
133

7
Mobile Applications on

Global Clouds Using
OpenFlow and Software-

Defined Networking

S U B H A R T H I PA U L , R A J J A I N ,
J AY I Y E R , A N D DAV E O R A N

Contents

Introduction 134
Private Data Center	 134

Service Replication	 134
Service Partitioning	 135
Service Composition	 136
Multisegments 136
TCP Multiplexing	 136

Single Cloud Environment	 136
Multicloud Environment	 137

SDN and OpenFlow	 138
OpenADN Concepts	 140

Waypoints 140
Streams 140
Application-Level Policies	 140
Application Flows	 141
Affinity 141

Message Affinity	 141
Session Affinity	 142

Sender and Receiver Policies	 142
OpenADN Extensions	 142

Cross-Layer Communication	 142
Application Label Switching	 143

134 Subharthi Paul et al.

Introduction

In recent years, there has been an explosive growth in mobile appli-
cations (apps), most of which need to serve global audiences. This
increasing trend of service access from mobile computing devices
necessitates more dynamic application deployment strategies. Cloud
computing provides unique opportunities for these application service
providers (ASPs) to manage and optimize their distributed computing
resources. For this trend to be successful, similar facilities need to be
developed for the on-demand optimization of connectivity resources
to enhance user experience.

Application delivery, on the surface, is simply connecting a user
to a server. The original host-centric Internet architecture was well
designed for this end-to-end two-host communication using source
and destination IP addresses or names. However, today’s Internet
is mostly service centric, where users are interested in connecting
to a service instead of a particular host. Delivering services over a
host-centric design has led to complex application deployment envi-
ronments, as discussed below, for the case of a single private data
center (Figure 7.1), a single cloud environment, and a multicloud
environment.

Private Data Center

Service Replication  To scale a service, the service needs to be repli-
cated over multiple servers. Network-layer load balancers were intro-
duced into the network datapath to dynamically map the requests to

Multistage Late Binding	 143
ID/Locator Split	 143
SDN Control Application (Control Plane)	 143
OpenADN Aware OpenFlow Switches (Data Plane)	 144
Rule-Based Delegation	 145

Prototype Implementation	 146
Related Work	 147
Summary 148
Acknowledgment 150
References 150

135MOBILE APPS ON GLOBAL CLOUDS

the least loaded server. Pure control plane mechanisms, such as rotat-
ing domain name system (DNS), provide static load balancing.

Service Partitioning  To improve performance, services often need to
be partitioned, and each partition is hosted on a separate server. Each
partition may be further replicated over multiple servers. A service
may be partitioned based on content and/or context.

Content-Based Partitioning  Even for the same service (e.g., xyz.
com), accounting messages, recommendation requests, and video
requests are all sent to different server groups. This can be done either
by giving a different DNS name to each content type server or, as is
common, by putting a proxy that classifies messages based on content.

Context-Based Partitioning  User context, network context, or ser-
vice context may require the application messages to be routed differ-
ently. An example of user context is a mobile smart phone user versus
a desktop user. An example of network context is the geographical
location of the user and the state of network links. An example of
service context is that database reads and writes may be sent to differ-
ent servers. Context-based partitioning is supported by proxies that
classify messages based on the context.

Mobile
video

Data
reads

Data
writes

Desktop
video

Servers

Middleboxes
Proxies
ADCs

Users

Figure 7.1  Application delivery in a private data center.

136 Subharthi Paul et al.

Service Composition  A service may represent a composed context where
accessing the service actually requires going through a sequence of
devices providing security (e.g., firewalls, intrusion detection systems
[IDSs]), transformation/translation (e.g., transcoders, data compres-
sion), and performance enhancement (e.g., secure socket layer [SSL]
offloaders, wide area network [WAN] optimizers) functions to the ser-
vice deployment. These services, either provided by separate devices,
generically called middleboxes, or by monolithic, integrated platforms,
generically called application delivery controllers (ADCs), are now very
common. In fact, the number of middleboxes in a data center is compa-
rable to the number of routers [1].

Multisegments  In many of the aforementioned examples, the proxy/
middlebox/ADC terminates the transmission control protocol (TCP)
and starts a new TCP connection. In general, a user-to-server con-
nection is no longer end to end; it consists of many segments. Each of
these segments can be served by multiple destinations (based on the
replication of middleboxes). The ASPs implement complex applica-
tion policy routing (APR) mechanisms inside the data centers.

