
Commonly Used Distributions

• Random number generation algorithms for
distributions commonly used by computer
systems performance analysts.

• Organized alphabetically for reference

• For each distribution:

– Key characteristics

– Algorithm for random number
generation

– Examples of applications

c©1994 Raj Jain 29.1



Bernoulli Distribution

• Takes only two values: failure and success
or x = 0 and x = 1, respectively.

• Key Characteristics:

1. Parameters: p = Probability of success
(x = 1) 0 ≤ p ≤ 1

2. Range: x = 0, 1

3. pmf: f (x) =





1− p, if x = 0
p, if x = 1
0, Otherwise

4. Mean: p

5. Variance: p(1− p)

c©1994 Raj Jain 29.2



• Applications: To model the probability of
an outcome having a desired class or
characteristic:

1. A computer system is up or down.

2. A packet in a computer network reaches
or does not reach the destination.

3. A bit in the packet is affected by noise
and arrives in error.

• Can be used only if the trials are
independent and identical

• Generation: Inverse transformation
Generate u ∼ U(0, 1)
If u ≤ p return 0. Otherwise, return 1.

c©1994 Raj Jain 29.3



Beta Distribution

• Used to represent random variates that
are bounded

• Key Characteristics:

1. Parameters: a, b = Shape parameters,
a > 0, b > 0

2. Range: 0 ≤ x ≤ 1

3. pdf: f (x) = xa−1(1−x)b−1

β(a,b)

β(.) is the beta function and is related
to the gamma function as follows:

β(a, b) =
∫ 1
0 xa−1(1− x)b−1dx

=
Γ(a)Γ(b)

Γ(a + b)

4. Mean: a/(a + b)

5. Variance: ab/{(a + b)2(a + b + 1)}
• Substitute (x− xmin)/(xmax − xmin) in

place of x for other ranges
c©1994 Raj Jain 29.4



• Applications: To model random
proportions

1. Fraction of packets requiring
retransmissions.

2. Fraction of remote procedure calls
(RPC) taking more than a specified
time.

• Generation:

1. Generate two gamma variates γ(1, a)
and γ(1, b), and take the ratio:

BT (a, b) =
γ(1, a)

γ(1, a) + γ(1, b)

2. If a and b are integers:

(a) Generate a + b + 1 uniform U(0,1)
random numbers.

(b) Return the the ath smallest number
as BT(a, b).

c©1994 Raj Jain 29.5



3. If a and b are less than one:

(a) Generate two uniform U(0,1) random
numbers u1 and u2

(b) Let x = u
1/a
1 and y = u

1/b
2 . If

(x + y) > 1, go back to the previous
step. Otherwise, return x/(x + y) as
BT(a, b).

4. If a and b are greater than 1:
Use rejection

c©1994 Raj Jain 29.6



Binomial Distribution

• The number of successes x in a sequence
of n Bernoulli trials has a binomial
distribution.

• Characteristics:

1. Parameters:
p = Probability of success in a trial,

0 < p < 1.
n = Number of trials;

n must be a positive integer.

2. Range: x = 0, 1, . . . , n

3. pdf: f (x) =




n
x


 px(1− p)n−x

4. Mean: np

5. Variance: np(1− p)

c©1994 Raj Jain 29.7



• Applications: To model the number of
successes

1. The number of processors that are up in
a multiprocessor system.

2. The number of packets that reach the
destination without loss.

3. The number of bits in a packet that are
not affected by noise.

4. The number of items in a batch that
have certain characteristics.

• Variance < Mean ⇒ Binomial
Variance > Mean ⇒ Negative Binomial
Variance = Mean ⇒ Poisson

• Generation:

1. Composition: Generate n U(0,1). The
number of RNs that are less than p is
BN(p, n)

c©1994 Raj Jain 29.8



2. For small p:

(a) Generate geometric random numbers

Gi(p) = d ln(ui)
ln(1−p)e.

(b) If the sum of geometric RNs so far is
less than or equal to n, go back to the
previous step. Otherwise, return the
number of RNs generated minus one.
If ∑m

i=1 Gi(p) > n, return m− 1.

3. Inverse Transformation Method:
Compute the CDF F(x) for
x = 0, 1, 2, . . ., n and store in an array.
For each binomial variate, generate a
U(0,1) variate u and search the array to
find x so that F (x) ≤ u < F (x + 1);
return x.

c©1994 Raj Jain 29.9



Chi-Square Distribution

• Sum of squares of several unit normal
variates

• Key Characteristics:

1. Parameters: ν=degrees of freedom, ν
must be a positive integer.

2. Range: 0 ≤ x ≤ ∞
3. pdf: f (x) = x(ν−2)/2e−x/2

2ν/2Γ(ν/2)

Here, Γ(.) is the gamma function
defined as follows:

Γ(b) =
∫∞
0 e−xxb−1dx

4. Mean: ν

5. Variance: 2ν

c©1994 Raj Jain 29.10



• Application: To model sample variances.

