Chapter 9: Local and Metropolitan Area Networks

Raj Jain

Raj Jain is now at Washington University in Saint Louis Jain@cse.wustl.edu

http://www.cse.wustl.edu/~jain/

The Ohio State University

Raj Jain

- LAN, MAN, WAN, GAN, DAN
- □ Topologies: Star, ring, tree, bus
- Baseband and broadband
- □ IEEE 802.3: Ethernet or
- □ IEEE 802.5: Token ring
- □ Fiber Distributed Data Interface (FDDI)
- □ IEEE 802.2: Logical Link Control

The Ohio State University

LAN vs WAN

LAN

- □ Usually shared medium
- Broadcast
- □ No intermediate stations
- Access protocols
- ☐ Infrastructure owned by a private organization

The Ohio State University

WAN

- □ Point-to-point
- Unicast
- ☐ Intermediate
 Routers/switches
- Access protocols
- Infrastructure owned by a public telecommunication company

9-3

Classification of Networks

- □ WAN = Wide Area Network
- □ LAN = Local Area Network
- □ MAN = Metropolicatan Area Network
- □ CAN = Campus Area Network
- □ DAN = Desk Area Network
- □ GAN = Global Area Network

The Ohio State University

Transmission Media [Self-Reading]

- Unshielded Twisted Pair
- □ Shielded Twisted Pair
- Coaxial Cable
- Optical fiber

The Ohio State University

Baseband vs Broadband

- Baseband
- One frequency band
- □ Bidirectional repeaters
- □ Bidirectional signal flow
- No headend required
- Simple

- Broadband
- □ Multiple frequency band
- Unidirectional repeaters
- □ Unidirectional signal flow
- Headend required for return path
- Complex

The Ohio State University

Raj Jain

Ethernet or IEEE 802.3

9-9

- □ 10 Mbps, 500 m segments, 2500 span, 100 nodes per segement, 2.5 m between stations, 0.4 in thick coaxial cable (10BASE5)
- □ 10 Mbps, 200 m segments, 1000 span, 30 nodes per segement, 0.5 m between stations, 0.25 in thin coaxial cable (10BASE2)

The Ohio State University

Fig 9.3

10BASE-T

□ Unshielded twisted pair, hub (repeater), signal broadcast to all stations. Max 100 m to hub at 10 Mbps

The Ohio State University Fig 9.4 Raj Jain 9-11

Ring Issues

- □ Per hop Clock Synch: Need synchronous transmission
- □ Around the ring clock synch: Need buffers
- Frame removal
- □ Reliability: N repeaters in a series

The Ohio State University

Raj Jain

CSMA/CD

- ☐ Aloha at Univ of Hawaii: Transmit whenever you like Worst case utilization = 1/(2e) = 18%
- □ Slotted Aloha: Fixed size transmission slots Worst case utilization = 1/e = 37%_________
- □ CSMA: Carrier Sense Multiple Access Listen before you transmit
- p-Persistent CSMA: If idle, transmit with probability p Delay by one time unit with probability 1-p
- □ CSMA/CD: CSMA with Collision Detection Listen while transmitting. Stop if you hear someone else

Raj Jain The Ohio State University 9-18

IEEE 802.3 CSMA/CD

- ☐ If the medium is idle, transmit (1-persistent).
- ☐ If the medium is busy, wait until idle and then transmit immediately.
- If a collision is detected while transmitting,
 - □ Transmit a jam signal for one slot $(= 51.2 \mu s = 64 \text{ byte times})$
 - □ Wait for a random time and reattempt (up to 16 times)
 - \Box Random time = Uniform[0,2^{min(k,10)}-1] slots
- Collision detected by monitoring the voltage High voltage \Rightarrow two or more transmitters \Rightarrow Collision
 - \Rightarrow Length of the cable is limited to 2 km