TCP Multiplexing  A special case of multisegments is TCP multi-
plexing. The goal is to improve the latency over long TCP connections
by minimizing the effect of TCP’s self-regulating window adjust-
ment algorithm. ASP may place several proxy servers in different
geographical locations so that the TCP connection between the user
and the proxy has a short round trip and the window increases fast.
Although the connection between the proxy and the server is long, it
is permanently connected and, therefore, operates at optimally large
windows. This technique is commonly used for short data transfers,
such as Web services.

Single Cloud Environment

In a private data center, as discussed above, high-capacity monolithic
proxies are used for APR. When the applications move to a public
cloud environment, the situation becomes more complex because pri-
vate monolithic hardware boxes cannot be deployed. Moreover, the

137MOBILE APPS ON GLOBAL CLOUDS

ASP may not allow the cloud service provider (CSP) to look at its
data for APR, and so software-based virtual machines are used for
such services, and the amount of replication and dynamics (caused by
Virtual Machine [VM] mobility and hardware failures) is much more
common than a private data center.

Multicloud Environment

Mobile apps that need to serve global audiences can easily get com-
puting and storage facilities using cloud services from multiple cloud
providers distributed throughout the world, for example, Amazon,
Google, Rackspace, Microsoft, and so on. However, the problem of
routing using ASP’s policies in a very dynamic multicloud environ-
ment is not possible because Internet service providers (ISPs) offer no
service to dynamically route messages to a different server using an
ASP’s policies.

Enterprises that operate multiple data centers already have this
problem. For example, Google operates multiple data centers across
different geographical locations and has installed a WAN-like infra-
structure [2] that intercepts most of the traffic for Google-owned ser-
vices at edge-network points of presence (POPs) and sends them over
its private high-speed WAN infrastructure. At these POPs, Google
(probably) operates application layer (layers 5–7) proxies to intel-
ligently route service requests to appropriate data centers. However,
for smaller ASPs, it is prohibitively expensive to operate such global
networking infrastructures. Moreover, Google proxies have a com-
plete view of the application data, which may not be desirable if such
forwarding decisions were to be made by ISPs.

Our vision is to design a new session-layer abstraction called open
application delivery networking (OpenADN) that will allow ISPs
to offer services similar with Google WAN to smaller ASPs. ASPs
can express and enforce application-traffic management policies and
application delivery constraints to ISPs. It allows ASPs to achieve all
the application delivery services that they use today in private data
centers (mentioned above) in the global multicloud environment. As
shown in Figure 7.2, using OpenADN aware data plane entities, any
new ASP can quickly set up its service by using ADN services pro-
vided by ISPs.

138 Subharthi Paul et al.

To achieve this, we combine the following innovations:

1. OpenFlow
2. Software-defined networking (SDN)
3. Session splicing
4. Cross-layer communication
5. Multistage late binding
6. Identifiers (IDs)/locator split
7. MPLS-like application flow labels
8. Rule-based delegation

The rest of this chapter is organized as follows: “SDN and Open​
Flow” briefly explains the features of OpenFlow and SDN, which
are helpful in our goal. “OpenADN Concepts” explains the sev-
eral new concepts that we need to explain OpenADN. “OpenADN
Extensions” discusses the aforementioned extensions that make
OpenADN possible. “Related Work” provides a brief survey of the
background literature, followed by the “Summary.”

SDN and OpenFlow

SDN is an approach toward taming the configuration and manage-
ment complexities of large-scale network infrastructures through
the design of proper abstractions. It proposes a separation between
the network control and data planes. This would allow the control
plane to be logically centralized, making it easier to manage and con-
figure the distributed data plane components (switches and routers)

Servers
A1, B1

Servers
A2

Internet

ClientsClients

Middleboxes
Access ISP

OpenADN
aware

Legacy
(OpenADN
unaware)

Access ISP

Figure 7.2  Open application delivery network.

139MOBILE APPS ON GLOBAL CLOUDS

involved in the actual packet forwarding. To implement this sepa-
ration, SDN needs to design a basic abstraction layer interposed
between the control plane and the data plane. This is explained fur-
ther in Figure 7.3.