• Generation:

1. χ2(ν) = γ(2, ν/2):
For ν even:
χ2(ν) = −1

2 ln

∏ν/2

i=1 ui




For ν odd:
χ2(ν) = χ2(ν − 1) + [N(0, 1)]2

2. Generate ν N(0,1) variates and return
the sum of their squares.

c©1994 Raj Jain 29.11



Erlang Distribution

• Used in queueing models

• Key characteristics:

1. Parameters:
a = Scale parameter, a > 0
m = Shape parameter;
m is a positive integer

2. Range: 0 ≤ x ≤ ∞
3. pdf: f (x) = xm−1e−x/a

(m−1)!am

4. CDF: F (x) = 1− e−x/a



∑m−1
i=0

(x/a)i

i!




5. Mean: am

6. Variance: a2m

c©1994 Raj Jain 29.12



• Application: Extension to the exponential
distribution if the coefficient of variation is
less than one

1. To model service times in a queueing
network model.

2. A server with Erlang(a,m) service
times can be represented as a series of
m servers with exponentially
distributed service times.

3. To model time-to-repair and
time-between-failures.

• Generation: Convolution
Generate m U(0,1) random numbers ui
and then:

Erlang(a,m) ∼ −a ln



m∏

i=1
ui




c©1994 Raj Jain 29.13



Exponential Distribution

• Used extensively in queueing models.

• Key characteristics

1. Parameters: a = Scale parameter =
Mean, a > 0

2. Range: 0 ≤ x ≤ ∞
3. pdf: f (x) = 1

ae
−x/a

4. CDF: F (x) = 1− e−x/a

5. Mean: a

6. Variance: a2

•Memoryless Property: Past history is not
helpful in predicting the future

c©1994 Raj Jain 29.14



• Applications: To model time between
successive events

1. Time between successive request
arrivals to a device.

2. Time between failures of a device.

The service times at devices are also
modeled as exponentially distributed.

• Generation: Inverse transformation
Generate a U(0,1) random number u and
return −a ln(u) as Exp(a)

c©1994 Raj Jain 29.15



Memoryless Property

• Remembering the past does not help in
predicting the time till the next event.

F (τ ) = P (τ < t) = 1− e−λtt ≥ 0

• At t = 0, the mean time to the next
arrival is 1/λ.

• At t = x, the distribution of the time
remaining till the next arrival is:

P (τ − x < t|τ > x)

=
P (x < τ < x + t)

P (τ > x)

=
P (τ < x + t)− P (τ < x)

P (τ > x)

=
(1− e−λ(x+t))− (1− e−λx)

e−λt

= 1− e−λx

This is identical to the situation at t = 0.

c©1994 Raj Jain 29.16



F Distribution

• The ratio of two chi-square variates has an
F distribution.

• Key characteristics:

1. Parameters:
n = Numerator degrees of freedom;
n should be a positive integer.
m = Denominator degrees of freedom;
m should be a positive integer.

2. Range: 0 ≤ x ≤ ∞
3. pdf: f (x) =

(n/m)n/2

β(n/2,m/2)x
(n−2)/2(1 + n

mx)−(n+m)/2

4. Mean: m
m−2, provided m > 2.

5. Variance: 2m2(n+m−2)
n(m−2)2(m−4)

, provided

m > 4.

c©1994 Raj Jain 29.17



• High quantiles:

F[1−α;n,m] =
1

F[α;m,n]

• Applications: To model ratio of sample
variances
In the F-test for regression and analysis of
variance

• Generation: Characterization
Generate two chi-square variates χ2(n)
and χ2(m) and compute:

F (n,m) =
χ2(n)/n

χ2(m)/m

c©1994 Raj Jain 29.18



Gamma Distribution

• Generalization of Erlang distribution
Allows noninteger shape parameters

• Key Characteristics:

1. Parameters:
a = Scale parameter, a > 0
b = Shape parameter, b > 0

2. Range: 0 ≤ x ≤ ∞
3. pdf: f (x) =

(x
a)

b−1
e−x/a

aΓ(b)

Γ(.) is the gamma function.

4. Mean: ab

5. Variance: a2b.

c©1994 Raj Jain 29.19



• Applications: To model service times and
repair times

• Generation:

1. If b is an integer, the sum of b
exponential variates has a gamma
distribution.

γ(a, b) ∼ −a ln



b∏

i=1
ui




2. For b < 1, generate a beta variate
x ∼ BT(b, 1− b) and an exponential
variate y ∼ Exp(1). The product axy
has a gamma(a,b) distribution.

