# Route Discovery Protocols

Raj Jain

Raj Jain is now at Washington University in Saint Louis Jain@cse.wustl.edu

http://www.cse.wustl.edu/~jain/

The Ohio State University



- Building Routing Tables
- □ Routing Information Protocol Version 1 (RIP V1)
- □ RIP V2
- OSPF
- BGP and IDRP
- □ Ref: M. Naugle, "Network Protocols," McGraw Hill, 1998.

#### **Autonomous Systems**

■ An internet connected by homogeneous routers under the administrative control of a single entity



# **Routing Protocols**

- □ Interior Router Protocol (IRP): Used for passing routing information among routers internal to an autonomous system. Also known as IGP.
  - Examples: RIP, OSPF
- Exterior Router Protocol (ERP): Used for passing routing information among routers between autonomous systems. Also known as EGP.
  - Examples: EGP, BGP, IDRP
     Note: EGP is a class as well as an instance in that class.

#### **Routing Information Protocol**

- ightharpoonup RIP uses distance vector ightharpoonup A vector of distances to all nodes is sent to neighbors
- □ Each router computes new distances:
  - Replace entries with new lower hop counts
  - Insert new entries
  - Replace entries that have the same next hop but higher cost
  - Each entry is aged.
     Remove entries that have aged out
- Send out updates every 30 seconds.

#### Distance-Vector Example

Fig 9.9 Stallings

#### RIP V1

- □ RFC 1058 adopted in 1988
- Implemented in Berkeley UNIX as "routed" (pronounced route d)
- □ Both hosts and routers can implement RIP
- $\square$  Hosts use passive mode  $\Rightarrow$  Do not send out updates
- Runs on UDP
- □ RIP packets do not leave local network

#### **RIPv1 Packet Format**

| Command               | Version  | Reserved |  |  |
|-----------------------|----------|----------|--|--|
| Family of Net 1       |          | Reserved |  |  |
| Net 1 Address         |          |          |  |  |
| Set to 0              |          |          |  |  |
| Set to 0              |          |          |  |  |
| Distance of Network 1 |          |          |  |  |
| Family                | of Net 2 | Reserved |  |  |
| Net 2 Address         |          |          |  |  |
| Set to 0              |          |          |  |  |
| Set to 0              |          |          |  |  |
| Distance of Network 2 |          |          |  |  |

The Ohio State University

Up to 25 entries

#### **RIP V1 Packet Fields**

- □ RIP Commands:
  - 1 = Request for partial or full routing table info
  - 2 = Response containing routing table
  - 3 = Turn on trace mode (obsolete)
  - 4 = Turn off trace mode (obsolete)
  - 5 = Sun Microsystems Internal Use
- □ Family of Net: Shows protocol that owns the packet
  - $\circ$  2= IP
  - XNS and other protocols can also use RIP
- □ Addresses can be 14-byte long. IP uses only 4.
- □ Distance = Integers from 1 to 16.
  - $16 \Rightarrow Unreachable$

#### **Shortcomings of RIP**

- Maximum network diameter = 15 hops
- Cost is measured in hops
   Only shortest routes. May not be the fastest route.
- Entire tables are broadcast every 30 seconds. Bandwidth intensive.
- □ Uses UDP with 576-byte datagrams.
  Need multiple datagrams.
  300-entry table needs 12 datagrams.
- An error in one routing table is propagated to all routers
- Slow convergence

## **Counting to Infinity Problem**



11

## **Improving Convergence**

- **Split Horizon**: Remember the port from which a route was learnt. Do not send the route to that port.
- Hold-down Timer: If a network is unreachable, ignore all updates for that network for, say, 60 s.
- Poison Reverse and Triggered Updates: Once a network is unreachable, it broadcasts it *immediately* to other routers and keeps the entry for some time.



1

#### RIP V2

- □ Backward compatible with RIP V1. Many new features
  - Authentication: If the address family is 0xFFFF, the first route entry is the password.
     (V1 ignores this family type)
  - Subnet mask: Added to addresses
  - **O Route Tag:**

Allows routes learnt externally (e.g., BGP)

- Next Hop: Next hop for each route entry. Useful for multiple routers on a LAN
- Multicast: RIPV2 uses IP multicast (address=224.0.0.9, 01-00-5E-00-00-09). RIPv1 uses broadcast.