The evolving OpenFlow [3] standard is the protocol used between
the controller and data plane forwarding entities (see Figure 7.3). The
data plane entities are significantly simplified compared with today’s
switches in the sense that they do not do the usual control plane
activities of preparing forwarding tables. Instead, they simply classify
the packets based on their headers and use the forwarding table pre-
pared by the central controller. This simplification of the data plane is
expected to result in a significant cost savings in data centers where a
large number of switches are used. This is one of the reasons why the
industry is having an interest in this technology.

A flow in OpenFlow refers to a set of packets that are classified
into the same policy class based on a combination of layer 2, layer 2.5
(MPLS), layer 3, and layer 4 header fields. We call such flows network-
level flows. In OpenFlow, all packets are classified into separate network
flow classes, and all packets belonging to the same network flow class
are applied with the same control plane policies. Examples of control
plane policies include different forwarding mechanisms (e.g., multicast,

OpenADN+
OpenFlow

Network virtualization

Network OS1

Virtualization

Network OS

Network control plane
applications (ISP)

Network OS2 Network OS3

OpenADN
control plane

modules
Co

nt
ro

l p
la

ne
D

at
a

pl
an

e

OpenFlow

SD
N

 co
nt

ro
l a

bs
tr

ac
tio

n

Forwarding
HW

Forwarding
HW Forwarding

HW

Forwarding
HW

Forwarding
HW

ASP1

North-bound

South-bound

OpenADN
controller

OpenADN
controller

OpenADN
controller

ASP2 ASP3

Net. Ctrl app1 Net. Ctrl app2 Net. Ctrl app3

Figure 7.3  OpenADN uses meta-tags in the headers, to be used by forwarding elements as an
extension of OpenFlow, and uses a north-bound interface from the controller for policy communica-
tion. HW, hardware; OS, operating system; Net. Ctrl, network controller.

140 Subharthi Paul et al.

unicast) and different traffic engineering policies optimizing different
parameters, such as energy efficiency, congestion, latency, etc.

OpenADN Concepts

In this section, we explain some of the concepts required to under-
stand the OpenADN extensions that are described in the next section.

Waypoints

As previously discussed, the path between the user and the server may
consist of multiple segments connecting intermediate middleboxes,
proxies, or ADCs. Some of the middleboxes terminate TCP, and some
do not. We use the term waypoint to indicate all such intermediate
nodes. If a service is composed of multiple services, the packets may be
forwarded to multiple servers, with intermediate nodes between those
servers. The waypoints include these intermediate servers as well.

Streams

Each waypoint may be replicated for fault tolerance or performance.
We call a single stage connection between two specific nodes a stream.
Thus, each segment may have multiple available streams. Once a ses-
sion is assigned to a particular stream (a particular destination way-
point), all packets of that session will follow that stream. This is called
session affinity.

Application-Level Policies

Application-level policies specify the rules for forwarding the applica-
tion traffic to help ASPs manage their distributed and dynamic appli-
cation deployment environments.

The ASPs may design policies for setting up various session seg-
ments based on replication, content-based partitioning, and context-
based partitioning as previously explained. These policies, when
implemented in the network, will provide optimal user experience.

141MOBILE APPS ON GLOBAL CLOUDS

Application Flows

Enforcing the application-level policies in the Internet requires ISP
to classify application traffic into separate application-specific applica-
tion flow classes. This is currently not possible because this informa-
tion is not available in the headers.

Note that application flows are different from network flows
because the packets with the same L1 to L4 headers used to deter-
mine the network flow may contain different data types that need to
be routed differently (a.k.a. content-based routing).

OpenFlow has a very limited context for expressing application-
level policies through the transport layer port number and transport
protocol ID header fields. This is inadequate for designing control
applications for managing application-traffic flows.

OpenADN solves this problem by putting meta-tags in the mes-
sage header, which help classify the packets appropriately. Thus, the
data can be kept private from the switches and the routers. Of course,
the waypoints that need to operate on such data (virtual machines or
virtual appliances) will be under the control of the ASP.

In OpenADN, after the application-level flow classification is
done at the network edge, the application flow class is included
as a meta-tag in the OpenADN header, as discussed later in this
section.

Affinity

OpenADN is designed for a very dynamic global environment in
which each intermediate point is replicated and may move inside
or among clouds while the virtual machine on which it is running
moves. We need some rules on how often to change forwarding deci-
sions. This is called affinity. OpenADN offers both message affinity
and session affinity.