3. For non-integer values of b:

γ(a, b) ∼ γ(a, bbc) + γ(a, b− bbc)

c©1994 Raj Jain 29.20



Geometric Distribution

• Discrete equivalent of the exponential
distribution

• Key characteristics:

1. Parameters: p = Probability of success,
0 < p < 1.

2. Range: x = 1, 2, . . . ,∞
3. pmf: f (x) = (1− p)x−1p

4. CDF: F (x) = 1− (1− p)x

5. Mean: 1/p

6. Variance:1−p
p2

• memoryless

• Applications: Number of trials up to and
including the first success in a sequence of
Bernoulli trials
Number of attempts between successive
failures (or successes)

c©1994 Raj Jain 29.21



1. Number of local queries to a database
between successive accesses to the
remote database.

2. Number of packets successfully
transmitted between those requiring a
retransmission.

3. Number of successive error-free bits
between in-error bits in a packet
received on a noisy link.

Also to model batch sizes with batches
arriving in a Poisson stream

• Generation: Inverse transformation
Generate u ∼ U(0,1) and compute:

G(p) =




ln(u)

ln(1− p)




d.e ⇒ rounding up

c©1994 Raj Jain 29.22



Lognormal Distribution

• Log of a normal variate

• Key characteristics:

1. Parameters:
µ = Mean of ln(x), µ > 0
σ = Standard deviation of ln(x),

σ > 0

2. Range: 0 ≤ x ≤ ∞
3. pdf: f (x) = 1

σx
√

2π
e
−(ln x−µ)2

2σ2

4. Mean: eµ+σ2/2

5. Variance: e2µ+σ2
(eσ2 − 1)

• Note: µ and σ are the mean and standard
deviation of ln(x) not x

c©1994 Raj Jain 29.23



• Applications: The product of a large
number of positive random variables tends
to have an approximate lognormal
distribution
To model multiplicative errors that are a
product of effects of a large number of
factors

• Generation: Log of a normal variate
Generate x ∼ N(0, 1) and return eµ+σx.

c©1994 Raj Jain 29.24



Negative Binomial Distribution

• Number of failures x before the mth

success

• Key characteristics:

1. Parameters:
p = Probability of success,

0 < p < 1
m = Number of successes,

m must be a positive integer.

2. Range: x = 0, 1, 2, . . . ,∞
3. pmf:

f (x) =




m + x− 1
m− 1


 pm(1− p)x =

Γ(m+x)
(Γm)(Γx)p

m(1− p)x

The second expression allows a negative
binomial to be defined for noninteger
values of x.

4. Mean: m(1− p)/p
c©1994 Raj Jain 29.25



5. Variance: m(1− p)/p2

• Applications:

1. Number of local queries to a database
system before mth remote query.

2. Number of retransmissions for a
message consisting of m packets.

3. Number of error-free bits received on a
noisy link before the m in-error bit.

Used if variance > mean
Otherwise use Binomial or Poisson.

• Generation:

1. Generate ui ∼ U(0, 1) until m of the
ui’s are greater than p. Return the
count of ui’s less than or equal to p as
NB(p,m).

2. The sum of m geometric variates G(p)
gives the total number of trials for m

c©1994 Raj Jain 29.26



successes

NB(p,m) ∼



m∑

i=1
G(p)


 −m

3. Composition:

(a) Generate a gamma variate
y ∼ Γ(p/(1− p),m)

(b) Generate a Poisson variate
x ∼ Poisson(y)

(c) Return x as NB(p,m)

c©1994 Raj Jain 29.27



Normal Distribution

• Also known as Gaussian distribution

• Discovered by Abraham De Moivre in 1733

• Rediscovered by Gauss in 1809 and by
Laplace 1812

• N(0,1) = unit normal distribution or
standard normal distribution.

• Key characteristics:

1. Parameters:
µ = Mean
σ = Standard deviation σ > 0

2. Range: −∞ ≤ x ≤ ∞
3. pdf: f (x) = 1

σ
√

2π
e
−(x−µ)2

2σ2

4. Mean: µ

5. Variance: σ2

c©1994 Raj Jain 29.28



• Applications:

1. Errors in measurement.

2. Error in modeling to account for a
number of factors that are not included
in the model.

3. Sample means of a large number of
independent observations from a given
distribution.

• Generation:

1. Using the sum of a large number of
uniform ui ∼ U(0, 1) variates:

N(µ, σ) ∼ µ + σ
(∑n

i=1 ui)− n
2

(
n
12

)1/2

Generally, n = 12 is used.

2. Box-Muller Method: Generate two
uniform variates u1 and u2 and
compute two independent normal

c©1994 Raj Jain 29.29



variates N(µ, σ) as follows:

x1 = µ + σcos(2πu1)
√

−2 ln(u2)

x2 = µ + σsin(2πu1)
√

−2 ln(u2)

There is some concern that if this
method is used with u’s from an LCG,
the resulting x’s may be correlated.

3. Polar Method:

(a) Generate two U(0,1) variates u1 and
u2.

(b) Let v1 = 2u1 − 1, v2 = 2u2 − 1, and
r = v2

1 + v2
1.

