3k sk sk ok ok sk koo sk sk sk ok sk sk sk sk sk sk sk ok ok sk sk sk sk sk sk sk sk sk sk sk >k sk sk ok sk sk sk ok sk sk sk ke ok sk sk sk sk ok sk sk sk sk sk sk koo sk sk sk sk ok sk sk sk ke sk sk skeskesk sk sk ok ke sk sk sk kokk

ATM Forum Document Number: ATM Forum/98-0154

ko ok ok kb ok ook skok sk ok ok skok stk ok ok ok ook sk sk ok ook sk ok ok sk ok kot ok sk sk ok ok sk sk sk kot sk sk sk ok ok sk skok ok sk sk sk ok sk sk ok o kok ko sk ok ok ook sk ok ok

Title: Determining the number of active ABR sources in switch algorithms

3Kk ok sk ok ok sk koo sk sk sk ok sk sk ok ok sk sk >k ok ok sk sk >k ok sk sk sk sk ok sk sk >k sk ok ok sk >k sk ok sk sk sk ke ok sk sk sk sk ok sk sk sk ok sk sk sk koo sk sk sk sk ok sk sk sk sk ok sk sk sk sk sk sk sk ok ok sk sk sk kokk

Abstract:

The ABR service is designed to fairly allocate the bandwidth unused by higher priority services. The
network indicates to the ABR sources the rates at which they should transmit to minimize their cell
loss. Switches must constantly measure the demand and available capacity, and divide the capacity
fairly among the contending connections. In order to compute the fair and efficient allocation for
each connection, a switch needs to determine the effective number of active connections. In this
contribution, we propose a method for determining the number of active connections and the fair
bandwidth share for each. We prove the efficiency and fairness of the proposed method analytically,
and simulate it for a number of configurations.
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3Kk ok 3k ok ok ok >k ok ok >k ok ok sk >k ok ok Sk Sk >k ok ok sk Sk >k ok ok Sk >k sk ok Sk Sk >k 3k ok ok sk >k ok ok ok ok >k ok ok ok Sk ok ok ok Sk >k sk ok ok Sk >k koo ok sk ok ok ok Sk >k sk sk ok ok sk sk sk ok sk >k ok ok ok sk k kokk


Raj Jain
Horizontal extra long


This contribution is a revised version of a paper to be presented at the IEEE International Confer-
ence on Communications (ICC) 1998 [5].

1 Introduction

Determining the fair bandwidth share for the active ABR connections is an extremely complex
problem. This is because fairness is commonly measured by the max-min fairness criteria (defined
in the next section). Intuitively, fairness means that if a connection is bottlenecked elsewhere, it
should be allocated the maximum it can use, and the left over capacity should be fairly divided
among the connections that can use it. The switch should indicate this fair bandwidth share to the
sources, while also accounting for the load and queuing delays at the switch.

This contribution proposes a method to determine the fair bandwidth share for the active ABR
connections, and analyzes the performance of this method using both simple mathematical proofs
and simulations. The remainder of the contribution is organized as follows. In the next section, we
describe the original ERICA switch algorithm which is employed in this study. Sections 3 and 4
point out some problems with the original ERICA algorithm, and describe how ERICA has solved
these problems. We then describe our proposed method (which also overcomes those problems),
and give a proof of its correctness, and a number of examples of its operation. Finally, we analyze
the performance of the proposed method.

2 The Original ERICA Switch Algorithm

Several switch algorithms have been developed to compute the feedback to be indicated to ABR
sources in RM cells [1]-[6],[10, 11]. The ERICA algorithm [8, 10] is one of these algorithms.

The ERICA algorithm aims at computing a fair and efficient allocation of the available bandwidth
to all contending sources. Like any dynamic resource management algorithm, it requires monitoring
the available capacity and the current demand on the resources. Here, the key “resource” is the
available bandwidth at a queuing point (e.g., an output port). Hence, the ERICA switch algorithm
is applied to each output port (or link). In this section, we present the basic features of the original
algorithm and explain their operation. The next sections describe some problems and additions to
the algorithm, and a new method to determine the number of active connections that tackles those
problems. For a more complete description of the algorithm and its performance, refer to [10].

The ERICA switch periodically monitors the load on each link and determines a load factor, z, the
available capacity, and the number of currently active virtual connections (VCs). The load factor
is calculated as the ratio of the measured input rate at the port to the target capacity of the output

link.
ABR Input Rate

ABR Capacity

where:
ABR Capacity<+Target Utilization x Link Bandwidth — VBR Usage — CBR Usage.