Message Affinity  All packets that are part of an application-layer mes-
sage need to be classified into the same application flow class and
applied the same application-level policy.

142 Subharthi Paul et al.

Session Affinity  All segments of a session are initially bound to appro-
priate physical segments. Each segment is bound to a particular
stream in that segment. This binding remains until the end of the
session, where the definition of the end of the session is application
specific (explicit or implicit). Setting up such multisegment sessions is
called session splicing.

Sender and Receiver Policies

OpenADN does not distinguish between the sender and the receiver,
and allows both the sender and the receiver to express their policies
in an end-to-end communication. Note that the user may also be a
service (instead of a human), as is the case with Web 2.0 mash-up
applications and service oriented architecture (SOA).

OpenADN Extensions

As previously mentioned, OpenADN extends OpenFlow and SDN
concepts and combines them with several recent networking para-
digms to provide application delivery. These extensions are discussed
in this section.

Cross-Layer Communication

OpenADN provides a session-layer abstraction to applications. It
is a cross-layer design where the application layer (layer 7) places
the meta-tag (the result of the application-level classification that
indicates the application flow class) in the OpenADN header. The
header is split across layers 4.5 and 3.5 of the TCP/IP protocol
stack. Layer 4.5 implements the OpenADN data plane slow path
(dynamic policy-based binding), whereas layer 3.5 implements the
data plane fast path (static switching transport). The L4.5 meta-tag
is used for setting up various session segments. It has the informa-
tion required to enforce the session-forwarding policies. The L3.5
header is used by OpenADN aware switches to forward packets in
the data plane.

143MOBILE APPS ON GLOBAL CLOUDS

Application Label Switching

Layer 3.5 meta-tag processing mechanism uses techniques similar to
MPLS label processing, with semantic differences. We, therefore, call
this layer application label switching (APLS). APLS uses a mechanism
similar to label stacking (label pushing and popping) for enforcing
sender and receiver policies on an application-traffic flow. Moreover,
APLS uses a mechanism similar to label switching for switching a
packet through multiple application-level waypoints. Space constraints
do not permit us to include all the details of the label processing.

Multistage Late Binding

OpenADN is designed to support dynamic application deployment
and access. It uses indirection as the key primitive to support dynamic-
ity. The first indirection mechanism that OpenADN uses is multistage
late binding. This mechanism is the basis of the session splicing primi-
tive. Each session consists of many session segments. The endpoint
of each segment is determined at the time that the segment is set up
based on the application state and the meta-tags in the L4.5 header.

ID/Locator Split

This is the second indirection mechanism in OpenADN. All client,
waypoints, and servers in OpenADN are assigned with fixed IDs,
which are separate from their locators (IP addresses). The indirection
layer mapping the ID to a locator adds intrinsic support for mobility
to the architecture. It also provides other benefits to construct policy
and security frameworks [4].

SDN Control Application (Control Plane)

As shown in Figure 7.3, SDN consists of three abstraction layers:
virtualization, network operating systems, and network control appli-
cations. ASPs can implement OpenADN-based control applications
and place them at the top of the SDN stack.

144 Subharthi Paul et al.

The ASP’s control application computes session-forwarding tables
implementing the ASP’s deployment/delivery/management policies.
The ISP’s SDN abstraction provides the ASP controller with a virtual
view of the APLS data plane as if it was implemented over a single,
centralized APLS switch. The ASP controller passes the session-
forwarding tables to the ISP’s SDN controller that is then responsible
for deploying it (preferably distributedly) over the OpenADN-enabled
OpenFlow switches in the data plane. Note that, now, ASPs can also
invoke the network-level services provided by the ISPs (as proposed
by the application-layer traffic optimization [ALTO] [5] framework).

OpenADN Aware OpenFlow Switches (Data Plane)

OpenFlow switches classify packets based on L2, L3, and L4 head-
ers. OpenADN aware OpenFlow switches also use the L3.5 and
L4.5 headers for packet classification and forwarding. As shown in
Figure 7.4, explicitly chained virtual tables specified in the OpenFlow
data plane specification 1.1 [3] can be used for this. Incoming pack-
ets are first passed through a generic flow-identification table, which
then redirects the packet through a virtual table pipeline for a more
specific flow processing context. Using this virtual table support, the
OpenADN data plane may interpose application-traffic flow process-
ing before handing off the flow for network-level flow processing.

