
**

ATM Forum Document Number: ATM Forum/98-0408

**

Title: Overload based Explicit Rate Switch Schemes with MCR guarantees

**

Abstract:

In this contribution, we present four overload based switch schemes which provide MCR guarantees.

A typical explicit rate switch scheme monitors the load on a link and gives feedback to the sources.

The overload factor is de�ned ratio of rate of input to link capacity. The switch schemes proposed

use the overload factor to calculate feedback rates. A dynamic queue control mechanism is used to

control queues and achieve constant queuing delay at steady state. The algorithms proposed are

studied and compared using di�erent con�gurations.

**

Source:

Bobby Vandalore, Sonia Fahmy, Raj Jain, Rohit Goyal, Mukul Goyal

The Ohio State University Department of Computer and Information Science

Columbus, OH 43210-1277

Contact Phone: 614-292-3989, Fax: 614-292-2911

E-mail: fvandalor,jaing@cis.ohio-state.edu

This presentation of this contribution is sponsored by NASA Lewis Research Center.

**

Date: February 1998

**

Distribution: ATM Forum Technical Working Group Members (AF-TM)

**

Notice:

This contribution has been prepared to assist the ATM Forum. It is o�ered to the Forum as a basis

for discussion and is not a binding proposal on the part of any of the contributing organizations.

The statements are subject to change in form and content after further study. Speci�cally, the

contributors reserve the right to add to, amend or modify the statements contained herein.

**

1

Raj Jain
Horizontal extra long

1 Introduction

In this contribution we extend our previous study [2], where we had proposed a general de�nition

of fairness and gave an overload based ABR (available bit rate) switch scheme which provides MCR

(minimum cell rate) guarantees. In this contribution we propose three additional algorithms which

use overload factor to calculate explicit feedback rate. All the proposed algorithm provide MCR

guarantees and generalized fairness.

The load factor (also referred as \overload factor" or \overload") is the ratio of the measured input

rate to the available ABR (available bit rate) capacity. Switch schemes monitor the load on the

link and calculates feedback [4, 1] based on the load. The switch schemes try to achieve unity load

for e�cient use of link. The current schemes converge to max-min fairness [5]. Max-min fairness

assumes zero MCR values. In this contribution we have used the generalized fairness as de�ned in

[2].

The proposed algorithms are similar to ERICA+ [1]. We �rst brie
y describe ERICA+ and then the

algorithms proposed. The algorithms are tested using simulations on various con�gurations. The

simulations test whether the schemes provide MCR guarantees and converge to generalized fairness.

We give a comparison of the algorithms based on the simulations results.

2 General Fairness: De�nition

De�ne the following parameters:

Al = Total available bandwidth for all ABR connections on a given link l.

Ab = Sum of bandwidth of underloaded connections which are bottlenecked elsewhere.

A = Al � Ab, excess bandwidth, to be shared by connections bottlenecked on this link.

Na = Number of active connections

Nb= Number of active connections bottlenecked elsewhere.

n = Na �Nb, number of active connections bottlenecked on this link.

�i = MCR of connection i.

� =
Pn

i=1 �i Sum of MCRs of active connections within bottlenecked on this link.

wi = preassigned weight associated with the connection i.

gi = GW fair Allocation for connection i.

The general fair allocation is de�ned as follows:

gi = �i +
wi(A� �)Pn

j=1 wj

The excess available bandwidth (A � �) is divided in proportion to the predetermined weights.

2

3 Description Switch Schemes

The general structure of algorithms proposed are similar to the ERICA+ [1]. First, we brie
y

discuss ERICA+ algorithm and then give the general structure of the proposed algorithms. The

four di�erent algorithms have the same structure and di�er in end of interval accounting and the

manner in which the feedback is calculated.

3.1 Overview of ERICA+

ERICA+ operates at output port of a switch. It periodically monitors the load, active number

of VCs and provides feedback in the BRM (backward RM) cells. The measurement period is the

\averaging interval". The measurements are done in forward direction and feedback is given in the

backward direction.

