rate. The queue grows for ¢ time and it can
be expressed as follows:

Q) = Q(t —t7) + (s — 1) x RlL’;—JS‘JC(m

if £ is a multiple of 5 the above simplifies to

Q(t) = Q(t —t5) + (sp — 1) X RiC(tf)

If the condition Qg < Q(t) < Q1 is satisfied, and input rate matches the output rate, then the
steady state is achieved, and queue remains at this constant length.

If Q1 < Q(t) < Q2 then the Q(t) starts decreasing with slope —(1 — s,). This decrease also takes
place for ¢y time, if the queue ends up between Qg and () and if input rate is close to output rate
then again the steady state is achieved.

Therefore for the system to achieve the steady state the parameter (g, should be small and Q1
should be such that Q1 > Qo+ (sp—1) x R;C(ty) is satisfied. Since step function has discontinuities,
it is very sensitive to queue length value near the thresholds and steady state might not be reached
if the parameters are not set properly. If parameters are not set properly, then the queue grows
from a value below (g for ¢; time crosses Q1 and decreases for t; time to a value less than Qg and
this pattern repeats.

5.2 Linear Function

If Q(t —ty) < Qo, then f(Q(t)) > 1. Similar to the step function the queue keeps growing for t;
time with slope of (f(Q(¢t —ts)) — 1) x R;. But unlike the step function, the slope now depends
on the value of queue length. After ¢y seconds if the queue Q(t) > @1, the queue length starts
decreasing with a slope of (f(Q(t) — 1) x R;. The slope now depends on the value of the queue
length so the there are no sudden changes in the slope. Therefore the oscillations are less compared
to the step function. If the system is near steady state, then the oscillations decrease, queue length
becomes (1 and system reaches steady state.

5.3 Hyperbolic Function

The analysis for this case is similar to above. If h, and hj parameter are close to one (typical values
are hg = 1.15, hy = 1.05) the hyperbolic function has similar behavior as the linear function. If h,
is high then the hyperbolic function is close to the step function. Since hyperbolic function has
a larger curvature initially and then smooths out, f(Q) value will be smaller when @y threshold
is crossed compared to the linear function. Hence the fluctuations in the rates are more, but the
queue draining is faster.



6 Simulation: Configuration and Parameters

In this section the two configurations used in the simulations are explained.
6.1 Simple Configuration: N Source - N Destinations

In this configuration: (See figure 2)

N infinite sources send data to N destinations

e The traffic is one way
e The initial value of ICR are chosen randomly in the range (0,link rate)

e All links are of length 1000 Km, which corresponds to a propagation delay of 5 ms at 149.76
Mbps

e All links have a bandwidth of 149.76 Mbps (after accounting for SONET overhead).

e The sources start at random time between (0, tg777), where ¢y is the round trip time. ¢gpr
= 30 ms for the above configuration.

6.2 Generic Fairness Configuration - 2 (GFC-2)

This configuration (See figure 3) was used to test the performance of the queue control functions
and the switch scheme under more stressful conditions. The value of link distance D was chosen to
be 1000 Km. This configuration and the expected max-min fairness rate for the different VC’s are
given in [7]

7 Simulation: Results

In this section the simulation results using the above two configurations are given. The graphs
of rates, queue length and utilization are given. The tables and the graphs are used to study the
performance of different queue control functions. In the simulations for both configurations, QD LF
was chosen to be 0.5.

7.1 Simple Configuration: Results

The table 1 shows the performance for different step values (parameters) of the step queue control
functions as the queue threshold @) is varied. The mean bottleneck link queue length, its standard
deviation before one second and after one second (last two columns) are shown in the table. Note
that @ is fixed given the QDLF and other parameters of the linear and hyperbolic functions.
Number of sources N = 3.

The following things can be observed from the table 1.
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Figure 3: Generic Fairness Configuration - 2

The step function never converges entirely. The values are fluctuating near the target values,
so the standard deviation after one second is lower than the standard deviation in the first
second.

The linear and hyperbolic function reach steady state. The standard deviation after one
second is very small.

As Q1 increases the convergence time increases for linear and hyperbolic functions

For Q1 = 2Qy, the linear function converged. The value of f(Q) for hyperbolic function value
is less compared to that of linear function, so the queue is drained faster and () becomes
less than Q9. Therefore for the hyperbolic function the queue length and rate values are
oscillating near the target value.

For @1 = 8Q), the convergence time for hyperbolic function is more than linear.

The graphs 4(b), 5(a), 6(a) show the ACR rate of the three sources.

