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Abstract:

In this contribution, we present four overload based switch schemes which provide MCR, guarantees.
A typical explicit rate switch scheme monitors the load on a link and gives feedback to the sources.
The overload factor is defined ratio of rate of input to link capacity. The switch schemes proposed
use the overload factor to calculate feedback rates. A dynamic queue control mechanism is used to
control queues and achieve constant queuing delay at steady state. The algorithms proposed are
studied and compared using different configurations.
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Notice:

This contribution has been prepared to assist the ATM Forum. It is offered to the Forum as a basis
for discussion and is not a binding proposal on the part of any of the contributing organizations.
The statements are subject to change in form and content after further study. Specifically, the
contributors reserve the right to add to, amend or modify the statements contained herein.
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1 Introduction

In this contribution we extend our previous study [2], where we had proposed a general definition
of fairness and gave an overload based ABR (available bit rate) switch scheme which provides MCR
(minimum cell rate) guarantees. In this contribution we propose three additional algorithms which
use overload factor to calculate explicit feedback rate. All the proposed algorithm provide MCR,
guarantees and generalized fairness.

The load factor (also referred as “overload factor” or “overload”) is the ratio of the measured input
rate to the available ABR (available bit rate) capacity. Switch schemes monitor the load on the
link and calculates feedback [4, 1] based on the load. The switch schemes try to achieve unity load
for efficient use of link. The current schemes converge to max-min fairness [5]. Max-min fairness
assumes zero MCR values. In this contribution we have used the generalized fairness as defined in

[2].

The proposed algorithms are similar to ERICA+ [1]. We first briefly describe ERICA+ and then the
algorithms proposed. The algorithms are tested using simulations on various configurations. The
simulations test whether the schemes provide MCR guarantees and converge to generalized fairness.
We give a comparison of the algorithms based on the simulations results.

2 General Fairness: Definition

Define the following parameters:

A; = Total available bandwidth for all ABR connections on a given link .
Ap = Sum of bandwidth of underloaded connections which are bottlenecked elsewhere.
A = A; — Ay, excess bandwidth, to be shared by connections bottlenecked on this link.
N, = Number of active connections

Np= Number of active connections bottlenecked elsewhere.

n = N, — Ny, number of active connections bottlenecked on this link.

u; = MCR of connection i.

p= Y i, wi Sum of MCRs of active connections within bottlenecked on this link.

w; = preassigned weight associated with the connection 1.

g; = GW fair Allocation for connection 1.

The general fair allocation is defined as follows:

w; A—
gi = W + M
Zj:le

The excess available bandwidth (A — u) is divided in proportion to the predetermined weights.



3 Description Switch Schemes

The general structure of algorithms proposed are similar to the ERICA+ [1]. First, we briefly
discuss ERICA+ algorithm and then give the general structure of the proposed algorithms. The
four different algorithms have the same structure and differ in end of interval accounting and the
manner in which the feedback is calculated.

3.1 Overview of ERICA+

ERICA+ operates at output port of a switch. It periodically monitors the load, active number
of VCs and provides feedback in the BRM (backward RM) cells. The measurement period is the
“averaging interval”. The measurements are done in forward direction and feedback is given in the
backward direction.

ERICA+ Algorithm
At the end of Averaging Interval:

Total ABR Capacity < Link Capacity — VBR Capacity (1)
Target ABR Capacity < Fraction x Total ABR Capacity (2)
(3)
ABR I
. o R Input Rate‘ )
Target ABR Capacity
. Target ABR Capacity

FairShare - Number of Active VCs 5)
MaxAllocPrevious < MaxAllocCurrent (6)
MaxAllocCurrent < FairShare (7)

When an FRM is received:

CCR[VC] + CCR.in_.RM_Cell

When a BRM is received:
VCShare CCR#[VC] (8)

IF (z > 1+9)
THEN ER +  Max (FairShare, VCShare) 9)
ELSE ER ¢+  Max (MaxAllocPrevious, VCShare) (10)
MaxAllocCurrent <  Max (MaxAllocCurrent,ER) (11)
IF (ER > FairShare AND CCRJ[VC] < FairShare)

THEN ER  «  FairShare (12)

ER.in RM_Cell +  Min (ER-in_.RM_Cell, ER, Target ABR Capacity) (13)

For overload (z > 1+ J) condition, the algorithm calculates the maximum of the FairShare and
VCShare as the feedback rate. For underload condition the maximum of MazAllocPrevious (which
is the maximum allocation given in the previous averaging interval) and the previous two terms is
the feedback rate. Line 12 avoids sudden increase in the feedback rate. The Fraction term is used
to control the queues.



3.2 Overload Based Algorithm: General Structure

The four different switch schemes have the following common algorithmic structure. They differ in
the manner in which the feedback rate is calculated and accounting.

