
Commonly Used Distributions

• Random number generation algorithms for
distributions commonly used by computer
systems performance analysts.

• Organized alphabetically for reference

• For each distribution:

– Key characteristics

– Algorithm for random number
generation

– Examples of applications
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Bernoulli Distribution

• Takes only two values: failure and success
or x = 0 and x = 1, respectively.

• Key Characteristics:

1. Parameters: p = Probability of success
(x = 1) 0 ≤ p ≤ 1

2. Range: x = 0, 1

3. pmf: f (x) =





1− p, if x = 0
p, if x = 1
0, Otherwise

4. Mean: p

5. Variance: p(1− p)
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• Applications: To model the probability of
an outcome having a desired class or
characteristic:

1. A computer system is up or down.

2. A packet in a computer network reaches
or does not reach the destination.

3. A bit in the packet is affected by noise
and arrives in error.

• Can be used only if the trials are
independent and identical

• Generation: Inverse transformation
Generate u ∼ U(0, 1)
If u ≤ p return 0. Otherwise, return 1.
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Beta Distribution

• Used to represent random variates that
are bounded

• Key Characteristics:

1. Parameters: a, b = Shape parameters,
a > 0, b > 0

2. Range: 0 ≤ x ≤ 1

3. pdf: f (x) = xa−1(1−x)b−1

β(a,b)

β(.) is the beta function and is related
to the gamma function as follows:

β(a, b) =
∫ 1
0 xa−1(1− x)b−1dx

=
Γ(a)Γ(b)

Γ(a + b)

4. Mean: a/(a + b)

5. Variance: ab/{(a + b)2(a + b + 1)}
• Substitute (x− xmin)/(xmax − xmin) in

place of x for other ranges
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• Applications: To model random
proportions

1. Fraction of packets requiring
retransmissions.

2. Fraction of remote procedure calls
(RPC) taking more than a specified
time.

• Generation:

1. Generate two gamma variates γ(1, a)
and γ(1, b), and take the ratio:

BT (a, b) =
γ(1, a)

γ(1, a) + γ(1, b)

2. If a and b are integers:

(a) Generate a + b + 1 uniform U(0,1)
random numbers.

(b) Return the the ath smallest number
as BT(a, b).

c©1994 Raj Jain 29.5



3. If a and b are less than one:

(a) Generate two uniform U(0,1) random
numbers u1 and u2

(b) Let x = u
1/a
1 and y = u

1/b
2 . If

(x + y) > 1, go back to the previous
step. Otherwise, return x/(x + y) as
BT(a, b).

4. If a and b are greater than 1:
Use rejection
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Binomial Distribution

• The number of successes x in a sequence
of n Bernoulli trials has a binomial
distribution.

• Characteristics:

1. Parameters:
p = Probability of success in a trial,

0 < p < 1.
n = Number of trials;

n must be a positive integer.

2. Range: x = 0, 1, . . . , n

3. pdf: f (x) =




n
x


 px(1− p)n−x

4. Mean: np

5. Variance: np(1− p)
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• Applications: To model the number of
successes

1. The number of processors that are up in
a multiprocessor system.

2. The number of packets that reach the
destination without loss.

3. The number of bits in a packet that are
not affected by noise.

4. The number of items in a batch that
have certain characteristics.

• Variance < Mean ⇒ Binomial
Variance > Mean ⇒ Negative Binomial
Variance = Mean ⇒ Poisson

• Generation:

1. Composition: Generate n U(0,1). The
number of RNs that are less than p is
BN(p, n)

c©1994 Raj Jain 29.8



2. For small p:

(a) Generate geometric random numbers

Gi(p) = d ln(ui)
ln(1−p)e.

(b) If the sum of geometric RNs so far is
less than or equal to n, go back to the
previous step. Otherwise, return the
number of RNs generated minus one.
If ∑m

i=1 Gi(p) > n, return m− 1.