The mean and standard deviation of the rates and the queue lengths are calculated for every 100
milliseconds. These are shown figures 4(b), 5(b), 6(b) for VC rates and in figures 4(d), 5(d), 6(d)
for the queue lengths. From these graphs the converging time can be estimated. In steady state the
oscillations are small, the standard deviation is small compared to mean. So the quantity (mean
+ standard deviation) has value close to the mean in the steady state.
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Table 1: Simple Configuration: Results

Queue a b N Q2 Convg Mean Std Dev Std Dev
Control | param param time(secs) Q(cells) (bef 1 sec) (after 1 sec)
Step 0.75 1.01  4Q0 26 Qo - 252.93  552.21017 501.60
0.90 1.01  4Q0 26 Qo - 98.04 651.82 241.43
0.90 1.05 4Qo 26 Qo - 663.63 1226.70 840.36
0.95 1.01  4Q0 26 Qo - 251.51 816.62 393.26
0.95 1.05 4Qo0 26 Qo - 124.11 805.32 240.04
0.95 1.01  2Qp 26 Qo - 896.90 1386.87 1036.66
0.95 1.01  8Qoy 26 Q - 483.20 1001.54 644.73
Linear 1/16 1/16 2 Qo 26 Qo 0.20 311.85 335.61 0.69
1/16 1/16 4 Qo 26 Qo 0.32 403.52 457.90 0.69
1/16 1/16 8 Qo 26 Qo 0.61 402.85 622.02 0.69
Hyperbolic | 1.15  1.05 2Qp 26 Qo - 509.94  423.89 205.65
1.15 1.05 4Qo0 26 Q 0.32 214.19 500.14 0.86
1.15 1.05 8 Qo 26 Qo 0.82 220.96 862.25 0.63

The (e) graph shows the utilization for the bottleneck link.

For the step function there is oscillation in all the quantities (rates, queue and utilization). For
linear and hyperbolic functions the oscillations die down and the system reaches steady state. In
steady state the rate and queue length are constant and utilization is 100%. Hence the linear and
hyperbolic queue control function fulfill the desired goal. This is consistent with the analytical
explanation given in the previous section.

7.2 GFC-2 Configuration: Results

The following parameters were used in the simulations for this configuration.

e Thresholds: Qg = 176, Q1 = 4 X Qq, Q2 = 26 X Qo, QDLF = 0.5

e Step: s, =0.95, s, = 1.01

e Linear: m, = 1/16, my = 1/16

e Hyperbolic: h, = 1.15, my = 1.05
The table 2 shows the performance for three queue control functions. The table shows the H (1)
VC’s mean rate, switch queue length for SW5 and its convergence time, standard deviation before
one second and after one second. The queue length variation is present in all the three cases. The

rate variation is much less in linear and hyperbolic functions compared to step function. This is
also evident from the graphs which are explained in the next section.
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Table 2: GFC-2 Configuration: Results

Queue Quantity ~ Convergence Mean Std Dev Std Dev
Control Time (secs) (before 1 sec) (after 1 sec)

Step H(1) ACR - 72.81 18.4 4.46
SW5 Queue - 284.28 878.63 281.85

Linear H(1) ACR 1.25 52.46 14.38 1.08
SW5 Queue 1.3 455.46 1043.71 220.42

Hyperbolic H(1) ACR 1.45 52.77 13.57 0.58
SW5 Queue 1.3 361.32 968.27 201.86

7.3 GFC-2 Configuration: Graphs

The graphs 7, 8, 9 were obtained by simulating the GFC-2 configuration using the step, linear and
hyperbolic queue control functions respectively. Figures 7(a), 8(a), 9(a) show the ACR rate for one
VC of each of A through H type VCs versus time.

The (b) graphs have the queue length for all the switches. The maximum queue is due to the
initial overload, before the first round trip time. Once the feedback control loop is established the
f(Q) value is QDLF and queues are drained quickly. Again in 7(b) oscillations when step function
is used are more compared to the oscillations when other two functions are used. The graphs
7(c), 8(c), 9(c) plot mean plus standard deviation for VC rates. The figures 7(d), 8(d), 9(d) plot
corresponding (mean+standard deviation) graphs for the queue lengths. The graphs 7(e), 8(e),
9(e) give the utilization of all the links between the switches.

Note that in graphs when step function is used some of the VCs do not get their max-min fair
share rates and the VCs near the fair share have considerable oscillations. The step function is very
sensitive to queue length variation near the thresholds. Since the configuration is complex, with
large number of VCs passing through each of the switchs, the queue length and hence the rates
vary. For the graphs 8(a),9(a) the oscillations are only present before steady state. The oscillations
die down and the rates become steady since the function f(Q) changes smoothly.
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Figure 4: Simple Configuration: Rate, Queue and Utilization graphs: Step queue control function
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Figure 5: Simple Configuration: Rate, Queue and Utilization graphs: Linear queue control function
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Figure 7: GFC-2 Configuration: Rate and Queue graphs for: Step queue control function
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Figure 8: GFC-2 Configuration: Rate, Queue and Utilization graphs: Linear queue control function
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