(c) If r ≥ 1, go back to step 3a; otherwise

let s =

−2 ln r

r



1/2

and return.

x1 = µ + σv1s

x2 = µ + σv2s

x1 and x2 are two independent
N(µ, σ) variates.

4. Rejection Method:
c©1994 Raj Jain 29.30



(a) Generate two uniform U(0,1) variates
u1 and u2.

(b) Let x = − ln u1.

(c) If u2 > e
−(x−1)2

2 , go back to Step 4a.

(d) Generate u3.

(e) If u3 > 0.5, return µ + σx; otherwise
return µ− σx.

c©1994 Raj Jain 29.31



Pareto Distribution

• Pareto CDF is a power curve
⇒ Fit to observed data

• Key characteristics:

1. Parameters: a=shape parameter, a > 0

2. Range: 1 ≤ x ≤ ∞
3. pdf: f (x) = ax−(a+1)

4. CDF: F (x) = 1− x−a

5. Mean: a
a−1, provided a > 1

6. Variance: a
(a−1)2(a−2)

, provided a > 2

• Application: To fit a distribution
The maximum likelihood estimate:

a =
1

1
n

∑n
i=1 ln xi

• Generation: Inverse transformation
Generate u ∼ U(0, 1) and return 1/u1/a.

c©1994 Raj Jain 29.32



Pascal Distribution

• Extension of the geometric distribution

• Number of trials up to and including the
mth success

• Key characteristics:

1. Parameters:
p = Probability of success,

0 < p < 1
m = Number of successes,

m should be a positive integer.

2. Range: x = m,m + 1, . . . ,∞
3. pmf: f (x) =




x− 1
m− 1


 pm(1− p)x−m

4. Mean: m/p

5. Variance: m(1− p)/p2

c©1994 Raj Jain 29.33



• Applications:

1. Number of attempts to transmit an m
packet message.

2. Number of bits to be sent to
successfully receive an m-bit signal.

• Generation: Generate m geometric
variates G(p) and return their sum as
Pascal(p,m).

c©1994 Raj Jain 29.34



Poisson Distribution

• Limiting form of the binomial distribution

• Key characteristics:

1. Parameters: λ = Mean, λ > 0

2. Range: x = 0, 1, 2, . . . ,∞
3. pmf: f (x) = P (X = x) = λxe−λ

x!
4. Mean: λ

5. Variance: λ

• Applications: To model the number of
arrivals over a given interval

1. Number of requests to a server in a
given time interval t.

2. Number of component failures per unit
time.

3. Number of queries to a database system
over t seconds.

4. Number of typing errors per form.
c©1994 Raj Jain 29.35



Particularly appropriate if the arrivals are
from a large number of independent
sources

• Generation:

1. Inverse Transformation Method:
Compute the CDF F(x) for
x = 0, 1, 2, . . . up to a suitable cutoff
and store in an array.
For each Poisson random variate,
generate a U(0,1) variate u, and search
the array to find x such that
F (x) ≤ u < F (x + 1), return x.

2. Starting with n = 0, generate
un ∼ U(0, 1) and compute the product
∏n
i=0 ui. As soon as the product

becomes less than e−λ, return n as the
Poisson(λ) variate.
Note that n is such that
u0u1 · · ·un−1 > e−λ ≥ u0u1 · · ·un

c©1994 Raj Jain 29.36



Student’s t-Distribution

• Derived by W. S. Gosset (1876-1937)
Published under a pseudonym of ‘Student’
Used symbol t

• Key characteristics:

1. Parameters: ν=Degrees of freedom,
ν must be a positive integer.

2. Range: −∞ ≤ x ≤ ∞
3. pmf:

f (x) = {Γ[(ν+1)/2]}[1+(x2/ν)]−(ν+1)/2

(πν)1/2Γ(ν/2)

4. Variance: ν/(ν − 2), for ν > 2.

N(0, 1)
√

χ2(ν)/ν
∼ t(ν)

• For (ν > 30), a t ≈ N(0, 1)

c©1994 Raj Jain 29.37



• Applications: In setting confidence
intervals and in t-tests

• Generation: Characterization Generate
x ∼ N(0, 1) and y ∼ χ2(ν) and return
x/

√

y/ν as t(ν).

c©1994 Raj Jain 29.38



Uniform Distribution (Continuous)

• Key characteristics:

1. Parameters: a = Lower limit
b = Upper limit, b > a

2. Range: a ≤ x ≤ b

3. pdf: f (x) = 1
b−a

4. CDF: F (x) =





0, If x < a
x−a
b−a , If a ≤ x < b

1, If b ≤ x

5. Mean: a+b
2

6. Variance: (b− a)2/12

• Applications: Bounded random variables
with no further information:

1. Distance between source and
destinations of messages on a network.

2. Seek time on a disk.
c©1994 Raj Jain 29.39



• Generation: To generate U(a, b), generate
u ∼ U(0, 1) and return a + (b− a)u.

c©1994 Raj Jain 29.40



Uniform Distribution (Discrete)

• Discrete version of the uniform
distribution

• Takes a finite number of values, each with
the same probability.