3. Inverse Transformation Method:
Compute the CDF F(x) for
x = 0, 1, 2, . . ., n and store in an array.
For each binomial variate, generate a
U(0,1) variate u and search the array to
find x so that F (x) ≤ u < F (x + 1);
return x.
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Chi-Square Distribution

• Sum of squares of several unit normal
variates

• Key Characteristics:

1. Parameters: ν=degrees of freedom, ν
must be a positive integer.

2. Range: 0 ≤ x ≤ ∞
3. pdf: f (x) = x(ν−2)/2e−x/2

2ν/2Γ(ν/2)

Here, Γ(.) is the gamma function
defined as follows:

Γ(b) =
∫∞
0 e−xxb−1dx

4. Mean: ν

5. Variance: 2ν
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• Application: To model sample variances.

• Generation:

1. χ2(ν) = γ(2, ν/2):
For ν even:
χ2(ν) = −1

2 ln

∏ν/2

i=1 ui




For ν odd:
χ2(ν) = χ2(ν − 1) + [N(0, 1)]2

2. Generate ν N(0,1) variates and return
the sum of their squares.
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Erlang Distribution

• Used in queueing models

• Key characteristics:

1. Parameters:
a = Scale parameter, a > 0
m = Shape parameter;
m is a positive integer

2. Range: 0 ≤ x ≤ ∞
3. pdf: f (x) = xm−1e−x/a

(m−1)!am

4. CDF: F (x) = 1− e−x/a



∑m−1
i=0

(x/a)i

i!




5. Mean: am

6. Variance: a2m
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• Application: Extension to the exponential
distribution if the coefficient of variation is
less than one

1. To model service times in a queueing
network model.

2. A server with Erlang(a,m) service
times can be represented as a series of
m servers with exponentially
distributed service times.

3. To model time-to-repair and
time-between-failures.

• Generation: Convolution
Generate m U(0,1) random numbers ui
and then:

Erlang(a,m) ∼ −a ln



m∏

i=1
ui



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Exponential Distribution

• Used extensively in queueing models.

• Key characteristics

1. Parameters: a = Scale parameter =
Mean, a > 0

2. Range: 0 ≤ x ≤ ∞
3. pdf: f (x) = 1

ae
−x/a

4. CDF: F (x) = 1− e−x/a

5. Mean: a

6. Variance: a2

•Memoryless Property: Past history is not
helpful in predicting the future
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• Applications: To model time between
successive events

1. Time between successive request
arrivals to a device.

2. Time between failures of a device.

The service times at devices are also
modeled as exponentially distributed.

• Generation: Inverse transformation
Generate a U(0,1) random number u and
return −a ln(u) as Exp(a)
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Memoryless Property

• Remembering the past does not help in
predicting the time till the next event.

F (τ ) = P (τ < t) = 1− e−λtt ≥ 0

• At t = 0, the mean time to the next
arrival is 1/λ.

• At t = x, the distribution of the time
remaining till the next arrival is:

P (τ − x < t|τ > x)

=
P (x < τ < x + t)

P (τ > x)

=
P (τ < x + t)− P (τ < x)

P (τ > x)

=
(1− e−λ(x+t))− (1− e−λx)

e−λt

= 1− e−λx

This is identical to the situation at t = 0.

c©1994 Raj Jain 29.16



F Distribution

• The ratio of two chi-square variates has an
F distribution.

• Key characteristics:

1. Parameters:
n = Numerator degrees of freedom;
n should be a positive integer.
m = Denominator degrees of freedom;
m should be a positive integer.

2. Range: 0 ≤ x ≤ ∞
3. pdf: f (x) =

(n/m)n/2

β(n/2,m/2)x
(n−2)/2(1 + n

mx)−(n+m)/2

4. Mean: m
m−2, provided m > 2.

5. Variance: 2m2(n+m−2)
n(m−2)2(m−4)

, provided

m > 4.
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• High quantiles:

F[1−α;n,m] =
1

F[α;m,n]

• Applications: To model ratio of sample
variances
In the F-test for regression and analysis of
variance

• Generation: Characterization
Generate two chi-square variates χ2(n)
and χ2(m) and compute:

F (n,m) =
χ2(n)/n

χ2(m)/m
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Gamma Distribution

• Generalization of Erlang distribution
Allows noninteger shape parameters

• Key Characteristics:

1. Parameters:
a = Scale parameter, a > 0
b = Shape parameter, b > 0

2. Range: 0 ≤ x ≤ ∞
3. pdf: f (x) =

(x
a)

b−1
e−x/a

aΓ(b)

Γ(.) is the gamma function.