The Input Rate is measured over an interval called the switch measurement interval. The above
steps are executed at the end of the switch measurement interval.

Target utilization is a parameter which is set to a fraction (close to, but less than 100%) of the
available capacity.



The load factor, z, is an indicator of the congestion level of the link. High overload values are
undesirable because they indicate excessive congestion; so are low overload values which indicate
link underutilization. The optimal operating point is at an overload value equal to one.

The fair share of each VC, FairShare, is also computed as follows:

ABR Capacity
Number of Active Connections

FairShare«

The switch allows each connection sending at a rate below the FairShare to rise to FairShare.
If the connection does not use all of its FairShare, then the switch fairly allocates the remaining
capacity to the connections which can use it. For this purpose, the switch calculates the quantity:

VCShare«+ @

If all VCs changed their rate to their VCShare values then, in the next cycle, the switch would
experience unit overload (z equals one). V(CShare aims at bringing the system to an efficient
operating point, which may not necessarily be fair. A combination of the VCShare and FairShare
quantities is used to rapidly reach optimal operation as follows:

ER Calculated«~Max (FairShare, VCShare)

Sources are allowed to send at a rate of at least FairShare to ensure minimum fairness between
connections. If the VCShare value is greater than the FairShare value, the source is allowed to
send at VCShare, so that the link is not underutilized. This step also allows an unconstrained
source to proceed towards its max-min rate.

The calculated ER value cannot be greater than the ABR Capacity which has been measured
earlier. Hence, we have:

ER Calculated<—Min (ER Calculated, ABR Capacity)

To ensure that the bottleneck ER reaches the source, each switch computes the minimum of the
ER it has calculated as above and the ER value in the RM cell, and indicates this value in the ER
field of the RM cell.

The algorithm described above is the main algorithm, but several other steps are carried out to
avoid transient overloads and variations in measurement, and drain the transient queues. Moreover,
the algorithm is modified to achieve max-min fairness as described in sections 4 and 5.

3 The Measurement Interval

ERICA measures the required quantities over consecutive intervals and uses the measured quantities
in each interval to calculate the feedback in the next interval. The length of the measurement
interval limits the amount of variation which can be eliminated. It also determines how quickly
the feedback can be given to the sources, because ERICA gives the same feedback value per source
during each measurement interval. Longer intervals produce better averages, but slow down the rate
of feedback. Shorter intervals may result in more variation in measurements, and may consistently
underestimate or overestimate the measured quantities.



The ERICA algorithm estimates the number of active VCs to use in the computation of the fair
share by considering a connection active if the source sends at least one cell during the measurement
interval. This can be inaccurate if the source is sending at a low rate and the measurement
interval is short. Exponentially averaging the number of active connections over successive intervals
produces more accurate estimates, but may still underestimate the number of connections if the
measurement interval is short. In this contribution, we propose a better method for estimating the
number of active connections. The new method is not so sensitive to the length of the measurement
interval. It also eliminates the need to perform some of the steps of the ERICA algorithm, as
described in the next section.

4 The Fairness Problem and ERICA Solution

Assuming that the measurements do not exhibit high variation, and the measurement interval is
long enough to estimate the number of VCs, the load factor and the available capacity, the original
ERICA algorithm converges to efficient operation in all cases. The convergence from transient
conditions to the desired operating point is rapid, often taking less than a round trip time.

However, we have discovered cases in which the original algorithm does not converge to max-min
fair allocations. This happens if all of the following three conditions are met:

The load factor z becomes one
There are some connections which are bottlenecked upstream
The source rate for all remaining connections is greater than the FairShare

If this happens, then the system remains in its current state, because the term CCR/z is greater
than FairShare for the non-bottlenecked connections. This final state may or may not be fair in
the max-min sense.

This problem was overcome in ERICA as follows. The algorithm is extended to remember the
highest allocation made during each measurement interval, and ensure that all eligible connections
can also get this high allocation. To do this, we add a variable MaxAllocPrevious which stores
the maximum allocation given in the previous interval, and another variable Max AllocCurrent
which accumulates the maximum allocation given during the current switch measurement interval.
Basically, for z > 1+, where § is a small fraction, we use the basic ERICA algorithm and allocate
Max (FairShare, VCShare). But, for z < 1+ §, we attempt to make all the rate allocations equal.
We calculate the ER as Max (FairShare, VCShare, MaxAllocPrevious).