• Key characteristics:

1. Parameters:
m = Lower limit;

m must be an integer.
n = Upper limit;

n must be an integer
n > m

2. Range: x = m,m + 1,m + 2, . . . , n

3. pmf: f (x) = 1
n−m+1

4. CDF: F (x) =





0, If x < m
x−m+1
n−m+1, If m ≤ x < n

1, If n ≤ x

c©1994 Raj Jain 29.41



5. Mean: (n + m)/2

6. Variance: (n−m+1)2−1
12

• Applications:

1. Track numbers for seeks on a disk.

2. I/O device number selected for the next
I/O.

3. The source and destination node for the
next packet on a network.

• Generation: To generate UD(m,n),
generate u ∼ U(0, 1), return
bm + (n−m + 1)uc.

c©1994 Raj Jain 29.42



Weibull Distribution

• Key characteristics:

1. Parameters:
a = Scale parameter a > 0
b = Shape parameter b > 0

2. Range: 0 ≤ x ≤ ∞
3. pdf: f (x) = bxb−1

ab e−(x/a)b

4. CDF: F (x) = 1− e−(x/a)b

5. Mean: a
bΓ(1/b)

6. Variance: a2

b2

[
2bΓ(2/b)− {Γ(1/b)}2

]

• If b = 3.602, the Weibull distribution is
close to a normal. For b > 3.602, it has a
long left tail. For b < 3.602, it has a long
right tail.
For b ≤ 1, the Weibull pdf is L-shaped,
and for b > 1, it is bell-shaped.

c©1994 Raj Jain 29.43



For large b, the Weibull pdf has a sharp
peak at the mode.

• Applications: To model lifetimes of
components.
b < 1 ⇒ failure rate increasing with time
b > 1 ⇒ failure rate decreases with time
b = 1 ⇒ failure rate is constant
⇒ life times are exponentially distributed.

• Generation: Inverse transformation
Generate u ∼ U(0, 1) and return

a(ln u)1/b as Weibull(a, b).

c©1994 Raj Jain 29.44



Relationships Among Distributions

c©1994 Raj Jain 29.45



Relationships Among Distributions

c©1994 Raj Jain 29.46



Exercise 29.1

W hat distribution would you use to model
the following:

1. Number of requests between typing errors,
given that each request has a certain
probability of being in error?

2. Number of requests in error among m
requests, given that each request has a
certain probability of being in error?

3. The minimum or the maximum of a large
set of IID observations?

4. The mean of a large set of observations
from uniform distribution?

5. The product of a large set of observatiosn
from uniform distribution?

6. To empirically fit the distribution using a
power curve for CDF?

c©1994 Raj Jain 29.47



7. The stream resulting from a merger of two
Poisson streams?

8. Sample variances from a normal
population?

9. Ratio of two sample variances from
normal population?

10. Time between successive arrivals, given
that the arrivals are memoryless?

11. Service time of a device that consists of m
memoryless servers in series?

12. Number of systems that are idle in a
distributed system, given that each system
has a fixed probability of being idle?

13. Fraction of systems that are idle in a
distributed system, given that each system
has a fixed probability of being idle?

c©1994 Raj Jain 29.48



Exercise 29.2

L et x,y,z,w be four unit normal variates.
Find the distribution and 90-percentiles for
the following quantities:

1. (x + y + z + w)/4

2. x2 + y2 + z2 + w2

3. (x2 + y2)/(z2 + w2)

4. w/
√

(x2 + y2 + z2)/4

c©1994 Raj Jain 29.49



Further Reading

• Books on simulations: Law and Kelton
(1982) and Brately, Fox, and Schrage
(1986)

• Lavenberg (1983): transient removal,
variance estimation, and random-number
generation.

• Languages: GPSS in O’Donovan (1980)
SIMSCRIPT II in CACI (1983)
SIMULA by Birtwistle, Dahl, Myhrhaug,
and Nygaard (1973)
GASP by Pritsker and Young (1975)

• Sherman and Browne (1973): trace-driven
computer simulations

• Adam and Dogramaci (1979) include
papers describing the simulation languages
SIMULA, SIMSCRIPT, and GASP by
their respective language designers.

c©1994 Raj Jain 29.50



Bulgren (1982) discusses SIMSCRIPT and
GPSS.

• Event-set algorithms: Frata and Maly
(1977), Wyman (1975), and Vaucher and
Duval (1975).

•Mitrani (1982) and Rubinstein (1986):
Variance reduction techniques.