#### **RIPv2 Packet Format**

| Command               | Version  | Unused              |  |  |
|-----------------------|----------|---------------------|--|--|
| 0xFFFF                |          | Authentication Type |  |  |
| Password              |          |                     |  |  |
| Family                | of Net 1 | Route Tag           |  |  |
| Net 1 Address         |          |                     |  |  |
| Subnet Mask           |          |                     |  |  |
| Next Hop              |          |                     |  |  |
| Distance of Network 1 |          |                     |  |  |

The Ohio State University

Up to 24 entries

# Static vs Dynamic Routing

- Static entries are put manually in the routing table. Also known as default route.
- □ Static entries override dynamic (learnt) entries.
- Static entry may or may not be included in the dynamic updates.
- □ Static entries not suitable for large highly dynamic networks.
- Static entries do not automatically change when the link goes down
- Static entries used in hub-and-spoke topologies. All branch routers are programmed to send all external packets to central office.

# **Open Shortest Path First (OSPF)**

- □ Uses true metrics (not just hop count)
- Uses subnet masks
- Allows load balancing across equal-cost paths
- □ Supports type of service (ToS)
- Allows external routes (routes learnt from other autonomous systems)
- Authenticates route exchanges
- Quick convergence
- Direct support for multicast
- □ Link state routing ⇒ Each router broadcasts its connectivity with neighbors to entire network



#### **Router Types (Cont)**

- □ Internal Router (IR): All interfaces belong to the same area
- □ Area Border Router (ABR): Interfaces to multiple areas
- □ Backbone Router (BR): Interfaces to the backbone
- □ Autonomous System Boundary Router (ASBR): Exchanges routing info with other autonomous systems
- □ **Designated Router (DR):** Generates link-state info about the subnet
- □ Backup Designated Router (BDR): Becomes DR if DR fails.

#### **OSPF Packet Header**

□ All OSPF packets have the same header. Body varies.

| Version        | Type | Packet Length       |  |  |
|----------------|------|---------------------|--|--|
| Router ID      |      |                     |  |  |
| Area ID        |      |                     |  |  |
| Checksum       |      | Authentication Type |  |  |
| Authentication |      |                     |  |  |

LSA Specific 1=Hello, 2= DB Description, 3=LS Request, 4= LS Update, 5=LS Ack

#### **OSPF Message Types**

- □ Type 1 Router Link-State Advertisements (LSAs): Neighbor's address and cost Flooded within the area by all routers.
- □ Type 2 Network LSAs:
   Addresses of all routers on the LAN and cost
   Flooded within the area by Designated Router
- □ Type 3 Summary LSAs: Flooded into area by ABR. Describes reachable networks in other areas.
- □ Type 4 AS Boundary Router Summary LSAs: Describes cost from the router to ASBR. Flooded into the area by ABR.

## Message Types (Cont)

- □ Type 5 AS External LSAs:
   Flooded to all areas by ASBR.
   Describes external network reachable via the ASBR.
- □ Type 6 Multicast Group Membership LSAs:
- □ Type 7 Multicast OSPF
- All LSAs contain 32-bit sequence numbers. Used to detect duplicate and old LSAs.
- All database entries have an expiration timer (age field)

#### **Metrics (Cost)**

 $\square$  RFC 1253: Metric =  $10^8$ /Speed

| Bit Rate                 | Metric |
|--------------------------|--------|
| 9.6 kbps                 | 10,416 |
| 19.2 kbps                | 5208   |
| 56 kbps                  | 1785   |
| 64 kbps                  | 1562   |
| T1 (1.544 Mbps)          | 65     |
| E1 (2.048 Mbps)          | 48     |
| Ethernet/802.3 (10 Mbps) | 10     |
| 100 Mbps or more         | 1      |

#### **Hello Protocol**

- Routers periodically transmit hello packet Multicast to "All-SPF-Routers" (224.0.0.5)
- □ Used to find neighours and elect DR and BDR
- Packets stay on local subnet.
   Not forwarded by routers.
- □ Packet contains:
  - Router's selection of DR and BDR
  - Priority of DR and BDR
  - Timers: Hello interval and dead interval (time before a router is declared down)
  - List of neighbor routers from which hellos have been received

# Adjacency

- □ Adjacency is formed between:
  - Two routers on a point-to-point link
  - DR or BDR and routers on LANs
  - Other routers on the LAN do not form adjacency between them
- □ Adjacent routers should have "synchronized databases"
- Routers send to adjacent routers a summary list of LSAs using database description packets
- □ Routers then compares the databases and request missing information.
- □ Database is synchronized ⇒ Fully adjacent.
   Dykstra algorithm is then run to find OSPF routes.

## Maintaing the Database

- Databases are continually checked for synchronization by flooding LSAs
- □ All flooded LSAs are acked. Unacked LSAs are flooded again.
- □ Database information is checked. If new info, it is forwarded to other adjacencies using LSAs.
- □ When an entry is aged out, the info is flooded.
- Dykstra algorithm is run on every new info, to build new routing tables.