Overload Based Algorithm X
At the end of Averaging Interval:

Total ABR Capacity < Link Capacity — VBR Capacity
n
- Z min(SourceRate(), j1;) (14)
i=0

Target ABR Capacity < Fraction x Total ABR Capacity

Input Rate <+ ABR Input Rate — Z min(SourceRate(i), u;)

i=0
Input Rate
1
2 Target ABR Capacity (15)
End_of Interval_Accounting|() (16)
(17)
When an FRM is received:
CCR[VC] + CCR.in_.RM_Cell
When a BRM is received:
Excess.ER <+ Calculate_Excess_ER() (18)
ER <+ p; + Excess ER (19)
ER.in. RM_Cell <+ Min(ER.in.RM_Cell,ER,Target ABR Capacity) (20)
(21)

The key steps which differentiate the algorithms are the procedures End_of-Interval_Accounting()
and Calculate_Excess_ER().

3.3 Algorithm A: VCShare and ExcessFairShare

In EzcessFairshare term is defined as follows:

(A —
ExcessFairshare(i) = M
Ej:l wj

This divides the excess available bandwidth (A — u) proportional to the weights w(7).

The activity level for a given VC is defined as follows:

AL(i) = minimum (1 SourceRate(i) — p )

" ExcessFairshare(i)

The activity level can be used to accurately estimate the effective number of VCs [3]. We extend
this notion to the weighted case by multipling the weight function with the activity level in the
denominator of the EzcessFuirshare term. Therefore the FxcessFairshare is:



EzcessFairshare(i) = w
Zj=1 w;AL(j)

In Algorithm A, the Fzcess_ER is calculated based on the V(CShare and the Excessfairshare
terms.

End_of Interval_Accounting():
foreach VC i

: L SourceRate(i) — p;
AL 1 22
(i) « mzmmum( " ExcessFairshare(i) (22)
T AB i i
ExcessFairshare(i) (Target . R Capa-mty)wl (23)
21 wiAL())
(24)
endfor
Calculate_Excess_ER/():
VCShare SourceRate(i) — u; (25)
z
Excess. ER < Max (ExcessFairshare(i), VCShare) (26)
(27)

3.4 Algorithm B: ExcessFairShare/Overload

In this version the Ezcess_ER is calculated based on Ezcessfairshare and overload factor z. As
the network reaches steady state the overload will become one and the Excess_.ER will converge the
required fairshare. In this algorithm the End_of-Interval_-Accounting() is the same as in the previous
algorithm (algorithm A).

Calculate_Excess_ER/():

Excess ER ExcessFairshare(i)

z

3.5 Algorithm C: MaxAllocation/Overload

The weighted maximum allocation is defined as the maximum of allocation divided by the weight
among all VCs. The Ezcess_ER is calculated based on weighted maximum previous allocation
(WtMaz AllocPrevious) and overload. Let i be the VC number in the BRM cell.

End_of Interval_Accounting():

WtMaxAllocPrevious ¢+ WtMaxAllocCurrent (29)
WtMaxAllocCurrent <+ 0 (30)
(31)

Calculate_Excess_ER():

w(1)WtMaxAllocPrevious
z

Excess . ER <+




WitMaxAllocCurrent < Max (WtMaxAllocCurrent,Excess ER/w(i)) (33)

Suppose j be the VC such that Ezcess_ ER(j)/w(j) is the maximum of Ezcess_ ER(i)/w(i). The
Excess_ER(i) calculated by the above algorithm is proportional to the weight w(i). As the overload
converges to one, the allocation Ezcess_.ER(i) converges to the Excessfairshare(i) term.

3.6 Algorithm D: VCShare and MaxAllocation

The Ezcess-ER is calculated based on weighted maximum previous allocation (WtM ax AllocPrevious)
and VCShare. In this algorithm the End_of-Interval-Accounting() is the same as in the previous
algorithm (algorithm C).

Calculate_Excess_ER():

SourceRate(i) — u;

VCShare <+ . (35)

IF (2 > 1+ 4)
THEN Excess_.ER, <+ VCShare (36)
ELSE Excess.ER + Max (w(i) WtMaxAllocPrevious, VCShare) (37)
WitMaxAllocCurrent < Max (WtMaxAllocCurrent,Excess ER/w(i)) (38)
(39)

4 Simulation Configurations

We used simple, transient, link bottleneck and source bottleneck configurations to test the proposed
algorithms. Infinite sources were used (have infinite amount of data to send, and always send data
at ACR) in all the simulations. The data traffic is only one way, from source to destination. All the
link bandwidths are 149.76 (155.52 less the SONET overhead), except in the GFC-2 configuration.

4.1 Three Sources

This is a simple configuration in which three sources send data to three destinations over a two
switchs and a bottleneck link. See figure 1. This configuration is used to demonstrate that the
switchs algorithms can achieve the general fairness.