• Random Number Generation: Knuth
(1981) Vol. 2
Greenberger (1961)
Lewis, Goodman, and Miller (1969)
Park and Miller (1988)
Lamie (1987)

• Generalized feedback shift registers:
Bright and Enison (1979)
Fushimi and Tezuka (1983)
Fushimi (1988), and Tezuka (1987)
Golomb (1982)

• Kreutzer (1986): Ready-made Pascal
c©1994 Raj Jain 29.51



routines for common simulation tasks such
as event scheduling, time advancing,
random-number generation

• Distributions: Hastings and Peacock
(1975)

• Distributed simulation and knowledge-
based simulations: Unger and Fujimoto
(1989)
Webster (1989)

c©1994 Raj Jain 29.52



Current Areas of Research in
Simulation

• Distributed simulations

• Knowledge-based simulations

• Simulations on microcomputers

• Object-oriented simulation

• Graphics and animation for simulations

• Languages for concurrent simulations.

c©1994 Raj Jain 29.53



Sequential Simulation

• The events are processed sequentially.

• Not efficient on parallel or multiprocessor
systems

• Two global variables shared by all
processes: the simulation clock and the
event list.

c©1994 Raj Jain 29.54



Distributed Simulation

• Also known as concurrent simulation or
parallel simulation

• Global clock times are replaced by several
(distributed) “channel clock values”

• Events are replaced by messages between
processes ıAllows splitting a simulation
among an arbitrary number of computer
systems

• Introduces the problem of deadlock ⇒
Schemes for deadlock detection, deadlock
recovery, and deadlock prevention

• Survey by Misra (1986)

• See also Wagner and Lazowska (1989).

c©1994 Raj Jain 29.55



Knowledge-based Simulations

• Artificial intelligence techniques are used
for simulation modeling.

• Allow specifying the system at a very high
level

• Questions are interpreted intelligently by
the simulation system

• Provide automatic verification and
validation

• Automatic design of experiments,
data analysis and interpretation See
Ramana Reddy et al (1986) and Klahr
and Fought (1980)

c©1994 Raj Jain 29.56



Bibliography

[1] N. R. Adam and A. Dogramaci, eds., Current Issues in Computer Simulation,
Academic Press, New York, 1979.

[2] J. S. Annino and E. C. Russell, “The Ten Most Frequent Causes of Simulation
Analysis Failure,” CACI Report 7, 1979.

[3] G. Birtwistle, O. Dahl, B. Myhrhaug, and K. Nygaard, SIMULA Begin,
Auerbach, Philadelphia, 1973.

[4] L. Blum, M. Blum, and M. Shub, “A Simple Pseudo-Random Number
Generator,” SIAM J. Comput. Vol. 15, No. 2, May 1986, pp. 364-383.

[5] P. A. Bobillier, B. C. Kahan, and A. R. Probst, Simulation with GPSS and
GPSS V, Prentice-Hall, Englewood-Cliffs, NJ, 1976.

[6] G. E. P. Box and M. E. Muller, “A Note on the Generation of Random Normal
Deviates,” Ann. Math. Stat., Vol. 29, 1958, pp. 610-611.

[7] P. Bratley, B. L. Fox, and L. E. Schrage, A Guide to Simulation,
Springer-Verlag, New York, 1986.

[8] H. S. Bright and R. L. Enison, “Quasi-Random Number Sequences from a
Long-Period TLP Generator with Remarks on Application to Cryptography,”
ACM Comput. Surveys, Vol. 11, 1979, pp. 357-370.

[9] R. Brown, “Calendar Queues: A Fast O(1) Priority Queue Implementation for
the Simulation Event Set Problem,” Comm. of ACM, Vol. 31, No. 10, October
1988, pp. 1220-1227.

[10] W. G. Bulgren, Discrete System Simulation, Prentice-Hall, Englewood Cliffs,
NJ, 1982.

29.57



[11] C.A.C.I., SIMSCRIPT II.5 Programming Language, C. A. C. I., Los Angeles,
CA, 1983.

[12] R. R. Conveyou and R. D. McPherson, “Fourier Analysis of Uniform Random
Number Generators,” Journal of ACM, Vol 14, 1967, pp. 100-119.

[13] M. A. Crane and A. J. Lemoine, An Introduction to the Regenerative Method for
Simulation Analysis, Springer-Verlag, New York, 1977.

[14] O-J. Dahl, B. Myhrhaug, and K. Nygaard, Common Base Language, Norwegian
Computing Center, Oslo, Norway, 1982.

[15] R. L. Edgeman, “Random Number Generators and the Minimal Standard,”
Communications of ACM, Vol. 32, No. 8, August 1989, pp. 1020-21.

[16] G. S. Fishman and L. R. Moore, “An Exhaustive Analysis of Multiplicative
Congruential Random Number Generators with Modulus 231-1,” SIAM J. on
Sci. Statist. Comput., Vol 7, 1986, pp. 24-45.

[17] B. L. Fox, “Generation of Random Samples from the Beta and F distributions,”
Technometrics, Vol. 5, 1963, pp. 269-270.