4. Mean: ab

5. Variance: a2b.
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• Applications: To model service times and
repair times

• Generation:

1. If b is an integer, the sum of b
exponential variates has a gamma
distribution.

γ(a, b) ∼ −a ln



b∏

i=1
ui




2. For b < 1, generate a beta variate
x ∼ BT(b, 1− b) and an exponential
variate y ∼ Exp(1). The product axy
has a gamma(a,b) distribution.

3. For non-integer values of b:

γ(a, b) ∼ γ(a, bbc) + γ(a, b− bbc)
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Geometric Distribution

• Discrete equivalent of the exponential
distribution

• Key characteristics:

1. Parameters: p = Probability of success,
0 < p < 1.

2. Range: x = 1, 2, . . . ,∞
3. pmf: f (x) = (1− p)x−1p

4. CDF: F (x) = 1− (1− p)x

5. Mean: 1/p

6. Variance:1−p
p2

• memoryless

• Applications: Number of trials up to and
including the first success in a sequence of
Bernoulli trials
Number of attempts between successive
failures (or successes)
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1. Number of local queries to a database
between successive accesses to the
remote database.

2. Number of packets successfully
transmitted between those requiring a
retransmission.

3. Number of successive error-free bits
between in-error bits in a packet
received on a noisy link.

Also to model batch sizes with batches
arriving in a Poisson stream

• Generation: Inverse transformation
Generate u ∼ U(0,1) and compute:

G(p) =




ln(u)

ln(1− p)




d.e ⇒ rounding up
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Lognormal Distribution

• Log of a normal variate

• Key characteristics:

1. Parameters:
µ = Mean of ln(x), µ > 0
σ = Standard deviation of ln(x),

σ > 0

2. Range: 0 ≤ x ≤ ∞
3. pdf: f (x) = 1

σx
√

2π
e
−(ln x−µ)2

2σ2

4. Mean: eµ+σ2/2

5. Variance: e2µ+σ2
(eσ2 − 1)

• Note: µ and σ are the mean and standard
deviation of ln(x) not x
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• Applications: The product of a large
number of positive random variables tends
to have an approximate lognormal
distribution
To model multiplicative errors that are a
product of effects of a large number of
factors

• Generation: Log of a normal variate
Generate x ∼ N(0, 1) and return eµ+σx.
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Negative Binomial Distribution

• Number of failures x before the mth

success

• Key characteristics:

1. Parameters:
p = Probability of success,

0 < p < 1
m = Number of successes,

m must be a positive integer.

2. Range: x = 0, 1, 2, . . . ,∞
3. pmf:

f (x) =




m + x− 1
m− 1


 pm(1− p)x =

Γ(m+x)
(Γm)(Γx)p

m(1− p)x

The second expression allows a negative
binomial to be defined for noninteger
values of x.

4. Mean: m(1− p)/p
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5. Variance: m(1− p)/p2

• Applications:

1. Number of local queries to a database
system before mth remote query.

2. Number of retransmissions for a
message consisting of m packets.

3. Number of error-free bits received on a
noisy link before the m in-error bit.

Used if variance > mean
Otherwise use Binomial or Poisson.

• Generation:

1. Generate ui ∼ U(0, 1) until m of the
ui’s are greater than p. Return the
count of ui’s less than or equal to p as
NB(p,m).

2. The sum of m geometric variates G(p)
gives the total number of trials for m
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successes

NB(p,m) ∼



m∑

i=1
G(p)


 −m

3. Composition:

(a) Generate a gamma variate
y ∼ Γ(p/(1− p),m)

(b) Generate a Poisson variate
x ∼ Poisson(y)

(c) Return x as NB(p,m)
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Normal Distribution

• Also known as Gaussian distribution

• Discovered by Abraham De Moivre in 1733

• Rediscovered by Gauss in 1809 and by
Laplace 1812

• N(0,1) = unit normal distribution or
standard normal distribution.