We propose a three-level naming hierarchy for virtual tables.
The first level identifies whether it is performing application-level or

Table
0.1.1

…

Table
0.1.x

Table
1

Table
1.1.1

Packet
in

Packet
out

OpenADN virtual tables
Infrastructure services (e.g., OpenFlow)

virtual tables

Table
0.K.1

…

Table
0.K.y…

ASP1OpenADN
access table

(app-level flows)

ASPK

Infrastructure
services

access table
(net-level flows)

Table
1.1.u…

Table
1.P.1

Table
1.P.v…

…

Infrastructure service 1

Infrastructure service P

Table 0

Figure 7.4  OpenADN and OpenFlow processing.

145MOBILE APPS ON GLOBAL CLOUDS

network-level flow processing. The second level identifies the SDN
control module that configures the virtual table (e.g., ASP IDs for
OpenADN, infrastructure service IDs for OpenFlow). The third
level identifies the specific flow-processing context within an SDN
control module.

Different types of data, e.g., Voice over IP (VoIP), video, Web, etc.,
require different quality of service at Internet switches and routers. The
meta-tags in OpenADN headers easily allow this to be accomplished.

Rule-Based Delegation

The rule-based delegation mechanism is one of the key innovations of
OpenADN. It allows ASPs to create and optimize their specific net-
working environment over the common infrastructure. Unlike a pri-
vate WAN (e.g., that of Google), in OpenADN, the ASPs and ISPs
are different organizations, and so they do not completely trust each
other and do not want to give full control to each other. Rule-based
delegation solves this by allowing ASPs to securely communicate with
the control plane of the ISP, which then arranges the data plane to
satisfy the ASP’s requirements, as shown in Figure 7.5. How the ISP
distributes these rules to the data plane APLS entities is completely

ISP’s
controller

State State

ASP1 ASP1’s
controller

ASP2ASP2’s
controller

Policies Policies

Control

ISP

OpenADN aware

Legacy
(OpenADN unaware)

Middleboxes

Figure 7.5  In OpenADN, ASP conveys its policies to ISP in the control plane.

146 Subharthi Paul et al.

up to the ISP. Moreover, the ISP does not need to look into the appli-
cation data fields in the packets as required by Content Distribution
Networks (CDNs). Furthermore, rule-based delegation creates a
network-wide distributed intelligence that dynamically adapts to the
dynamic changes of the applications and network conditions.

Prototype Implementation

We have implemented a proof-of-concept prototype of an OpenADN
switch using the click modular router [6]. To validate the function-
ality, we simulated a simple use-case scenario (Figure 7.6) consist-
ing of three application servers (AppServer1A, AppServer1B, and
AppServer2), two waypoints (IDS A and IDS B), a user (simulating
multiple traffic sources), an OpenADN controller, and an OpenADN
switch.

The use-case scenario is derived from the example of real-time ser-
vices from smart cell towers. In this simulated scenario, the OpenADN
controller belongs to the ISP that programs its OpenADN switch.
Moreover, for this prototype, we assume a scenario where all traffic
belongs to a single ASP. The application in this example deploys two
different types of session segments: (1) SS1 (IDS, AppServer1) and

ASP OpenADN
controller

IDSA

SS1A SS2

AppServer1

AppServer2

AppServer1B

ISP OpenADN
switchUser

OpenFlowOpenADN APLS switching

Ta
bl

e
0.

0.
0 Ta

bl
e

0.
1.

1

FT
C

BR LB

ID
-L

oc
m

ap

Ta
bl

e
1.

0.
0

SS1B

IDSB

Figure 7.6  Prototype implementation.

147MOBILE APPS ON GLOBAL CLOUDS

(2) SS2 (AppServer2). SS1 has two streams (<IDSA, AppServer1A>
and <IDSB, AppServer1B>).