[18] W. R. Franta and K. Maly, “An Efficient Data Structure for the Simulation
Event Set,” Communications of ACM, Vol. 20, No. 8, August 1977, pp. 596-602.

[19] W. R. Franta, The Process View of Simulation, North-Holland, New York, 1977.

[20] A. M. Frieze, R. Kannan, and J. C. Lagarias, “Linear Congruential Generators
Do Not Produce Random Sequences,” Proc. 25th Symp. on Foundations of
Computer Sci., Boca Raton, FL, October 24-26, 1984, pp. 480-484.

[21] M. Fushimi and S. Tezuka, “The k-Distribution of Generalized Feedback Shift
Register Pseudorandom Numbers,” Communications of ACM, Vol. 26, No. 7,
July 1983, pp. 516-523.

[22] M. Fushimi, “Designing a Uniform Random Number Generator Whose
Subsequences are k-Distributed,” SIAM J. Comput., Vol. 17, No. 1, February
1988, pp. 89-99.

[23] S. W. Golomb, Shift Register Sequences, Aegean Park Press, Laguna Hills, CA,
1982.

[24] M. Greenberger, “An A Priori Determination of Serial Correlation in Computer
Generated Random Numbers,” Math. Comp., Vol. 15, 1961, pp. 383-389.

c©1994 Raj Jain 29.58



[25] C. Hastings, Jr. Approximations for Digital Computers, Princeton University
Press, Princeton, NJ, 1955.

[26] N. A. J. Hastings and J. B. Peacock, Statistical Distributions, Wiley, New York,
1975.

[27] IBM, System/360 Scientific Subroutine Package, Version III, Programmer’s
Manual, IBM, White Plains, NY, 1968, p. 77.

[28] IMSL Library, Vol. I, 8th Edn., Distributed by International Mathematical and
Statistical Libraries, Inc., Houston, TX.

[29] R. K. Jain, “A Timeout-Based Congestion Control Scheme for Window
Flow-Controlled Networks,” IEEE Journal on Selected Areas in
Communications, Vol. SAC-4, No. 7, Oct. 1986, pp. 1162-1167.

[30] M. D. Jöhnk, “Erzeugung von Betaverteilten und Gammaverteilten
Zufallszahlen,” Metrika, Vol. 8, 1964, pp. 5-15.

[31] H. Katzan, Jr., APL User’s Guide, Van Nostrand Reinhold, New York, 1971.

[32] P. Klahr and W. S. Fought, “Knowledge-Based Simulation,” Proc. First Conf.
AAAI, Stanford, CA, 1980, pp. 181-183.

[33] D. E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical
Algorithms, Addison-Wesley, Reading, MA, 1981.

[34] W. Kreutzer, System Simulation Programming Styles and Languages,
Addison-Wesley, Reading, MA, 1986.

[35] P. L’Ecuyer, “Efficient and Portable Combined Random Number Generators,”
Communications of ACM, Vol. 31, No. 6, June 1988, pp. 742-774.

[36] E. L. Lamie, Pascal Programming, Wiley, New York, 1987, p. 150.

[37] S. S. Lavenberg, ed., Computer Performance Modeling Handbook, Academic
Press, New York, 1983.

[38] A. M. Law and W. D. Kelton, Simulation Modeling and Analysis, McGraw-Hill,
New York, 1982.

[39] A. M. Law, “Statistical Analysis of Simulation Output,” Operations Research
Vol.19, No. 6, pp. 983-1029, Nov.-Dec., 1983.

[40] D. H. Lehmer, “Mathematical Methods in Large-Scale Computing Units,” Ann.
Comput. Lab., Harvard Univ., Vol. 26, 1951, pp. 141-146.

c©1994 Raj Jain 29.59



[41] P. A. Lewis, A. S. Goodman, and J. M. Miller, “A Pseudo-Random Number
Generator for the System/360,” IBM Systems Journal, Vol. 8, No. 2, 1969, pp.
136-146.

[42] T. G. Lewis and W. H. Payne, “Generalized Feedback Shift Register
Pseudo-Random Number Algorithm,” Journal of ACM, Vol. 20, No. 3, July
1973, pp. 456-468.

[43] H. M. Markowitz, B. Hausner, and H. W. Karr, SIMSCRIPT: A Simulation
Programming Language, Prentice-Hall, Englewood Cliffs, NJ, 1963.

[44] G. Marsaglia and T. A. Bray, “A Conveniently Method for Generating Normal
Variables,” SIAM Rev., Vol. 6, 1964, pp. 260-264.

[45] G. Marsaglia, “Random Numbers Fall Mainly in the Planes,” Proc. Nat. Acad.
Sci., Vol. 60, No. 5, September 1968, pp. 25-28.