• Key characteristics:

1. Parameters:
µ = Mean
σ = Standard deviation σ > 0

2. Range: −∞ ≤ x ≤ ∞
3. pdf: f (x) = 1

σ
√

2π
e
−(x−µ)2

2σ2

4. Mean: µ

5. Variance: σ2
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• Applications:

1. Errors in measurement.

2. Error in modeling to account for a
number of factors that are not included
in the model.

3. Sample means of a large number of
independent observations from a given
distribution.

• Generation:

1. Using the sum of a large number of
uniform ui ∼ U(0, 1) variates:

N(µ, σ) ∼ µ + σ
(∑n

i=1 ui)− n
2

(
n
12

)1/2

Generally, n = 12 is used.

2. Box-Muller Method: Generate two
uniform variates u1 and u2 and
compute two independent normal
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variates N(µ, σ) as follows:

x1 = µ + σcos(2πu1)
√

−2 ln(u2)

x2 = µ + σsin(2πu1)
√

−2 ln(u2)

There is some concern that if this
method is used with u’s from an LCG,
the resulting x’s may be correlated.

3. Polar Method:

(a) Generate two U(0,1) variates u1 and
u2.

(b) Let v1 = 2u1 − 1, v2 = 2u2 − 1, and
r = v2

1 + v2
1.

(c) If r ≥ 1, go back to step 3a; otherwise

let s =

−2 ln r

r



1/2

and return.

x1 = µ + σv1s

x2 = µ + σv2s

x1 and x2 are two independent
N(µ, σ) variates.

4. Rejection Method:
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(a) Generate two uniform U(0,1) variates
u1 and u2.

(b) Let x = − ln u1.

(c) If u2 > e
−(x−1)2

2 , go back to Step 4a.

(d) Generate u3.

(e) If u3 > 0.5, return µ + σx; otherwise
return µ− σx.

c©1994 Raj Jain 29.31



Pareto Distribution

• Pareto CDF is a power curve
⇒ Fit to observed data

• Key characteristics:

1. Parameters: a=shape parameter, a > 0

2. Range: 1 ≤ x ≤ ∞
3. pdf: f (x) = ax−(a+1)

4. CDF: F (x) = 1− x−a

5. Mean: a
a−1, provided a > 1

6. Variance: a
(a−1)2(a−2)

, provided a > 2

• Application: To fit a distribution
The maximum likelihood estimate:

a =
1

1
n

∑n
i=1 ln xi

• Generation: Inverse transformation
Generate u ∼ U(0, 1) and return 1/u1/a.
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Pascal Distribution

• Extension of the geometric distribution

• Number of trials up to and including the
mth success

• Key characteristics:

1. Parameters:
p = Probability of success,

0 < p < 1
m = Number of successes,

m should be a positive integer.

2. Range: x = m,m + 1, . . . ,∞
3. pmf: f (x) =




x− 1
m− 1


 pm(1− p)x−m

4. Mean: m/p

5. Variance: m(1− p)/p2
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• Applications:

1. Number of attempts to transmit an m
packet message.

2. Number of bits to be sent to
successfully receive an m-bit signal.

• Generation: Generate m geometric
variates G(p) and return their sum as
Pascal(p,m).
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Poisson Distribution

• Limiting form of the binomial distribution

• Key characteristics:

1. Parameters: λ = Mean, λ > 0

2. Range: x = 0, 1, 2, . . . ,∞
3. pmf: f (x) = P (X = x) = λxe−λ

x!
4. Mean: λ

5. Variance: λ

• Applications: To model the number of
arrivals over a given interval

1. Number of requests to a server in a
given time interval t.

2. Number of component failures per unit
time.

3. Number of queries to a database system
over t seconds.

4. Number of typing errors per form.
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Particularly appropriate if the arrivals are
from a large number of independent
sources

• Generation:

1. Inverse Transformation Method:
Compute the CDF F(x) for
x = 0, 1, 2, . . . up to a suitable cutoff
and store in an array.
For each Poisson random variate,
generate a U(0,1) variate u, and search
the array to find x such that
F (x) ≤ u < F (x + 1), return x.