The key point is that the VC'Share is only used to achieve efficiency. The fairness can be achieved
only by giving the contending connections equal rates. Our solution attempts to give the connections
equal allocations during underload and then divide the (equal) CCRs by the same z during the
subsequent overload to bring them to their max-min fair shares. The system is considered to be
in a state of overload when its load factor, z, is greater than 1 + §. The aim of introducing the
quantity § is to force the allocation of equal rates when the overload is fluctuating around unity,
thus avoiding unnecessary rate oscillations.

The remainder of this contribution proposes a more accurate method to compute the max-min fair
shares for all the contending connections, while avoiding the excessive sensitivity to the length of
the measurement interval discussed in the previous section.



5 An Accurate Method to Determine the Fair Bandwidth Share

As previously discussed, ERICA determines the number of active connections by considering a
source as active if at least one cell from this source is sent during the measurement interval. A
more accurate method to compute activity and eliminate the need for the proposed solution to the
fairness problem is to compute a quantity that we call the “effective number of active VCs” and
use this quantity to compute the FairShare, as described next.

5.1 Basic Idea

We redefine the Fair Share quantity to be the marimum share a VC could get at this switch
under mazx-min fairness criteria. Hence, the FairShare is calculated as follows:

ABR capacity

FairShare =
alronare Effective number of active VCs

The main innovation is the computation of the effective number of active VCs. The value of the
effective number of active VCs depends on the activity level of each of the VCs. The activity level
of a VC is defined as follows:

Source Rate

Activity level = Min(1, —————
cHvity feve in(l, FairShare)

Thus, VCs that are operating at or above the FairShare are each counted as one. The VCs that are
operating below the FairShare (and are probably not bottlenecked at this switch) only contribute
a fraction. The VCs that are bottlenecked at this switch are considered fully active while other
V(s are considered partially active.

The effective number of active VCs is the sum of the activity levels for all VCs:

Effective number of active VCs = Z Activity level of VC;

2

Note that the definition of activity level depends upon the FairShare, and the definition of the
FairShare depends upon the activity levels. Thus, the definitions are recursive. Ideally, we would
need to iterate several times given the source rates of various VCs.

5.2 Examples of Operation
Example 1 (stability):

Swl Link 1 Sw? . Link 2 Sw3

a

— o _®
[[][ 16,17 ]15]

Figure 1: Upstream Configuration




Consider the upstream bottleneck case with 17 VCs shown in figure 1. It has been shown in [9]
that this configuration demonstrates the unfairness of the original ERICA algorithm as described
in section 2, which necessitates the addition described in section 4.

Assume that the target capacity is 150 Mbps. For the second switch, when the rates for (S1, S16,
S17) are (10, 70, 70):

Tteration 1: FairShare = 70 Mbps
Activity = (10/70, 70/70, 70/70) = (1/7, 1, 1)
Effective number of active VCs =1+ 1 4+ 1/7 = 15/7
Iteration 2: FairShare = Target capacity /Effective number of active VCs = 150/2.14 = approx-
imately 70 Mbps

Hence, this example shows that the system is stable at the allocation of (10, 70, 70). At any
other allocation, the scheme will calculate the appropriate FairShare that makes the allocation
eventually reach this point, as seen in the next two examples.

Example 2 (rising from a low FairShare):
For the same configuration, when the rates are (10, 50, 90):

Assume that the Effective number of active VCs = 3
Iteration 1: FairShare = 150/3 = 50 Mbps

Activity = (10/50, 50/50, 1) = (0.2, 1, 1)

Effective number of active VCs = 0.2 + 1 + 1 = 2.2
Iteration 2: FairShare = 150/2.2 = approximately 70 Mbps

Again, the scheme reaches the optimal allocation within a few round trip times.
Example 3 (dropping from a high FairShare):

For the same configuration, when the rates are (10, 50, 90), suppose that the effective number of
active V(s is initially 2:

Iteration 1: FairShare = 150/2 = 75 Mbps

Activity = (10/75, 50/75, 1) = (0.13, 0.67, 1)

Effective number of active VCs = 0.13 4+ 0.67 + 1 = 1.8
Iteration 2: FairShare = 150/1.8 = 83.33 Mbps

Suppose the sources start sending at the new rates, except for the first one which is bottlenecked
at 10 Mbps. Also assume that FairShare is still at 83.33 Mbps.