[46] G. Marsaglia, “Random Number Generation,” in A. Ralston and E. D. Reilly,
Jr., Eds, Encyclopedia of Computer Science and Engineering, Van Nostrand
Reinhold, New York, 1983, pp. 1260-1264.

[47] W. M. McCormack and R. G. Sargent, “Comparison of Future Event Set
Algorithms for Simulations of Closed Queueing Systems,” in N. R. Adam and A.
Dogramaci (Eds), Current Issues in Computer Simulation, Academic Press, New
York, 1979, pp. 71-82.

[48] J. Misra, “Distributed Discrete-Event Simulation,” ACM Computing Surveys,
Vol. 18, No. 1, March 1986, pp. 39-66.

[49] I. Mitrani, Simulation Techniques for Discrete-Event Systems, Cambridge U.
Press, London, 1982.

[50] T. M. O’Donovan, GPSS Simulation Made Simple, Wiley, Chichester, U.K.,
1980.

[51] S. K. Park and K. W. Miller, “Random Number Generators: Good Ones Are
Hard to Find,” Communications of ACM, Vol. 31, No. 10, October 1988, pp.
1192-1201.

[52] S. Pasupathy, “Glories of Gaussianity,” IEEE Communications Magazine, Vol.
27, No. 8, August 1989, pp. 37-38.

[53] Prime Computer, Subroutines Reference Guide, 3rd Ed, 1984, p. 12.45.

[54] A. Pritsker and R. E. Young, Simulation with GASP - PL/I: A PL/I Based
Continuous/Discrete Simulation Language, Wiley-Interscience, New York, 1975.

c©1994 Raj Jain 29.60



[55] Y. V. Ramana Reddy, M. S. Fox, N. Husain, and M. McRoberts, “The
Knowledge-Based Simulation System,” IEEE Software, March 1986, pp. 26-37.

[56] C. M. Reeves, “Complexity Analyses of Event Set Algorithms,” The Computer
Journal, Vol. 27, No. 1, 1984, pp. 72-79.

[57] R. Y. Rubinstein Monte Carlo Optimization, Simulation and Sensitivity of
Queueing Networks, Wiley, New York, 1986.

[58] M. Santha and U. V. Vazirani, “Generating Quasi-Random Sequences from
Slightly Random Sources,” Proc. 25th Symp. on Foundations of Computer Sci.,
Boca Raton, FL, October 24-26, 1984, pp. 434-440.

[59] L. Schrage, “A More Portable FORTRAN Random Number Generator,” ACM
Transactions on Mathematical Software, Vol. 5, No. 2, June 1979, pp. 132-138.

[60] S. W. Sherman and J. C. Browne, “Trace-Driven Modeling: Review and
Overview,” Proc. Symp. on the Simulation of Computer Systems, pp. 201-207,
June, 1973.

[61] R. C. Tausworthe, “Random Numbers Generated by Linear Recurrence Mod
Two,” Math. Comput. Vol. 19, 1965, pp. 201-209.

[62] S. Tezuka, “Walsh-Spectral Test for GFSR Pseudorandom Numbers,”
Communications of ACM, Vol. 30, No. 8, August 1987, pp. 731-735.

[63] J. P. R. Tootill, W. D. Robinson, and A. G. Adams, “The Runs Up and Down
Performance of Tausworthe Pseudo-Random Number Generators,” Journal of
ACM, Vol. 18, 1971, pp. 381-399.

[64] J. P. R. Tootill, W. D. Robinson, and D. J. Eagle, “An Asymptotically Random
Tausworthe Sequence,” Journal of ACM, Vol. 20, No. 3, July 1973, pp. 469-481.

[65] B. Unger and R. Fujimoto, Eds., Distributed Simulation, 1989, The Society for
Computer Simulation, San Diego, CA, 1989, 204 pp.

[66] J. G. Vaucher and P. Duval, “A Comparison of Simulation Event List
Algorithms,” Communications of ACM, Vol. 18, No. 4, April 1975, pp. 223-230.

[67] U. V. Vazirani and V. V. Vazirani, “Efficient and Secure Pseudo-Random
Number Generation,” Proc. 25th Symp. on Foundations of Computer Sci., Boca
Raton, FL, October 24-26, 1984, pp. 458-463.

c©1994 Raj Jain 29.61



[68] D. B. Wagner and E. D. Lazowska, “Parallel Simulation of Queueing Networks:
Limitations and Potentials,” Proc. SIGMETRICS’89, May 23-26, 1989,
Berkeley, CA. (Also published as Performance Evaluation Review, Vol. 17, No.
1, May 1989), pp. 146-155.

[69] W. Webster, Ed., Simulation and AI, 1989, Society for Computer Simulations,
San Diego, CA, 1989, 139 pp.

[70] F. P. Wyman, “Improved Event Scanning Mechanisms for Discrete-Event
Simulation,” Communications of ACM, Vol. 18, No. 6, June 1975, pp. 350-353.

c©1994 Raj Jain 29.62