2. Starting with n = 0, generate
un ∼ U(0, 1) and compute the product
∏n
i=0 ui. As soon as the product

becomes less than e−λ, return n as the
Poisson(λ) variate.
Note that n is such that
u0u1 · · ·un−1 > e−λ ≥ u0u1 · · ·un
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Student’s t-Distribution

• Derived by W. S. Gosset (1876-1937)
Published under a pseudonym of ‘Student’
Used symbol t

• Key characteristics:

1. Parameters: ν=Degrees of freedom,
ν must be a positive integer.

2. Range: −∞ ≤ x ≤ ∞
3. pmf:

f (x) = {Γ[(ν+1)/2]}[1+(x2/ν)]−(ν+1)/2

(πν)1/2Γ(ν/2)

4. Variance: ν/(ν − 2), for ν > 2.

N(0, 1)
√

χ2(ν)/ν
∼ t(ν)

• For (ν > 30), a t ≈ N(0, 1)
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• Applications: In setting confidence
intervals and in t-tests

• Generation: Characterization Generate
x ∼ N(0, 1) and y ∼ χ2(ν) and return
x/

√

y/ν as t(ν).
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Uniform Distribution (Continuous)

• Key characteristics:

1. Parameters: a = Lower limit
b = Upper limit, b > a

2. Range: a ≤ x ≤ b

3. pdf: f (x) = 1
b−a

4. CDF: F (x) =





0, If x < a
x−a
b−a , If a ≤ x < b

1, If b ≤ x

5. Mean: a+b
2

6. Variance: (b− a)2/12

• Applications: Bounded random variables
with no further information:

1. Distance between source and
destinations of messages on a network.

2. Seek time on a disk.
c©1994 Raj Jain 29.39



• Generation: To generate U(a, b), generate
u ∼ U(0, 1) and return a + (b− a)u.
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Uniform Distribution (Discrete)

• Discrete version of the uniform
distribution

• Takes a finite number of values, each with
the same probability.

• Key characteristics:

1. Parameters:
m = Lower limit;

m must be an integer.
n = Upper limit;

n must be an integer
n > m

2. Range: x = m,m + 1,m + 2, . . . , n

3. pmf: f (x) = 1
n−m+1

4. CDF: F (x) =





0, If x < m
x−m+1
n−m+1, If m ≤ x < n

1, If n ≤ x
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5. Mean: (n + m)/2

6. Variance: (n−m+1)2−1
12

• Applications:

1. Track numbers for seeks on a disk.

2. I/O device number selected for the next
I/O.

3. The source and destination node for the
next packet on a network.

• Generation: To generate UD(m,n),
generate u ∼ U(0, 1), return
bm + (n−m + 1)uc.
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Weibull Distribution

• Key characteristics:

1. Parameters:
a = Scale parameter a > 0
b = Shape parameter b > 0

2. Range: 0 ≤ x ≤ ∞
3. pdf: f (x) = bxb−1

ab e−(x/a)b

4. CDF: F (x) = 1− e−(x/a)b

5. Mean: a
bΓ(1/b)

6. Variance: a2

b2

[
2bΓ(2/b)− {Γ(1/b)}2

]

• If b = 3.602, the Weibull distribution is
close to a normal. For b > 3.602, it has a
long left tail. For b < 3.602, it has a long
right tail.
For b ≤ 1, the Weibull pdf is L-shaped,
and for b > 1, it is bell-shaped.
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For large b, the Weibull pdf has a sharp
peak at the mode.

• Applications: To model lifetimes of
components.
b < 1 ⇒ failure rate increasing with time
b > 1 ⇒ failure rate decreases with time
b = 1 ⇒ failure rate is constant
⇒ life times are exponentially distributed.

• Generation: Inverse transformation
Generate u ∼ U(0, 1) and return

a(ln u)1/b as Weibull(a, b).
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Relationships Among Distributions
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Relationships Among Distributions
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Exercise 29.1

W hat distribution would you use to model
the following:

1. Number of requests between typing errors,
given that each request has a certain
probability of being in error?

2. Number of requests in error among m
requests, given that each request has a
certain probability of being in error?

3. The minimum or the maximum of a large
set of IID observations?

4. The mean of a large set of observations
from uniform distribution?

5. The product of a large set of observatiosn
from uniform distribution?

6. To empirically fit the distribution using a
power curve for CDF?
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7. The stream resulting from a merger of two
Poisson streams?

8. Sample variances from a normal
population?

9. Ratio of two sample variances from
normal population?

10. Time between successive arrivals, given
that the arrivals are memoryless?

11. Service time of a device that consists of m
memoryless servers in series?

12. Number of systems that are idle in a
distributed system, given that each system
has a fixed probability of being idle?