ERICA+ Algorithm
At the end of Averaging Interval:

Total ABR Capacity Link Capacity�VBR Capacity (1)

Target ABR Capacity Fraction�Total ABR Capacity (2)

(3)

z
ABR Input Rate

Target ABR Capacity
(4)

FairShare
Target ABR Capacity

Number of Active VCs
(5)

MaxAllocPrevious MaxAllocCurrent (6)

MaxAllocCurrent FairShare (7)

When an FRM is received:

CCR[VC] CCR in RM Cell

When a BRM is received:

VCShare
CCR[V C]

z
(8)

IF (z > 1 + �)

THEN ER Max (FairShare, VCShare) (9)

ELSE ER Max (MaxAllocPrevious, VCShare) (10)

MaxAllocCurrent Max (MaxAllocCurrent,ER) (11)

IF (ER > FairShare AND CCR[VC] < FairShare)

THEN ER FairShare (12)

ER in RM Cell Min (ER in RM Cell, ER, Target ABR Capacity) (13)

For overload (z > 1 + �) condition, the algorithm calculates the maximum of the FairShare and

VCShare as the feedback rate. For underload condition the maximum of MaxAllocPrevious (which

is the maximum allocation given in the previous averaging interval) and the previous two terms is

the feedback rate. Line 12 avoids sudden increase in the feedback rate. The Fraction term is used

to control the queues.

3

3.2 Overload Based Algorithm: General Structure

The four di�erent switch schemes have the following common algorithmic structure. They di�er in

the manner in which the feedback rate is calculated and accounting.

Overload Based Algorithm X
At the end of Averaging Interval:

Total ABR Capacity Link Capacity�VBR Capacity

�

nX
i=0

min(SourceRate(i); �i) (14)

Target ABR Capacity Fraction�Total ABR Capacity

Input Rate ABR Input Rate�

nX
i=0

min(SourceRate(i); �i)

z
Input Rate

Target ABR Capacity
(15)

End of Interval Accounting() (16)

(17)

When an FRM is received:

CCR[VC] CCR in RM Cell

When a BRM is received:

Excess ER Calculate Excess ER() (18)

ER �i +Excess ER (19)

ER in RM Cell Min(ER in RM Cell,ER,Target ABR Capacity) (20)

(21)

The key steps which di�erentiate the algorithms are the procedures End of Interval Accounting()

and Calculate Excess ER().

3.3 Algorithm A: VCShare and ExcessFairShare

In ExcessFairshare term is de�ned as follows:

ExcessFairshare(i) =
wi(A� �)Pn

j=1 wj

This divides the excess available bandwidth (A� �) proportional to the weights w(i).

The activity level for a given VC is de�ned as follows:

AL(i) = minimum

�
1;

SourceRate(i)� �i

ExcessFairshare(i)

�

The activity level can be used to accurately estimate the e�ective number of VCs [3]. We extend

this notion to the weighted case by multipling the weight function with the activity level in the

denominator of the ExcessFairshare term. Therefore the ExcessFairshare is:

4

ExcessFairshare(i) =
wiAL(i)(A� �)Pn

j=1 wjAL(j)

In Algorithm A, the Excess ER is calculated based on the V CShare and the Excessfairshare

terms.

End of Interval Accounting():

foreach VC i

AL(i) minimum

�
1;

SourceRate(i)� �i

ExcessFairshare(i)

�
(22)

ExcessFairshare(i)
(Target ABR Capacity)wiPn

j=1 wjAL(j)
(23)

(24)

endfor

Calculate Excess ER():

VCShare
SourceRate(i)� �i

z
(25)

Excess ER Max (ExcessFairshare(i), VCShare) (26)

(27)

3.4 Algorithm B: ExcessFairShare/Overload

In this version the Excess ER is calculated based on Excessfairshare and overload factor z. As

the network reaches steady state the overload will become one and the Excess ER will converge the

required fairshare. In this algorithm the End of Interval Accounting() is the same as in the previous

algorithm (algorithm A).

Calculate Excess ER():

Excess ER
ExcessFairshare(i)

z
(28)

3.5 Algorithm C: MaxAllocation/Overload

The weighted maximum allocation is de�ned as the maximum of allocation divided by the weight

among all VCs. The Excess ER is calculated based on weighted maximum previous allocation

(WtMaxAllocPrevious) and overload. Let i be the VC number in the BRM cell.