Activity = (10/83.33, 83.33/83.33, 83.33/83.33) = (0.12, 1, 1)
Effective number of active VCs = 0.12 +1 + 1 = 2.12
FairShare = 150/2.12 = approximately 70 Mbps

Again, the scheme reaches the optimal allocation after the sources start sending at the specified
allocations, which is within a few round trip times.
5.3 Derivation

The following derivation shows how we have verified the correctness of our method of calculation of
the number of active connections. The new algorithm is based upon some of the ideas presented in



the MIT scheme [2, 3, 4]. However, this algorithm does not suffer from the known drawbacks of the
MIT scheme (the high complexity, possible underutilization, and insensitivity to queuing delay).

The derivation depends on classifying active VCs as either underloading VCs or overloading VCs.
A VC is overloading if it is bottlenecked at this switch; otherwise the VC is said to be underloading.
In the MIT scheme, a VC is determined to be overloading by comparing the computed FairShare
value to the desired rate indicated by the VC source. In our scheme, we classify a VC as overloading
if its source rate is greater than the FairShare value. Our algorithm only performs one iteration
every measurement interval, and is not of the complexity of the order of the number of VCs, as
with the MIT scheme.

The MIT scheme has been proved to compute max-min fair allocations for connections within a
certain number of round trips (see the proof in [3]). According to the MIT scheme:

ABR, Capacity — YN Ru;

FairShare = N_N,

where:
Ru; = Rate of i*® underloading source (1 <i < N,)
N = Total number of VCs
N,, = Number of underloading VCs

Substituting N, for the denominator term, this becomes:

ABR Capacity — vazul Ru;

FairShare =
airShare N,

where:
N, = Number of overloading VCs (N, + N, = N)

Multiplying both sides by N,, we get:

Ny,
FairShare x N, = ABR Capacity — Z Ru;
i=1

Adding Zf\iﬁ Ru; to both sides produces:

Ny,
FairShare x N, + ZRW = ABR Capacity

i=1

Factoring FairShare out in the left hand side:

N,
X Ru;
FairShare x (No + Y —————) = ABR Capacity
— FairShare

1=

Or:
ABR C it
FairShare = ~ apac;f
ot Zi:l FairS;zare
Substituting Ny, we get:
AB i
FairShare = ABR Capacity

Neyy



where: X
% Ru;

N, =N .
eff ot 1:21 FairShare

This means that the effective number of active VCs is equal to the number of overloading sources,
plus the fractional activity of underloading sources. This is the key equation we have proposed
above, and implemented as discussed in the next subsection.

5.4 Algorithm Pseudo-code

This section explains how the new algorithm was implemented and incorporated into the ERICA
switch algorithm.

The following variables are introduced:

e Nj.s: Effective number of active VCs in the last measurement interval.

® Neyrrent: Effective number of active VCs being accumulated for the current measurement
interval.

e Activity: This array is maintained for each VC. It is set to one for overloading sources (an
overloading source is a source whose CCR exceeds its FairShare value). The activity of a
VC is set to the fraction obtained from dividing the CCR of the VC by the FairShare value
in the case of underloading sources.

e FirstCellSeen: This is also maintained for each VC, and is only used to avoid the initialization
effects of the VC. It is one bit that is set to one if the VC has shown any sign of activity;
otherwise, it is set to zero.

e V(CsSeen: The sum of the VCs whose FirstCellSeen flag is set. Also used to avoid initialization
effects.

INITIALIZATION:

1. Njgst = number of VCs set up

2. FairShare = ABR Capacity/Niqst
3. Neurrent =0

4. VCsSeen = 0

5. FOR ALL VCs DO
Activity [VC] =0
FirstCellSeen [VC] = 0

END (* FOR *)

6. Initialize other ERICA variables

END OF MEASUREMENT INTERVAL:



1. IF (VCsSeen >= Nj,4t)
Nigst = max (1, Ncu'rrent)
END (* IF *)

2. Neurrent = 0
3. FairShare = ABR Capacity/Niqst

4. FOR ALL VCs DO
Activity [VC] = min (1, CCR [VC]/FairShare)
Ncurrent = Ncurrent + ACtiVity [VC]
END (* FOR *)

5. Update Overload Factor, and update or reset other ERICA variables
CELL IS RECEIVED IN FORWARD DIRECTION:

1. Do NOT update Nyrrent as used to be done with ERICA

2. TF (NOT FirstCellSeen [VC]) THEN
FirstCellSeen [VC] =1
VCsSeen = VCsSeen + 1

END (* IF *)

3. Update CCR [VC]
BRM CELL TO BE SENT IN REVERSE DIRECTION:
ER in BRM cell = Max (FairShare, CCR, [VC]/Overload Factor)

Observe that the FirstCellSeen array and the VCsSeen counter are only used for the purpose of
removing initialization effects from the simulation, and will not exist in a real implementation.
Thus, in a real implementation, no steps (other than source rate estimation) will be carried out
when a cell is seen, which means that the algorithm will have a low complexity.