Source 1@ Destination 1

Bottleneck
Source ZQ\ Sitch Link Snitch 2 /O Detintion 2
Source3 Q/ \Q Destination 3

Figure 1: N Sources - N Destinations Configuration
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Table 1: Simulation Parameter Values

Configuration Link Averaging | Target | Weight

Name Distance interval Delay | Function
Three Sources 1000 Km 5 ms 1.5 ms 1
Source Bottleneck | 1000 Km 5 ms 1.5 ms 1
GFC-2 1000 Km 15 ms 1.5 ms 1

Exponential averaging was used to decrease the variation in measured quantities such as overload
and number of VCs. Exponential averaging of overload factor and number of VCs were done with a
decay factor of 0.8 for algorithms A and D. The algorithms B and C are more sensitive to overload
factor. So, a the decay factor of 0.4 was used to average overload in algorithms C and D.

The weight function value of one was used in all configurations. This corresponds to MCR plus
equal share of excess bandwidth. The value of § = 0.1 was used for algorithm D.

5 Simulation Results

In this section we present the simulation results of algorithms using different configurations.

5.1 Three Source: Results

The MCR value for the three soure configuration is 10,30,50 for the soure 1, source 2 and source
3 respectively. The excess bandwidth is (149.76 - 90 =) 59.76 is divided equally among the three
sources. The expected allocation is (10+59.76/3, 304+59.76/3, 50+59.76/3) = (29.92, 39.92, 69.92).
The figure 4(a)-(d) shows the ACRs (allowed cell rate) algorithms A,B,C and D respectively. From
the figure it can be seen that the expected allocation is achieved by all the four algorithms.

5.2 Three Source transient : Results

MCR value of zero was used for all three sources in this configuration. The configuration simulation
was simulated for 1.2 seconds. Source 2, is a transient source. It is active between 0.4 to 0.8 seconds
of the simulation. The expected allocation is (74.88,0,74.88) during (0,0.4s) and (0.8-1.2s) which
source 2 is not active. The expected allocation is (49.92,49.92,49.92) during (0.4,0.8) interval. The
figure 5 (a)-(d) shows the ACRs for the algorithms A, B, C and D respectively. All the algorithms
achieve the expected allocation in both non-transient and transient periods. Algorithm B is sensitive
to queue control function, hence there rate oscillations during the non-transient periods.

5.3 Source Bottleneck: Results

In this configuration the MCRs of (10,30,50) were used. The total simulation time was 800 ms.
The source two is bottlenecked at 10 Mbps for first 400 ms of the simulation. It always sends data
up to 10 Mbps even its ACR larger than 10 Mbps. The figures 6 (a)-(d) shows the ACRs for the
algorithms A, B, C and D respectively. The expected allocation is (49.86,59.86,79.86) for frist 400 ms
and it is (29.92,49.92,69.92) after 400 ms. The algorithms A and B do not converge to the expected
allocation. The CCR values in the RM cells do not reflect the actual source rate. The algorithms C



and D do converge to the expected allocation. Algorithm C performs better than algorithm D, since
it has lesser oscillations. The figures 7 (a)-(b) show the ACRs using measured source rate (per VC
option) instead CCR field of for algorithms A, B. When measured source rate is used the algorithms
A and B do converge to expected allocations in the presence of source bottleneck.

5.4 GFC2 : Results

MCR value of zero was used for all sources. The figure 8 (a)-(d) show the ACRs of each type of
VCs A through H for algorithms A, B, C and D respectively. The graphs show that the expected
allocation as given in the table 2 is achieved by all the algorithms. Algorithm B and D have rate
oscillations due to queue control. The maximum queue occured at switch SW6 around 500 ms for
all algorithms. The value of the maximum queue was 39000, 30000, 340000 and 34000 cells for
algorithms A, B, C and D respectively. Algorithm C does not have any queue control. Algorithm C
had a huge queue because the maximum allocation for A type VC which has large round trip time
was assigned for seven VCs of type G which have small round trip time. The input rate at the link
between SW6 and SW7 is overloaded by a factor of seven which gives rise to the huge queues.

Table 2: GFC-2 configuration: Expected allocations

VC A/'B|C|D|E|F |G| H
Expected allocation | 10 | 5 | 35 | 35| 35| 10 | 5 | 52.5

6 Comparsion of Switch Schemes

The Table 3 gives a comparision of the algorithms.

Scheme End of Interval | Feedback | Max. Queue | Requires PerVC for | Sensitivity to

Name Complexity Complexity Length Source Bottleneck | Queue control
Algorithm A O(N) 0O(1) Medium Yes Yes
Algorithm B O(N) 0O(1) Medium Yes Yes
Algorithm C 0(1) 0(1) Large No No
Algorithm D 0(1) 0(1) Medium No No

Table 3: Comparison of the algorithms

The algorithm D is the best of the proposed algorithm since it is of O(1) complexity, does not require
per VC accounting and is not sensitive of the queue control function.