This use-case scenario shows a centralized OpenADN switch–
based implementation where all the entities are connected to the
switch. The switch is responsible for indirecting the traffic for SS1
through an IDS to the application server. The IDS also implements
an OpenADN stub that is statically configured to return the traffic to
the interface over which it received it. When our final implementation
of OpenADN (as a general session layer for the networking stack) is
completed, it will be possible for the OpenADN controller to con-
figure the OpenADN layer in the IDS to directly forward the traffic
to the application server in the session segment. Moreover, in this
example, we specifically named the tables FT, CBR, ID-Loc Map,
LB, etc., to explain their functions. In fact, no such naming semantics
is used, and tables are only numbered using the three-level numbering
system previously discussed.

Related Work

Application-specific packet processing has eluded network research-
ers for long. However, the full generality of in-network application-
specific packet processing proposed by active networks research [7]
failed to motivate real deployments. The active networks approach
required applications to be allowed to run custom application process-
ing codes on network nodes creating policy and security concerns for
the network infrastructure providers.

Delegation-oriented architecture (DOA) [8] was proposed for off-
path middlebox deployment to avoid the need to interpose middle-
boxes directly in the datapath. However, DOA was not designed for
dynamic application delivery environments made available through
cloud computing today. OpenADN borrows the principles of del-
egation from DOA and applies it to modern application delivery
contexts. More recently, a flexible forwarding plane design has been
proposed by the rule-based forwarding (RBF) architecture [9]. RBF
proposes that packets must be forwarded to a rule rather than to a
destination address. The rule would encode the specific processing
required by a packet at a network node. However, rules bind early
a packet to a set of processing nodes. Moreover, rules only allow

148 Subharthi Paul et al.

enforcing receiver-centric policies. In OpenADN, packets carry
application context, and it is bound late to a rule in the network.
Moreover, OpenADN provides a standardized data plane abstraction
for application-traffic flow processing and is thus more suitable for
being deployed on high-performance network switches as compared
with the (more) general purpose rule processing required by RBF.

Serval [10] is another recent approach for service-centric network-
ing. However, Serval implements a separate control plane mecha-
nism to support service replication across multicloud environments.
OpenADN, on the other hand, is a data plane mechanism that allows
dynamic service partitioning and service composition, in addition to
service replication, for multicloud environments.

CloudNaaS [11] proposed an OpenFlow-based data plane to
allow ASPs to deploy off-path middleboxes in cloud data centers.
OpenADN is different from CloudNaaS in that it provides a session-
layer abstraction to applications preserving session-affinity properties
in an environment where the application servers and virtual appli-
ances may need to scale dynamically. OpenADN allows both user
and ASP policies, unlike CloudNaaS that only allows ASP policies.
Moreover, CloudNaaS does not allow application-level flow pro-
cessing such as OpenADN and, thus, does not provide support for
dynamic service partitioning and replication, routing on user context,
and context-based service composition. Some other works, such as
CoMB [1] and APLOMB [12], have proposed delegating middle-
box services to third-party providers. However, they directly conflict
with the design principle of OpenADN that third-party providers
should not have access to the ASPs’ application-level data for reasons
of privacy. Therefore, OpenADN provides a platform, where, instead
of third parties, ASPs themselves can manage their middleboxes dis-
tributed across different cloud sites more easily.

Summary

A recent explosion of mobile apps serving a global audience requires
smart networking facilities that can help ASPs to replicate, partition,
and compose their services on cloud computing facilities around the
world on demand to dynamically optimize routing of their traffic.

149MOBILE APPS ON GLOBAL CLOUDS

The key features of OpenADN that may be of interest to the indus-
try are as follows:

1. OpenADN is an open networking platform that allows ISPs
to offer routing services for application delivery.

2. OpenADN uses OpenFlow concepts of data and control
plane separation, extends headers to move application flow
classification to the edge, and uses SDN concepts of a virtual
centralized view of a control plane.

3. OpenADN offers ISPs and ASPs benefits of easy and consis-
tent management and cost efficiencies that result from SDN
and OpenFlow.

4. OpenADN takes network virtualization to the extremes of
making the global Internet look like a virtual single data center.

5. Proxies can be located anywhere on the global Internet. Of
course, they should be located in proximity to users and serv-
ers for optimal performance.

6. Proxies can be owned and operated by ASPs, ISPs, or CSPs.
7. Backward compatibility: Legacy traffic can pass through

OpenADN boxes, and OpenADN traffic can pass through
legacy boxes.