End of Interval Accounting():

WtMaxAllocPrevious WtMaxAllocCurrent (29)

WtMaxAllocCurrent 0 (30)

(31)

Calculate Excess ER():

Excess ER
w(i)WtMaxAllocPrevious

z
(32)

5

WtMaxAllocCurrent Max (WtMaxAllocCurrent,Excess ER/w(i)) (33)

(34)

Suppose j be the VC such that Excess ER(j)=w(j) is the maximum of Excess ER(i)=w(i). The

Excess ER(i) calculated by the above algorithm is proportional to the weight w(i). As the overload

converges to one, the allocation Excess ER(i) converges to the Excessfairshare(i) term.

3.6 Algorithm D: VCShare and MaxAllocation

The Excess ER is calculated based on weighted maximum previous allocation (WtMaxAllocPrevious)

and V CShare. In this algorithm the End of Interval Accounting() is the same as in the previous

algorithm (algorithm C).

Calculate Excess ER():

VCShare
SourceRate(i)� �i

z
(35)

IF (z > 1 + �)

THEN Excess ER VCShare (36)

ELSE Excess ER Max (w(i) WtMaxAllocPrevious, VCShare) (37)

WtMaxAllocCurrent Max (WtMaxAllocCurrent,Excess ER/w(i)) (38)

(39)

4 Simulation Con�gurations

We used simple, transient, link bottleneck and source bottleneck con�gurations to test the proposed

algorithms. In�nite sources were used (have in�nite amount of data to send, and always send data

at ACR) in all the simulations. The data tra�c is only one way, from source to destination. All the

link bandwidths are 149.76 (155.52 less the SONET overhead), except in the GFC-2 con�guration.

4.1 Three Sources

This is a simple con�guration in which three sources send data to three destinations over a two

switchs and a bottleneck link. See �gure 1. This con�guration is used to demonstrate that the

switchs algorithms can achieve the general fairness.

Destination 2

Source 1

Source 2 Switch 1 Switch 2

Bottleneck
 Link

Destination 1

Source 3 Destination 3

Figure 1: N Sources - N Destinations Con�guration

6

4
.2

S
o
u
r
c
e
B
o
tt
le
n
e
c
k

In
th
is
co
n
�
g
u
ra
ti
o
n
,
th
e
so
u
rc
e
S
1
,
is
b
o
tt
le
n
ec
k
ed

to
ra
te
(1
0
M
b
p
s)
,
w
h
ic
h
b
el
o
w
it
s
fa
ir
sh
a
re
(5
0

M
b
p
s)
fo
r
�
rs
t
4
0
0
m
s
o
f
th
e
si
m
u
la
ti
o
n
.
T
h
is
co
n
�
g
u
ra
ti
o
n
te
st
s
w
h
et
h
er

th
e
fa
ir
n
es
s
cr
it
er
io
n
ca
n

b
e
a
ch
ie
v
ed

in
th
e
p
re
se
n
ce

o
f
so
u
rc
e
b
o
tt
le
n
ec
k
.

F
ig
u
re

2
:
3
S
o
u
rc
es

-
B
o
tt
le
n
ec
k
C
o
n
�
g
u
ra
ti
o
n

4
.3

G
e
n
e
ri
c
F
a
ir
n
e
ss

C
o
n
�
g
u
ra
ti
o
n
-
2
(G

F
C
-2
)

T
h
is
co
n
�
g
u
ra
ti
o
n
is
a
co
m
b
in
a
ti
o
n
o
f
u
p
st
re
a
m

a
n
d
p
a
rk
in
g
lo
t
co
n
�
g
u
ra
ti
o
n
(S
ee

F
ig
u
re

3
).

In

th
e
co
n
�
g
u
ra
ti
o
n
a
ll
th
e
li
n
k
s
a
re

b
o
tt
le
n
ec
k
ed

li
n
k
s.
T
h
is
co
n
�
g
u
ra
ti
o
n
is
ex
p
la
in
ed

in
[7
].

F
ig
u
re

3
:
G
en
er
ic
F
a
ir
n
es
s
C
o
n
�
g
u
ra
ti
o
n
-
2

4
.4

S
im
u
la
ti
o
n
P
a
ra
m
e
te
rs

T
h
e
si
m
u
la
ti
o
n
s
w
er
e
d
o
n
e
u
si
n
g
ex
te
n
si
v
el
y
m
o
d
i�
ed

v
er
si
o
n
o
f
N
IS
T

A
T
M

si
m
u
la
to
r
[6
].