Raj Jain The Ohio State University

CSMA/CD PHY Standards

- **10BASE5:** 10 Mb/s over coaxial cable (ThickWire)
- **10BROAD36:** 10 Mb/s over broadband cable, 3600 m max segments
- **1BASE5:** 1 Mb/s over 2 pairs of UTP
- **10BASE2:** 10 Mb/s over thin RG58 coaxial cable (ThinWire), 185 m max segments
- **10BASE-T:** 10 Mb/s over 2 pairs of UTP
- **10BASE-FL:** 10 Mb/s fiber optic point-to-point link
- **10BASE-FB:** 10 Mb/s fiber optic backbone (between repeaters). Also, known as synchronous Ethernet.
- **10BASE-FP:** 10 Mb/s fiber optic passive star + segments
- □ **10BASE-F:** 10BASE-FL, 10BASE-FB, or 10BASE-FP

The Ohio State University Raj Jain

- **100BASE-T4:** 100 Mb/s over 4 pairs of CAT-3, 4, 5 UTP
- □ 100BASE-TX: 100 Mb/s over 2 pairs of CAT-5 UTP or STP
- **100BASE-FX:** 100 Mbps CSMA/CD over 2 optical fiber
- **100BASE-X:** 100BASE-TX or 100BASE-FX
- **100BASE-T:** 100BASE-T4, 100BASE-TX, or 100BASE-FX

10BASE-T

- Collision detected by the hub.
- □ Activity on two or more channels ⇒ Collision
 Collision presence (CP) transmitted by hub to all stations
 Collision window = 2X One-way delay between farthest stations

The Ohio State University

Homework 9A

Fill in the table with all 8 possible combinations

Busy	Pr≤Pm	Rr≤Pm	Action

The Ohio State University

Raj Jain

9-26

Priority Stack

☐ If you issue a higher priority token, remember the new and old priority. Next time grab the higher priority token and reset the priority to old value

The Ohio State University

Fig 9.19(1-4)

Priority Stack (continued)

The Ohio State University

Fig 9.19(5-6)

)_28

Raj Jain

FDDI

- Fiber Distributed Data Interface
- □ ANSI Standard for 100 Mbps over Fiber and twisted pair
- □ Timed token access
- □ Up to 500 stations on a single FDDI network
- □ Inter-node links of up to 2km on multimode fiber, 60+ km on single mode fiber, Longer SONET links, 100 m on UTP.
- □ Round-trip signal path limited to 200 km \Rightarrow 100 km cable.
- Maximum frame size is 4500 bytes.
- □ Eight priority levels
- Synchronous (guaranteed access delay) and asynchronous traffic
- Arranged as single- or dual-ring logical topology

The Ohio State University

Timed Token Access

- ☐ Two classes of traffic: Synchronous, Asynchronous
- Asynchronous: Timed token access
- □ Stations agree on a target token rotation time (TTRT)
- Stations monitor token rotation time (TRT)
- A station can transmit TTRT-TRT=Token Holding Time (THT)
- ☐ Yellow Light Rule: Complete the frame if THT expires in the middle of a frame
- ☐ Immediate Release: Release the token at the end of frame transmission
- ☐ If TRT>TTRT, Increment late count (LC)
- \Box Reinitialize the ring if LC = 2
- □ Synchronous: ith station can transmit SAi (pre-allocated)
 The Ohio State University

 Raj Jain

TRT

- Maximum TRT = TTRT+Max Frame time + Token Time + ΣSAi
- □ It is required that $\Sigma SAi < TTRT$ -Max Frame time Token Time
- Maximum TRT = 2 TTRT
- □ If D=Ring latency, then Utilization U=(TRT-D)/TRT = 1- D/TRT
- \square Max U = 1-D/TTRT
- □ High load ⇔ High TRT Low load ⇔ Low TRT
- □ Lower priority traffic allowed only if TRT is low

The Ohio State University

TP-PMD

- □ Twisted-Pair Physical Media Dependent
 - = Copper FDDI or CDDI
- □ Allows 100 m over Cat-5 unshielded twisted pair (UTP)
 - □ Cat-3: 15 MHz Voice grade
 - □ **Cat-4**: 20 MHz
 - □ Cat-5: 100 MHz data grade
- □ Uses scrambling and 3-level encoding

The Ohio State University

Full Duplex FDDI

- □ The stations transmit and receive simultaneously.
- □ Works only on a 2-station ring.
- □ 200 Mbps.
- □ Network starts in ring mode.
- ☐ After detecting a two node ring using SMT frames, the stations negotiate and enter full duplex mode
- □ On error, stations enter the ring mode.
- □ Patented and licensed by Digital.