8. No changes to the core Internet.
9. Only some edge devices need to be OpenADN/SDN/Open

Flow aware. The rest of the devices and routers can remain legacy.
10. Incremental deployment: It can start with just a few Open

ADN aware OpenFlow switches.
11. Economic incentives for first adopters: Those ISPs that deploy

few of these switches and those ASPs that use OpenADN
will benefit immediately from the technology.

12. Full resource control: ISPs keep complete control over their
network resources, whereas ASPs keep complete control over
their application data that may be confidential and encrypted.

13. All this can be done now while the SDN technology is still
evolving. This will also help in the development of north-
bound APIs for SDN.

14. CSPs, such as Google, Amazon, Rackspace, etc., can also add
these features to their offerings for networks inside their clouds
and also for networks connecting their multiple cloud sites.

150 Subharthi Paul et al.

Acknowledgment
This work was sponsored in part by a grant from Cisco University
Research Program and NSF grant number 1249681.

References
1. Sekar, V., N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi. 2012. Design

and implementation of a consolidated middlebox architecture. Proceedings
of the 9th USENIX Conference on System Design and Implementation
(NSDI’12), pp. 24–37.

2. Gill, P., M. Arlitt, Z. Li, and A. Mahanti. 2008. The flattening Internet
topology: Natural evolution, unsightly barnacles, or contrived collapse.
9th International Conference on Passive and Active Network Measurement,
pp. 1–10.

3. OpenFlow Switch Specification 1.3.1. 2012. http://www.opennetworking.
org/images/stories/downloads/specification/openflow-spec-v1.3.1.pdf.

4. Paul, S., R. Jain, J. Pan, and M. Bowman. 2008. A vision of the next-
generation Internet: A policy-oriented perspective. Proceedings of the
British Computer Society (BCS) International Conference on Visions of
Computer Science. pp. 1–14.

5.	 Seedorf, J. and E. Burger. 2009. Application-layer traffic optimization
(ALTO) problem statement. RFC 5963.

6. Kohler, E., R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. 2000.
The Click modular router. ACM Transactions on Computer Systems 18(3),
pp. 263–297.

7. Tennenhouse, D. L., J. M. Smith, W. D. Sincoskie, D. J. Wetherall, and
G. J. Minden. 1997. A survey of active network research. IEEE Comm.
(35)1, pp. 80–86.

8. Walfish, M., J. Stribling, M. Krohn, H. Balakrishnan, R. Morris, and S.
Shenker. 2004. Middleboxes no longer considered harmful. Proceedings
of the 6th Conference on Symposium on Operating Systems Design &
Implementation (OSDI’04) - Volume 6.

9. Popa, L., N. Egi, S. Ratnasamy, and I. Stoica. 2010. Building extensi-
ble networks with rule-based forwarding (RBF). Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation
(OSDI’10).

10. Nordstrom, E., D. Shue, P. Gopalan, R. Kiefer, M. Arye, S. Y. Ko, J.
Rexford, and M. J. Freedman. 2012. Serval: An end-host stack for
service-centric networking. Proceedings of the 9th USENIX Conference on
Networked Systems Design and Implementation (NSDI’12).

11.	 Benson, T., A. Akella, A. Shaikh, and S. Sahu. 2011. CloudNaaS: A cloud
networking platform for enterprise applications. 2011 Symposium on
Cloud Computing (SOCC).

http://www.opennetworking.org
http://www.opennetworking.org

151MOBILE APPS ON GLOBAL CLOUDS

12. Sherry, J., S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and V.
Sekar. 2012. Making middleboxes someone else’s problem: Network
processing as a cloud service. Proceedings of the ACM SIGCOMM 2012
Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communication (SIGCOMM’12), pp. 13–24.

	Mobile Applications on Global Clouds Using OpenFlow and Software-Defined Networking
	Introduction
	Private Data Center
	Single Cloud Environment
	Multicloud Environment

	SDN and OpenFlow
	OpenADN Concepts
	Waypoints
	Streams
	Application-Level Policies
	Application Flows
	Affinity
	Sender and Receiver Policies

	OpenADN Extensions
	Cross-Layer Communication
	Application Label Switching
	Multistage Late Binding
	ID/Locator Split
	SDN Control Application (Control Plane)
	OpenADN Aware OpenFlow Switches (Data Plane)
	Rule-Based Delegation

	Prototype Implementation
	Related Work
	Summary
	Acknowledgment
	References