13. Fraction of systems that are idle in a
distributed system, given that each system
has a fixed probability of being idle?
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Exercise 29.2

L et x,y,z,w be four unit normal variates.
Find the distribution and 90-percentiles for
the following quantities:

1. (x + y + z + w)/4

2. x2 + y2 + z2 + w2

3. (x2 + y2)/(z2 + w2)

4. w/
√

(x2 + y2 + z2)/4
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Further Reading

• Books on simulations: Law and Kelton
(1982) and Brately, Fox, and Schrage
(1986)

• Lavenberg (1983): transient removal,
variance estimation, and random-number
generation.

• Languages: GPSS in O’Donovan (1980)
SIMSCRIPT II in CACI (1983)
SIMULA by Birtwistle, Dahl, Myhrhaug,
and Nygaard (1973)
GASP by Pritsker and Young (1975)

• Sherman and Browne (1973): trace-driven
computer simulations

• Adam and Dogramaci (1979) include
papers describing the simulation languages
SIMULA, SIMSCRIPT, and GASP by
their respective language designers.
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Bulgren (1982) discusses SIMSCRIPT and
GPSS.

• Event-set algorithms: Frata and Maly
(1977), Wyman (1975), and Vaucher and
Duval (1975).

•Mitrani (1982) and Rubinstein (1986):
Variance reduction techniques.

• Random Number Generation: Knuth
(1981) Vol. 2
Greenberger (1961)
Lewis, Goodman, and Miller (1969)
Park and Miller (1988)
Lamie (1987)

• Generalized feedback shift registers:
Bright and Enison (1979)
Fushimi and Tezuka (1983)
Fushimi (1988), and Tezuka (1987)
Golomb (1982)

• Kreutzer (1986): Ready-made Pascal
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routines for common simulation tasks such
as event scheduling, time advancing,
random-number generation

• Distributions: Hastings and Peacock
(1975)

• Distributed simulation and knowledge-
based simulations: Unger and Fujimoto
(1989)
Webster (1989)
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Current Areas of Research in
Simulation

• Distributed simulations

• Knowledge-based simulations

• Simulations on microcomputers

• Object-oriented simulation

• Graphics and animation for simulations

• Languages for concurrent simulations.
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Sequential Simulation

• The events are processed sequentially.

• Not efficient on parallel or multiprocessor
systems

• Two global variables shared by all
processes: the simulation clock and the
event list.

c©1994 Raj Jain 29.54



Distributed Simulation

• Also known as concurrent simulation or
parallel simulation

• Global clock times are replaced by several
(distributed) “channel clock values”

• Events are replaced by messages between
processes ıAllows splitting a simulation
among an arbitrary number of computer
systems

• Introduces the problem of deadlock ⇒
Schemes for deadlock detection, deadlock
recovery, and deadlock prevention

• Survey by Misra (1986)

• See also Wagner and Lazowska (1989).
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Knowledge-based Simulations

• Artificial intelligence techniques are used
for simulation modeling.

• Allow specifying the system at a very high
level

• Questions are interpreted intelligently by
the simulation system

• Provide automatic verification and
validation

• Automatic design of experiments,
data analysis and interpretation See
Ramana Reddy et al (1986) and Klahr
and Fought (1980)

c©1994 Raj Jain 29.56



Bibliography

[1] N. R. Adam and A. Dogramaci, eds., Current Issues in Computer Simulation,
Academic Press, New York, 1979.

[2] J. S. Annino and E. C. Russell, “The Ten Most Frequent Causes of Simulation
Analysis Failure,” CACI Report 7, 1979.

[3] G. Birtwistle, O. Dahl, B. Myhrhaug, and K. Nygaard, SIMULA Begin,
Auerbach, Philadelphia, 1973.

[4] L. Blum, M. Blum, and M. Shub, “A Simple Pseudo-Random Number
Generator,” SIAM J. Comput. Vol. 15, No. 2, May 1986, pp. 364-383.

[5] P. A. Bobillier, B. C. Kahan, and A. R. Probst, Simulation with GPSS and
GPSS V, Prentice-Hall, Englewood-Cliffs, NJ, 1976.