T
h
e

p
a
ra
m
et
er
s
va
lu
es

fo
r
d
i�
er
en
t
co
n
�
g
u
ra
ti
o
n
s
is

g
iv
en

in
T
a
b
le

1
.

T
h
e
a
lg
o
ri
th
m
s
u
se

d
y
n
a
m
ic

q
u
eu
e
co
n
tr
o
l
to

v
a
ry

th
e
ta
rg
et
A
B
R
ca
p
a
ci
ty

d
ep
en
d
in
g
o
n
si
ze

o
f
q
u
eu
e
a
t
th
e
sw
it
ch
.
T
h
e
q
u
eu
e

co
n
tr
o
l
fu
n
ct
io
n
a
ch
ie
v
es

a
co
n
st
a
n
t
q
u
eu
e
le
n
g
th

a
t
st
ea
d
y
st
a
te
.
T
h
e
\
T
a
rg
et

D
el
a
y
"
p
a
ra
m
et
er

sp
ec
i�
es

th
e
d
es
ir
ed

q
u
eu
e
le
n
g
th

a
t
st
ea
d
y
st
a
te
. 7

Table 1: Simulation Parameter Values

Con�guration Link Averaging Target Weight

Name Distance interval Delay Function

Three Sources 1000 Km 5 ms 1.5 ms 1

Source Bottleneck 1000 Km 5 ms 1.5 ms 1

GFC-2 1000 Km 15 ms 1.5 ms 1

Exponential averaging was used to decrease the variation in measured quantities such as overload

and number of VCs. Exponential averaging of overload factor and number of VCs were done with a

decay factor of 0.8 for algorithms A and D. The algorithms B and C are more sensitive to overload

factor. So, a the decay factor of 0.4 was used to average overload in algorithms C and D.

The weight function value of one was used in all con�gurations. This corresponds to MCR plus

equal share of excess bandwidth. The value of � = 0:1 was used for algorithm D.

5 Simulation Results

In this section we present the simulation results of algorithms using di�erent con�gurations.

5.1 Three Source: Results

The MCR value for the three soure con�guration is 10,30,50 for the soure 1, source 2 and source

3 respectively. The excess bandwidth is (149.76 - 90 =) 59.76 is divided equally among the three

sources. The expected allocation is (10+59.76/3, 30+59.76/3, 50+59.76/3) = (29.92, 39.92, 69.92).

The �gure 4(a)-(d) shows the ACRs (allowed cell rate) algorithms A,B,C and D respectively. From

the �gure it can be seen that the expected allocation is achieved by all the four algorithms.

5.2 Three Source transient : Results

MCR value of zero was used for all three sources in this con�guration. The con�guration simulation

was simulated for 1.2 seconds. Source 2, is a transient source. It is active between 0.4 to 0.8 seconds

of the simulation. The expected allocation is (74.88,0,74.88) during (0,0.4s) and (0.8-1.2s) which

source 2 is not active. The expected allocation is (49.92,49.92,49.92) during (0.4,0.8) interval. The

�gure 5 (a)-(d) shows the ACRs for the algorithms A, B, C and D respectively. All the algorithms

achieve the expected allocation in both non-transient and transient periods. Algorithm B is sensitive

to queue control function, hence there rate oscillations during the non-transient periods.

5.3 Source Bottleneck: Results

In this con�guration the MCRs of (10,30,50) were used. The total simulation time was 800 ms.

The source two is bottlenecked at 10 Mbps for �rst 400 ms of the simulation. It always sends data

up to 10 Mbps even its ACR larger than 10 Mbps. The �gures 6 (a)-(d) shows the ACRs for the

algorithms A, B, C and D respectively. The expected allocation is (49.86,59.86,79.86) for frist 400 ms

and it is (29.92,49.92,69.92) after 400 ms. The algorithms A and B do not converge to the expected

allocation. The CCR values in the RM cells do not re
ect the actual source rate. The algorithms C

8

and D do converge to the expected allocation. Algorithm C performs better than algorithm D, since

it has lesser oscillations. The �gures 7 (a)-(b) show the ACRs using measured source rate (per VC

option) instead CCR �eld of for algorithms A, B. When measured source rate is used the algorithms

A and B do converge to expected allocations in the presence of source bottleneck.