7 Conclusion

In this contribution we have presented four algorithms which achieve generalized fairness and provide
MCR guarantee. The algorithms monitor the load on the link and calculate the overload factor.
The overload is used with EzcessFairshare or WitMaxAllocPrevious to calculate the feedback.
The algorithm D, which uses the VC'Share and WitMaz AllocPrevious is the best, since it has O(1)
complexity and does not require per VC accounting to handle source bottlenecks.
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12



ACRs

biink

Jair=1.0lsw_int=100/_t

) avg |

_bot A 1 Date:07/08/98

1CRI50,00 25,00 30,00 25,00 110,00 25,00 / XRM:256.00 256.00 256.00 256.00 256,00 25600 / Graph: 0

WAN Bottlenecked: ACRs

180
160
140
120

Figure

ACR for S1
ACR for S2
ACR for S3

100 200 300
Timein milliseconds

(a) Algorithm A

400

500

ACRs

bk,

Jair=1.0/sw_int=1001_t

) avg !

1CR:50,00 25,00 30,00 25,00 110,00 25,00 / X RM:256.00 256.00 256.00 256.00 256.00 256.00 / Graph: 0

1 Date:07/08/98

180
160
140
120
100
80
60
40
20
0

WAN Bottlenecked: ACRs

ACR for S2
ACR for S3

ACRfor S1 — |

100

200 300 400

Timein milliseconds

(b) Algorithm B

500

600 700

7: Source Bottleneck: ACR graphs for Algorithm A, B using measured source rate

13



ACRs

ACRs

_cor_extsiopt
g N=0910v=1500/a=1 151b=1/_r=15000/swcum3=2/  DAE O7/0B/S8.
ICR:17.64 43.97 / XRM:253.00 25300/ Graph: 0

GFC-2: ACRs
180 : : :
160 g‘%i ]
C_SW5
140 D_SW1 1
E_SW2 --——- |
120 FSwW3 -
G_SW6 i
100 ! H_Sw4
80 i 1

0 500 1000 1500 2000 2500
Timein milliseconds

(a) Algorithm A

. i) ¢ /oesmate
ICR:17.64 43.97 / XRM:253.00 253.00 / Graph: 0
GFC-2: ACRs

180 : : :
60| ASW1 ——
140 | ]
120 | ]
100 HOSW4 - |
80 ]

0 500 1000 1500 2000 2500
Timein milliseconds

(c) Algorithm C

Figure 8: GFC-2 configuration: ACR graphs for

14

ACRs

ACRs

gft _ovl_e p_avg N=
A5/b=1/f 1 1=0.8/ / Date:07/08/98
ICR:17.64 43.97 / XRM:253.00 253.00 / Graph: 0
GFC-2: ACRs
180 T T T

140 | D_SW1 1
120 ¢ FSW3 |

‘ ‘ GSW6 -
! HSWa

1000 1500 2000 2500
Timein milliseconds

(b) Algorithm B

gic: |_cor_r ) avg_
15b=11 /
ICR:17.64 43.97 / XRM:253.00 25300/ Graph: 0
GFC-2: ACRs
180 T T T
A_SW1 —

160

0 500 1000 1500 2000 2500
Timein milliseconds

(d) Algorithm D

algorithms A, B, C and D.



References

[1] Shivkumar Kalyanaraman, Raj Jain, Rohit Goyal, Sonia Fahmy, and Bobby Vandalore. ! “The
ERICA Switch Algorithm for ABR Traffic Management in ATM Networks”. Submitted to
IEEE/ACM Transactions on Networking, November 1997,

[2] Bobby Vandalore, Sonia Fahmy, Raj Jain, Rohit Goyal, Mukul Goyal, “Generalized Fairness
support in Switch Algorithms” ATM Forum/98-0151, February 1998,

[3] Sonia Fahmy, Raj Jain, Shivkumar Kalyanaraman, Rohit Goyal, and Bobby Vandalore. Deter-
mining the number of active ABR sources in switch algorithms. ATM Forum/98-0154, February
1998.

[4] L. Roberts. “Enhanced PCRA (Proportional Rate Control Algorithm)”. ATM Forum
Contribution/AF-TM 94-0735R1, August 1994.

[5] Shirish S. Sathaye. “ATM Forum Traffic Management Specification Version 4.0”. April 1996
[6] Nada Golmie. “Netsim: network simulator”. http://www.nist.gov/.

[7] Robert J. Simcoe. “Test configurations for fairness and other tests”. ATM Forum/94-0557,
July 1994.

LAll our papers and ATM Forum contributions are available through http://www.cis.ohio-state.edu/ jain/

15