6 Performance Analysis

The new algorithm has been tested for a variety of networking configurations using several per-
formance metrics. The results were similar to the results obtained with the ERICA algorithm [8],
except that the new algorithm is max-min fair (without executing the max-min fairness step de-
scribed in section 4 above), and also the algorithm is less sensitive to the length of the measurement
interval. A sample of the results is described in this section.

6.1 Parameter Settings
Throughout our experiments, the following parameter values are used:

1. All links have a bandwidth of 155.52 Mbps.
2. All links are 1000 km long.



3. All VCs are bidirectional.

4. The source parameter Rate Increase Factor (RIF) is set to one, to allow immediate use of the
full explicit rate indicated in the returning RM cells at the source.

5. The source parameter Transient Buffer Exposure (TBE) is set to large values to prevent rate
decreases due to the triggering of the source open-loop congestion control mechanism. This
was done to isolate the rate reductions due to the switch congestion control from the rate
reductions due to TBE.

6. The switch target utilization parameter was set to 90%. This factor is used to scale down the
ABR capacity term used in the ERICA algorithm.

7. The switch measurement interval was set to the minimum of the time to receive 100 cells and
1 ms.

8. All sources are deterministic, i.e., their start/stop times and their transmission rates are
known.

6.2 Simulation Results

The simulations performed focus on two main aspects of the new scheme: its fairness, and its
transient response.

6.2.1 Fairness

Link 1 Link 2

(Siy— swi Sw2 sw3 f—D2)

‘ 1 | 23 | ‘

Figure 2: Three source configuration

In order to test fairness, we simulated a three source configuration where one of the sources is
bottlenecked at a low rate (10 Mbps). Hence, even though the network gives that source feedback
to increase its rate, it never sends at a rate faster than 10 Mbps. The other two sources start
transmission at different ICR values. The aim of the configuration is to examine whether the two
non-bottlenecked sources will reach the same ACR values, utilizing the bandwidth left over by the
first source.

Figure 2 illustrates the configuration simulated. Note that the round trip time for the S2 and
S3 connections is 30 ms, while that for the S1 connection is 40 ms. This configuration is almost
identical to the one used in the examples in section 5 (figure 1), except that connection S1 to D1
is bottlenecked at the source S1 itself, and not at “Link 1.” The reason we chose to demonstrate a
source bottleneck situation here (and not a link bottleneck situation like figure 1) is to demonstrate
the effect of using the CCR field in the RM cells versus measuring the source rate.
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The results are presented in the form of three graphs for each configuration:

1. Graph of allowed cell rate (ACR) in Mbps over time for each source.
2. Graph of ABR queue lengths in cells over time at the bottleneck port.

3. Graph of the effective number of active VCs N,y at the bottleneck port.

Figure 3 illustrates the performance of the original ERICA algorithm without the fairness step
discussed in section 4. Source S1 is the bottlenecked source. Sources S2 and S3 start sending at
different ICR (and hence ACR) values. Their ICR values and that of S1 add up to little more than
the the link rate, so there is little overload. Observe that the rates of S2 and S3 remain different,
leading to unfairness. The number of active VCs is counted using the original ERICA method, so
the switch sees 3 sources (see figure 3(c)), and the FairShare value remains at around 50 Mbps.
Hence, the source S2 never increases its rate to make use of the bandwidth left over by S1 and
only S3 utilizes this bandwidth.

Figure 4 illustrates how the fairness problem was overcome in ERICA by the change described in
section 4. In this case, the sources are given the maximum allocation in case of underload or unit
load, and hence all sources get an equal allocation. The modified algorithm is max-min fair.