5.4 GFC2 : Results

MCR value of zero was used for all sources. The �gure 8 (a)-(d) show the ACRs of each type of

VCs A through H for algorithms A, B, C and D respectively. The graphs show that the expected

allocation as given in the table 2 is achieved by all the algorithms. Algorithm B and D have rate

oscillations due to queue control. The maximum queue occured at switch SW6 around 500 ms for

all algorithms. The value of the maximum queue was 39000, 30000, 340000 and 34000 cells for

algorithms A, B, C and D respectively. Algorithm C does not have any queue control. Algorithm C

had a huge queue because the maximum allocation for A type VC which has large round trip time

was assigned for seven VCs of type G which have small round trip time. The input rate at the link

between SW6 and SW7 is overloaded by a factor of seven which gives rise to the huge queues.

Table 2: GFC-2 con�guration: Expected allocations

VC A B C D E F G H

Expected allocation 10 5 35 35 35 10 5 52.5

6 Comparsion of Switch Schemes

The Table 3 gives a comparision of the algorithms.

Scheme End of Interval Feedback Max. Queue Requires PerVC for Sensitivity to

Name Complexity Complexity Length Source Bottleneck Queue control

Algorithm A O(N) O(1) Medium Yes Yes

Algorithm B O(N) O(1) Medium Yes Yes

Algorithm C O(1) O(1) Large No No

Algorithm D O(1) O(1) Medium No No

Table 3: Comparison of the algorithms

The algorithm D is the best of the proposed algorithm since it is of O(1) complexity, does not require

per VC accounting and is not sensitive of the queue control function.

7 Conclusion

In this contribution we have presented four algorithms which achieve generalized fairness and provide

MCR guarantee. The algorithms monitor the load on the link and calculate the overload factor.

The overload is used with ExcessFairshare or WtMaxAllocPrevious to calculate the feedback.

The algorithm D, which uses the V CShare and WtMaxAllocPrevious is the best, since it has O(1)

complexity and does not require per VC accounting to handle source bottlenecks.

9

ICR:90.00 90.00 90.00 90.00 90.00 90.00 / XRM:253.00 253.00 253.00 253.00 253.00 253.00 / Graph: 0

abr_3.snapfile/case=wAL_ccr_exfs/option=14403/optionb=295/dist=1000/sto

ptime=600000/exp_avg_N=0.9/t0v=5000/f_r=5000/swdum3=2/ / Date:07/08/98

0

20

40

60

80

100

120

140

160

0 100 200 300 400 500 600

A
C

R
 (

M
b/

s)

Time in milliseconds

3 Sources: ACR for ABR sources

 ACR of abr[1]
ACR of abr[2]
ACR of abr[3]

(a) Algorithm A

ICR:90.00 90.00 90.00 90.00 90.00 90.00 / XRM:253.00 253.00 253.00 253.00 253.00 253.00 / Graph: 0

abr_3.snapfile/case=wAL_ovl_exfs/option=14403/optionb=295/dist=1000/stoptime=

600000/exp_avg_N=0.9/t0v=5000/f_r=5000/swdum3=4/swdum11=0.4/ / Date:07/08/98

0

20

40

60

80

100

120

140

160

0 100 200 300 400 500 600

A
C

R
 (

M
b/

s)

Time in milliseconds

3 Sources: ACR for ABR sources

 ACR of abr[1]
ACR of abr[2]
ACR of abr[3]

(b) Algorithm B

ICR:90.00 90.00 90.00 90.00 90.00 90.00 / XRM:253.00 253.00 253.00 253.00 253.00 253.00 / Graph: 0

abr_3.snapfile/case=final_ovl_maxfs/option=14403/optionb=295/dist=1000/stoptim

e=600000/exp_avg_N=0.9/t0v=5000/f_r=5000/swdum3=8/swdum11=0.4/ / Date:07/08/98

0

20

40

60

80

100

120

140

160

0 100 200 300 400 500 600

A
C

R
 (

M
b/

s)

Time in milliseconds

3 Sources: ACR for ABR sources

 ACR of abr[1]
ACR of abr[2]
ACR of abr[3]