[6] G. E. P. Box and M. E. Muller, “A Note on the Generation of Random Normal
Deviates,” Ann. Math. Stat., Vol. 29, 1958, pp. 610-611.

[7] P. Bratley, B. L. Fox, and L. E. Schrage, A Guide to Simulation,
Springer-Verlag, New York, 1986.

[8] H. S. Bright and R. L. Enison, “Quasi-Random Number Sequences from a
Long-Period TLP Generator with Remarks on Application to Cryptography,”
ACM Comput. Surveys, Vol. 11, 1979, pp. 357-370.

[9] R. Brown, “Calendar Queues: A Fast O(1) Priority Queue Implementation for
the Simulation Event Set Problem,” Comm. of ACM, Vol. 31, No. 10, October
1988, pp. 1220-1227.

[10] W. G. Bulgren, Discrete System Simulation, Prentice-Hall, Englewood Cliffs,
NJ, 1982.

29.57



[11] C.A.C.I., SIMSCRIPT II.5 Programming Language, C. A. C. I., Los Angeles,
CA, 1983.

[12] R. R. Conveyou and R. D. McPherson, “Fourier Analysis of Uniform Random
Number Generators,” Journal of ACM, Vol 14, 1967, pp. 100-119.

[13] M. A. Crane and A. J. Lemoine, An Introduction to the Regenerative Method for
Simulation Analysis, Springer-Verlag, New York, 1977.

[14] O-J. Dahl, B. Myhrhaug, and K. Nygaard, Common Base Language, Norwegian
Computing Center, Oslo, Norway, 1982.

[15] R. L. Edgeman, “Random Number Generators and the Minimal Standard,”
Communications of ACM, Vol. 32, No. 8, August 1989, pp. 1020-21.

[16] G. S. Fishman and L. R. Moore, “An Exhaustive Analysis of Multiplicative
Congruential Random Number Generators with Modulus 231-1,” SIAM J. on
Sci. Statist. Comput., Vol 7, 1986, pp. 24-45.

[17] B. L. Fox, “Generation of Random Samples from the Beta and F distributions,”
Technometrics, Vol. 5, 1963, pp. 269-270.

[18] W. R. Franta and K. Maly, “An Efficient Data Structure for the Simulation
Event Set,” Communications of ACM, Vol. 20, No. 8, August 1977, pp. 596-602.

[19] W. R. Franta, The Process View of Simulation, North-Holland, New York, 1977.

[20] A. M. Frieze, R. Kannan, and J. C. Lagarias, “Linear Congruential Generators
Do Not Produce Random Sequences,” Proc. 25th Symp. on Foundations of
Computer Sci., Boca Raton, FL, October 24-26, 1984, pp. 480-484.

[21] M. Fushimi and S. Tezuka, “The k-Distribution of Generalized Feedback Shift
Register Pseudorandom Numbers,” Communications of ACM, Vol. 26, No. 7,
July 1983, pp. 516-523.

[22] M. Fushimi, “Designing a Uniform Random Number Generator Whose
Subsequences are k-Distributed,” SIAM J. Comput., Vol. 17, No. 1, February
1988, pp. 89-99.

[23] S. W. Golomb, Shift Register Sequences, Aegean Park Press, Laguna Hills, CA,
1982.

[24] M. Greenberger, “An A Priori Determination of Serial Correlation in Computer
Generated Random Numbers,” Math. Comp., Vol. 15, 1961, pp. 383-389.

c©1994 Raj Jain 29.58



[25] C. Hastings, Jr. Approximations for Digital Computers, Princeton University
Press, Princeton, NJ, 1955.

[26] N. A. J. Hastings and J. B. Peacock, Statistical Distributions, Wiley, New York,
1975.

[27] IBM, System/360 Scientific Subroutine Package, Version III, Programmer’s
Manual, IBM, White Plains, NY, 1968, p. 77.

[28] IMSL Library, Vol. I, 8th Edn., Distributed by International Mathematical and
Statistical Libraries, Inc., Houston, TX.

[29] R. K. Jain, “A Timeout-Based Congestion Control Scheme for Window
Flow-Controlled Networks,” IEEE Journal on Selected Areas in
Communications, Vol. SAC-4, No. 7, Oct. 1986, pp. 1162-1167.
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