Figure 5 illustrates the results with the new method to calculate the fair share of the bandwidth.
Observe that the allocations are max-min fair in this case, without needing to apply the maximum
allocation algorithm as in the previous case. This is because the method of calculation of the
effective number of active connections is different. Figure 5 shows that after the initialization
period, the effective number of active VCs stabilizes at 1 (for S2), plus 1 (for S3), plus 10/50 (for
S1), which gives 1+ 14 0.2 = 2.2 sources. The method also stabilizes to the correct number even if
the length of the measurement interval is short, unlike the original method where the length of the
measurement interval must be long enough to detect cells from all sources, even low-rate sources.

The proposed method works correctly for all cases when there are link bottlenecks at various lo-
cations (e.g., the configuration in figure 1), since it correctly calculates the activity level of each
connection based on its CCR value. However, observe that in source bottleneck cases, the CCR
value cannot be simply obtained from the forward RM cells, but must be measured by the switches.
This is because, in source bottleneck situations, the source indicates its ACR value in the CCR
field of the RM cell, but the source may actually be sending at a much lower rate than its ACR.

For example, for the configuration discussed above (figure 2), assume that we were relying on the
CCR values in the RM cells. Figure 6 shows that the new method is not fair in this case, since
source S1 indicates an ACR of 50 Mbps so the effective number of active connections stabilizes
at 3 (see figure 6(c)), and the FairShare remains at 50 Mbps. But source S1 is only sending at
10 Mbps. CCR measurement at the switch detects this, and hence arrives at the correct allocation
as seen in figure 5.

6.2.2 Transient Response

Figure 7 illustrates a two-source configuration. The round trip time for each connection is 30 ms.
The new algorithm was simulated for this configuration, where the first source is active throughout
the simulation period, while the second source starts sending after 60 ms and stops sending data at
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Figure 3: Results for a WAN three source bottleneck configuration with the original ERICA
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Figure 8: Results for a WAN transient configuration with ERICA

120 ms. Both sources are persistent sources while they are on. The purpose of this configuration
is to see if the proposed method has a slower transient response due to its recursive operation.

The results are presented in the form of two graphs for each configuration:

1. Graph of allowed cell rate (ACR) in Mbps over time for each source.

2. Graph of link utilization (as a percentage) over time for the bottleneck link.

Figures 8 and 9 show the performance of the ERICA algorithm (with the fairness modification)
versus the performance of the proposed algorithm. It is clear that the transient response of both
methods is comparable. The new method is slightly slower to reduce the rates in the start-up
period of the second source, due to the recursive nature of the algorithm. However, the difference
is small, and the benefits of the method far outweigh the slower response.

6.3 Observations on the Results

From the simulation results, we can make the following observations about the performance of the
proposed algorithm:

e During transient phases, if the FairShare value increases, the Nss value decreases (since
it uses the FairShare value in the denominator), and FairShare further increases (since it
uses N.ys in the denominator), so Neyy further decreases, and so on, until the correct values
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Figure 9: Results for a WAN transient configuration with the proposed ERICA and source rate
measurement at the switch

of source rate, N.sy and FairShare are reached. Then the proposed scheme is provably fair
and efficient in steady state (see figure 5(a) and (c)).

e Using very small measurement interval values results in more problems for the original ERICA
scheme than with the proposed scheme, because the proposed scheme does not measure the
effective number of active connections by observing if cells are received from that connection
during the measurement interval. Hence, even if the measurement interval is so short such
that no cells are seen from many low-rate sources, the proposed method can compute the
FairShare of the bandwidth correctly.

e Without source rate measurement at the switch for each VC, the value of N,;; depends on
the source ACR, which is not the same as the source rate for source bottleneck cases. Thus,
Nejyy is too large in those cases, and the FairShare term is less than the CCR by Overload
term, leading to unfairness. With per-VC source rate measurement, the value of Ngys is
correct.

7 Summary

This contribution has proposed and demonstrated a new method to compute the fair bandwidth
share for ABR connections in ATM networks. The method relies on distinguishing among under-
loading connections and overloading connections, and computing the value of the “effective number
of active connections.” The available bandwidth is divided by the effective number of active con-
nections to obtain the fair bandwidth share of each connection.

The method is provably max-min fair, and can be used to ensure the efficiency and fairness of
bandwidth allocations. Integrating this method into ERICA tackles the fairness and measurement
interval problems of ERICA, while maintaining the fast transient response, queuing delay control,
and simplicity of the ERICA scheme.
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Analysis and simulation results were used to investigate the performance of the method. From the
results, it is clear how the method overcomes the fairness problem with the original ERICA, as well
as its excessive sensitivity to the length of the measurement interval.
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