(c) Algorithm C

ICR:90.00 90.00 90.00 90.00 90.00 90.00 / XRM:253.00 253.00 253.00 253.00 253.00 253.00 / Graph: 0

abr_3.snapfile/case=final_ccr_maxfs/option=14403/optionb=295/dist=1000/stoptime

=600000/exp_avg_N=0.9/t0v=5000/f_r=5000/swdum3=16/swdum11=0.4/ / Date:07/08/98

0

20

40

60

80

100

120

140

160

0 100 200 300 400 500 600

A
C

R
 (

M
b/

s)

Time in milliseconds

3 Sources: ACR for ABR sources

 ACR of abr[1]
ACR of abr[2]
ACR of abr[3]

(d) Algorithm D

Figure 4: Three Sources: ACR graphs for algorithms A, B, C and D.

10

ICR:50.00 10.00 40.00 10.00 55.00 10.00 / XRM:253.00 253.00 253.00 253.00 253.00 253.00 / Graph: 0

abrtrans_3.snapfile/case=wAL_trans_2/option=14403/optionb=295/dist=1000/s

toptime=1200000/exp_avg_N=0.9/f_r=5000/t0v=1500/swdum3=2/ / Date:07/08/98

0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000 1200

A
C

R
 (

M
b/

s)

Time in milliseconds

3 Sources: ACR for ABR sources

 ACR of abr[1]
ACR of abr[2]
ACR of abr[3]

(a) Algorithm A

ICR:50.00 10.00 40.00 10.00 55.00 10.00 / XRM:253.00 253.00 253.00 253.00 253.00 253.00 / Graph: 0

abrtrans_3.snapfile/case=wAL_trans_4/option=14403/optionb=295/dist=1000/stoptim

e=1200000/exp_avg_N=0.9/f_r=5000/t0v=1500/swdum3=4/swdum11=0.4/ / Date:07/08/98

0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000 1200

A
C

R
 (

M
b/

s)

Time in milliseconds

3 Sources: ACR for ABR sources

 ACR of abr[1]
ACR of abr[2]
ACR of abr[3]

(b) Algorithm B

ICR:50.00 10.00 40.00 10.00 55.00 10.00 / XRM:253.00 253.00 253.00 253.00 253.00 253.00 / Graph: 0

abrtrans_3.snapfile/case=fin_trans_8/option=14403/optionb=295/dist=1000/stoptim

e=1200000/exp_avg_N=0.9/f_r=5000/t0v=1500/swdum3=8/swdum11=0.4/ / Date:07/08/98

0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000 1200

A
C

R
 (

M
b/

s)

Time in milliseconds

3 Sources: ACR for ABR sources

 ACR of abr[1]
ACR of abr[2]
ACR of abr[3]

(c) Algorithm C

ICR:50.00 10.00 40.00 10.00 55.00 10.00 / XRM:253.00 253.00 253.00 253.00 253.00 253.00 / Graph: 0

abrtrans_3.snapfile/case=fin_trans_16/option=14403/optionb=295/dist=1000/stoptim

e=1200000/exp_avg_N=0.9/f_r=5000/t0v=1500/swdum3=16/swdum11=0.4/ / Date:07/08/98

0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000 1200

A
C

R
 (

M
b/

s)

Time in milliseconds

3 Sources: ACR for ABR sources

 ACR of abr[1]
ACR of abr[2]
ACR of abr[3]

(d) Algorithm D

Figure 5: Three Sources transient: ACR graphs for algorithms A, B, C and D.

11

ICR:50.00 25.00 30.00 25.00 110.00 25.00 / XRM:256.00 256.00 256.00 256.00 256.00 256.00 / Graph: 0

btlnk.snapfile/option=14403/optionb=110/stoptime=800000/exp_avg_N=0.9/icr=25.0/icr1=50.0/icr2=30.0/icr3=110.0/xdf=0.0/tdf=0.0/t0v=1

500/air=1.0/sw_int=100/t_threshold=400000/maxsrcrate=10.0/mib=20000/mib=20000/wandist=1000/case=wAL_bot_A/swdum3=2/ / Date:07/08/98