, 50

MAC Performance: Baseband Bus

- □ a = Propagation delay/Frame time
- \cup U = Frame Time/(Propagation delay+Frame Time) = 1/(1+a)

Token Ring

□ a>1, token is released at t_0 +a, reaches next station at t_0 +a+a/N, U=1/(a+a/N)

Token Ring (Continued)

□ a<1, Token is released at t_0 +a, U=1/(1+a/N)

Hub Functions

- □ Signal Restoration (timing and amplitude)
- Data forwarding
- □ Collision detection (by monitoring receive ports)
- □ Jam signal propagation to all ports
- □ Fault detection and recover: autopartition and restore

The Ohio State University

Interconnection Devices

- **Repeater**: PHY device that restores data and collision signals
- **Hub:** Multiport repeater + collision detection, notification and signal broadcast
- **Bridge:** Datalink layer device connecting two or more collision domains
- Router: Network layer device (does propagate MAC multicasts)

Logical Link Control (LLC)

- □ Type 1: Unacknowledged connectionless (Used on 802.3) No flow or error control. Provides protocol multiplexing. Uses 3 types of protocol data units (PDUs):
 - UI = Unnumbered informaton
 - XID = Exchange ID = Types of operation supported, window Test = Loop back test
- □ Type 2: Acknowledged connection oriented (Used on 802.5)
 Provides flow control, error control. Uses
 SABME (Set asynchronous balanced mode), UA (unnumbered ack), DM (disconneced mode), DISC (disconnect)
- Type 3: Acknowledged connectionless
 Uses one-bit sequence number
 AC command PDUs acked by AC response PDUs

The Ohio State University Raj Jain

LLC Multiplexing

- Multiplexing allows multiple users (network layer protocols) to share a datalink
- Each user is identified by a "service access point (SAP)"

- □ Eight-bit SAP
 - ⇒ Only 256 standard values possible
- Even IP couldn't get a standard SAP.
 Use Subnetwork Access Protocol SAP (SNAP SAP)

The Ohio State University

Raj Jain

9-46

Multiplexing in Ethernet

 Original (not IEEE 802.3) Ethernet had protocol type field for multiplexing

		Length	I n 802.3
Destination Address	Source Address	Type	Info
48	48	16 🖜	Size in bits

- □ Internet Engineering Task Force (IETF) assigned protocol types (Ethernet Types) for most protocols including IP, IPX, Appletalk, etc. (RFC 1042).
- □ Length \leq 1518, Protocol type > 1518

The Ohio State University

SNAP SAP

- SubNetwork Access Protocol Service Access Point
- When DSAP=AA, SSAP=AA, Control=UI, protocol ID field is used for multiplexing

DSAP SSAP Control

AA	AA	03	Protocol ID	Info
----	----	----	-------------	------

40 bits

□ Protocol ID is 40 bit long. The first 24 bits are Organizationally Unique Identifiers (OUI). OUI of 0 is used. The Ethernet type values are used in the last 16 bits. Protocol ID = 00-00-00-xx-xx

The Ohio State University

Raj Jain

Raj Jain

9-48

IEEE 802

- 802.1 Network management and bridging
- 802.2 Logical link control
- 802.3 Ethernet (CSMA/CD)
- 802.4 Token Bus
- 802.5 Token Ring
- 802.6 DQDB
- 802.7 Broadband technical advisory group
- 802.8 Fiber-optic technical advisory group
- 802.9 Integrated data and voice
- 802.10 Security and privacy

The Ohio State University

IEEE 802 (Cont)

- □ 802.11 Wireless LANs
- □ 802.12 100VG-AnyLAN
- 802.13 ?Bad Luck
- □ 802.14

The Ohio State University

Raj Jain

9-50

- □ Ring, Bus, Tree, Star topologies
- □ Ethernet/IEEE 802.3: CSMA/CD, Baseband, broadband
- □ Token ring/IEEE 802.5
- □ FDDI Timed token access
- □ LLC type 1, 2, 3

The Ohio State University

Homework 9B

9.4, 9.19, 9.20, 9.21

The Ohio State University