#### **OSPF** Areas

- □ LSAs are flooded throughout the area
- ☐ Area = domain
- Large networks are divided into areas to reduce routing traffic.
- □ Each area has a 32-bit area ID.
- Although areas are written using dot-decimal notation, they are locally assigned.
- □ The backbone area is area 0 or 0.0.0.0 Other areas may be 0.0.0.1, 0.0.0.2, ...
- Each router has a router ID. Typically formed from IP address of one of its interfaces.

The Ohio State University

#### **Backbone Area**



- Area border routers (ABRs) summarize the topology and transmit it to the backbone area
- Backbone routers forward it to other areas
- ABRs connect an area with the backbone area. ABRs contain OSPF data for two areas. ABRs run OSPF algorithms for the two areas.
- ☐ If there is only one area in the AS, there is no backbone area and there are no ABRs.

## **Inter-Area Routing**

- Packets for other areas are sent to ABR
- □ ABR transmits the packet on the backbone
- □ Backbone routers send it to the destination area ABR
- □ Destination ABR forwards it in the destination area.

# Routing Info from Other ASs



- Autonomous Systems Boundary Router (ASBR) exchanges "exterior gateway protocol (EGP)" messages with other autonomous systems
- ASBRs generate "external link advertisements." These are flooded to all areas of the AS. There is one entry for every external route.

#### RIPv1 vs RIPv2 vs OSPF

| Feature             | RIPv1               | RIPv2               | OSPF                |
|---------------------|---------------------|---------------------|---------------------|
| RFC                 | RFC1058             | RFC1723             | RFC2178             |
| Method              | Distance-<br>Vector | Distance-<br>Vector | Link-state          |
| Range of<br>Metrics | 16                  | 16                  | 65,535              |
| Update<br>Frequency | 30s                 | 30s                 | Changes or 30 mins  |
| Dead interval       | 300s                | 300s                | Variable<br>setting |
| Authentication      | No                  | Yes                 | Yes                 |
| Convergence         | Slow                | Fast                | Fast                |
| Subnet Support      | No                  | Yes                 | Yes                 |
| Type of<br>Service  | No                  | No                  | Yes                 |
| Multipath           | No                  | No                  | Yes                 |
| Max Net<br>Diameter | 15                  | 15                  | 65,535              |
| Ease of Use         | Yes                 | Yes                 | Complex Setup       |

# **Border Gateway Protocol**

- □ Inter-autonomous system protocol [RFC 1267]
- □ Used since 1989 but not extensively until recently
- □ Runs on TCP (segmentation, reliable transmission)
- □ Advertises all transit ASs on the path to a destination address
- □ A router may receive multiple paths to a destination
   ⇒ Can choose the best path
- □ No loops and no count-to-infinity problems

#### **BGP Operations**

- BGP systems initially exchange entire routing tables. Afterwards, only updates are exchanged.
- □ BGP messages have the following information:
  - o Origin of path information: RIP, OSPF, ...
  - AS\_Path: List of ASs on the path to reach the dest
  - Next\_Hop: IP address of the border router to be used as the next hop to reach the dest
  - Unreachable: If a previously advertised route has become unreachable
- BGP speakers generate update messages to all peers when it selects a new route or some route becomes unreachable.

#### **BGP Messages**

Marker (64)

Length (16)

Type (8)

Version (8)

My AS (16)

Hold Time (16)

BGP ID (32)

Auth Code (8)

Auth Data (var)

Total Length (16)

Path Attrib (Var)

Network 1 (32)

Network n (32)

A. Header

B. Open Message

C. Update Message

# **BGP Messages (Cont)**

- Marker field is used for authentication or to detect a lost of synch
- □ Types of messages: Open, update, notification, keepalive
- Open messages are used to establish peer relationship
  - Hold time: max time between successive keepalive, update, or notification messages
  - BGP ID: IP address of one of the sender interfaces.
     Same value is used for all interfaces.
- □ Update messages are used to exchange routing info.
  - Path attributes = bit mask indicating optional/required, partial/full, etc.

#### **IDRP**

- □ Interdomain Routing Protocol (an EGP)
- □ Recent extension of BGP concepts
- Distributes path vectors
- □ Allows multiple routes to a destination
- □ Allows an additional hierarchy entity: Routing domain confederation ⇒ A domain can belong to several RDCs
- □ Each domain has a Routing Domain Identifier (RDI)
- □ Each RDC has a RDC identifier (RDCI)
- Uses link attributes, such as, throughput, delay, security
- □ IDRP has its own reliability mechanism
  - ⇒ Does not need TCP

# Summary



- □ RIP uses distance-vector routing
- □ RIP v2 fixes the slow convergence problem
- OSPF uses link-state routing and divides the autonomous systems into multiple areas.
   Area border router, AS boundary router, designated router
- □ BGP and IDRP are exterior gateway protocols