0

20

40

60

80

100

120

140

160

180

0 100 200 300 400 500 600 700 800

A
C

R
s

Time in milliseconds

WAN Bottlenecked: ACRs

 ACR for S1
ACR for S2
ACR for S3

(a) Algorithm A

ICR:50.00 25.00 30.00 25.00 110.00 25.00 / XRM:256.00 256.00 256.00 256.00 256.00 256.00 / Graph: 0

btlnk.snapfile/option=14403/optionb=110/stoptime=800000/exp_avg_N=0.9/icr=25.0/icr1=50.0/icr2=30.0/icr3=110.0/xdf=0.0/tdf=0.0/t0v=1

500/air=1.0/sw_int=100/t_threshold=400000/maxsrcrate=10.0/mib=20000/mib=20000/wandist=1000/case=wAL_bot_B/swdum3=4/ / Date:07/08/98

0

20

40

60

80

100

120

140

160

180

0 100 200 300 400 500 600 700 800

A
C

R
s

Time in milliseconds

WAN Bottlenecked: ACRs

 ACR for S1
ACR for S2
ACR for S3

(b) Algorithm B

ICR:50.00 25.00 30.00 25.00 110.00 25.00 / XRM:256.00 256.00 256.00 256.00 256.00 256.00 / Graph: 0

btlnk.snapfile/option=14531/optionb=110/stoptime=800000/exp_avg_N=0.9/icr=25.0/icr1=50.0/icr2=30.0/icr3=110.0/xdf=0.0/tdf=0.0/t0v=15

00/air=1.0/sw_int=100/t_threshold=400000/maxsrcrate=10.0/mib=20000/mib=20000/wandist=1000/case=bot_C_pervc/swdum3=8/ / Date:07/08/98

0

20

40

60

80

100

120

140

160

180

0 100 200 300 400 500 600 700 800

A
C

R
s

Time in milliseconds

WAN Bottlenecked: ACRs

 ACR for S1
ACR for S2
ACR for S3

(c) Algorithm C

ICR:50.00 25.00 30.00 25.00 110.00 25.00 / XRM:256.00 256.00 256.00 256.00 256.00 256.00 / Graph: 0

btlnk.snapfile/option=14531/optionb=110/stoptime=800000/exp_avg_N=0.9/icr=25.0/icr1=50.0/icr2=30.0/icr3=110.0/xdf=0.0/tdf=0.0/t0v=150

0/air=1.0/sw_int=100/t_threshold=400000/maxsrcrate=10.0/mib=20000/mib=20000/wandist=1000/case=bot_D_pervc/swdum3=16/ / Date:07/08/98

0

20

40

60

80

100

120

140

160

180

0 100 200 300 400 500 600 700 800

A
C

R
s

Time in milliseconds

WAN Bottlenecked: ACRs

 ACR for S1
ACR for S2
ACR for S3

(d) Algorithm D

Figure 6: Source Bottleneck: ACR graphs for Algorithm A, B, C and D

12

ICR:50.00 25.00 30.00 25.00 110.00 25.00 / XRM:256.00 256.00 256.00 256.00 256.00 256.00 / Graph: 0

btlnk.snapfile/option=14531/optionb=110/stoptime=800000/exp_avg_N=0.9/icr=25.0/icr1=50.0/icr2=30.0/icr3=110.0/xdf=0.0/tdf=0.0/t0v=1500

/air=1.0/sw_int=100/t_threshold=400000/maxsrcrate=10.0/mib=20000/mib=20000/wandist=1000/case=wAL_bot_A_pervc/swdum3=2/ / Date:07/08/98

0

20

40

60

80

100

120

140

160

180

0 100 200 300 400 500 600 700 800

A
C

R
s

Time in milliseconds

WAN Bottlenecked: ACRs

 ACR for S1
ACR for S2
ACR for S3

(a) Algorithm A

ICR:50.00 25.00 30.00 25.00 110.00 25.00 / XRM:256.00 256.00 256.00 256.00 256.00 256.00 / Graph: 0

btlnk.snapfile/option=14531/optionb=110/stoptime=800000/exp_avg_N=0.9/icr=25.0/icr1=50.0/icr2=30.0/icr3=110.0/xdf=0.0/tdf=0.0/t0v=1500

/air=1.0/sw_int=100/t_threshold=400000/maxsrcrate=10.0/mib=20000/mib=20000/wandist=1000/case=wAL_bot_B_pervc/swdum3=4/ / Date:07/08/98

0

20

40

60

80

100

120

140

160

180

0 100 200 300 400 500 600 700 800

A
C

R
s

Time in milliseconds

WAN Bottlenecked: ACRs

 ACR for S1
ACR for S2
ACR for S3

(b) Algorithm B

Figure 7: Source Bottleneck: ACR graphs for Algorithm A, B using measured source rate

13

ICR:17.64 43.97 / XRM:253.00 253.00 / Graph: 0

gfc2.snapfile/case=wAL_ccr_exfs/option=14403/stoptime=2500000/exp_

avg_N=0.9/t0v=1500/a=1.15/b=1/f_r=15000/swdum3=2/ / Date:07/08/98

0

20

40

60

80

100

120

140

160

180

0 500 1000 1500 2000 2500

A
C

R
s

Time in milliseconds

GFC-2: ACRs

 A_SW1
B_SW1
C_SW5
D_SW1
E_SW2
F_SW3
G_SW6
H_SW4

(a) Algorithm A

ICR:17.64 43.97 / XRM:253.00 253.00 / Graph: 0

gfc2.snapfile/case=wAL_ovl_exfs/option=14403/stoptime=2500000/exp_avg_N=

0.9/t0v=1500/a=1.15/b=1/f_r=15000/swdum3=4/swdum11=0.8/ / Date:07/08/98

0

20

40

60

80

100

120

140

160

180

0 500 1000 1500 2000 2500

A
C

R
s

Time in milliseconds

GFC-2: ACRs

 A_SW1
B_SW1
C_SW5
D_SW1
E_SW2
F_SW3
G_SW6
H_SW4

(b) Algorithm B

ICR:17.64 43.97 / XRM:253.00 253.00 / Graph: 0

gfc2.snapfile/case=final_ovl_maxfs/option=14403/stoptime=2500000/exp_avg

_N=0.9/t0v=1500/a=1.15/b=1/f_r=5000/swdum3=8/swdum3=0.4/ / Date:07/08/98

0

20

40

60

80

100

120

140

160

180

0 500 1000 1500 2000 2500

A
C

R
s

Time in milliseconds

GFC-2: ACRs

 A_SW1
B_SW1
C_SW5
D_SW1
E_SW2
F_SW3
G_SW6
H_SW4

(c) Algorithm C

ICR:17.64 43.97 / XRM:253.00 253.00 / Graph: 0

gfc2.snapfile/case=final_ccr_maxfs/option=14403/stoptime=2500000/exp_avg_

N=0.9/t0v=1500/a=1.15/b=1/f_r=5000/swdum3=16/swdum3=0.4/ / Date:07/08/98

0

20

40

60

80

100

120

140

160

180

0 500 1000 1500 2000 2500

A
C

R
s

Time in milliseconds

GFC-2: ACRs

 A_SW1
B_SW1
C_SW5
D_SW1
E_SW2
F_SW3
G_SW6
H_SW4

(d) Algorithm D

Figure 8: GFC-2 con�guration: ACR graphs for algorithms A, B, C and D.

14

References

[1] Shivkumar Kalyanaraman, Raj Jain, Rohit Goyal, Sonia Fahmy, and Bobby Vandalore. 1 \The

ERICA Switch Algorithm for ABR Tra�c Management in ATM Networks". Submitted to

IEEE/ACM Transactions on Networking, November 1997,

[2] Bobby Vandalore, Sonia Fahmy, Raj Jain, Rohit Goyal, Mukul Goyal, \Generalized Fairness

support in Switch Algorithms" ATM Forum/98-0151, February 1998,

[3] Sonia Fahmy, Raj Jain, Shivkumar Kalyanaraman, Rohit Goyal, and Bobby Vandalore. Deter-

mining the number of active ABR sources in switch algorithms. ATM Forum/98-0154, February

1998.

[4] L. Roberts. \Enhanced PCRA (Proportional Rate Control Algorithm)". ATM Forum

Contribution/AF-TM 94-0735R1, August 1994.

[5] Shirish S. Sathaye. \ATM Forum Tra�c Management Speci�cation Version 4.0". April 1996

[6] Nada Golmie. \Netsim: network simulator". http://www.nist.gov/.

[7] Robert J. Simcoe. \Test con�gurations for fairness and other tests". ATM Forum/94-0557,

July 1994.

1
All our papers and ATM Forum contributions are available through http://www.cis.ohio-state.edu/~jain/

15

