Internetworking

Raj Jain

Raj Jain is now at Washington University in Saint Louis Jain@cse.wustl.edu

http://www.cse.wustl.edu/~jain/

The Ohio State University

Raj Jain

11-1

- ☐ Internetworking terms and services
- □ Bridges vs routers
- □ How bridges work?
- □ Spanning Tree and source routing
- ☐ Internet Protocol (IP): Services, Header, Address format
- □ Other Router-level protocols: ARP, ICMP, EGP, OSPF

The Ohio State University

- □ End-system: Host
- □ Network: Provides data transfer between end-systems
- ☐ Internet: A collection of networks
- □ Subnetwork: Each component of an internet
- ☐ Intermediate System: Connects two subnetworks
- □ Port: Application processes in the host

11-3

Internetworking Services

- ☐ Connects two or more subnets
- May provide accounting and status information
- □ Accomodate subnets with
 - □ Different addressing schemes
 - □ Different maximum packet sizes
 - □ Different network access mechanisms
 - □ Different timeouts
 - □ May provide error recovery
 - □ Different routing techniques
 - □ Different user access control
 - □ Connectionless and connection-oriented subnets

The Ohio State University

- □ Bridge: Connects or more identical LANs. Operates at layer 2 of the OSI modeml.
- □ Router: Connects two or more LANs that may or may not be identical. Operates at layer 3 of the OSI model

11-5

Bridge: Functions

- Monitor all frames on LAN A
- □ Pickup those frames that are for stations on the other side
- □ Retransmit the frames on the other side
- ☐ Knows or learns about which stations are on various sides
- Makes no modification to content of the frames May change headers.
- Provides storage for frames to be forwarded
- ☐ Improves reliability (less nodes per LAN)
- ☐ Improves performance (more bandwidth per node)
- □ Security (Can keeps different traffic from entering a LAN)
- May provide flow and congestion control

The Ohio State University

11-10

11-11

Spanning Tree: Terminology

- □ Bridge Identifier: MAC address plus a priority level
- □ Port identifier: For each port of a bridge
- Path cost: Cost transmitting through a port
- □ Root Bridge: The bridge with the lowest identifier
- □ Root port: The port with the minimum cost to the root bridge
- Root path cost: Cost of the path to the root bridge
- □ Designated bridge: One per LAN. The bridge that provides minimum cost path from the LAN to the root bridge.
- Designated Port: The port of the designated bridge that connects the bridge to the LAN

The Ohio State University Raj Jain

Spanning Tree Algorithm

- ☐ All bridges multicast to "All bridges"
 - □ My ID
 - □ Root ID
 - □ My cost to root
- ☐ The bridges use the information received to update their info using Dijkstra's algorithm and rebroadcast
- □ Initially all bridges consider themselves to be the root but eventually converge to one root as they find out the lowest Bridge ID.
- ☐ On each LAN, the bridge with minimum cost to the root becomes the Designated bridge
- □ All ports of all non-designated bridges are blocked.

The Ohio State University

Raj Jain

3. Source Routing

11-13

- □ The frame header contains the complete route: LAN 1 - Bridge B1 - LAN 3 - Bridge B3 - LAN 2 - Dest
- □ Bridges are simple, end systems do the routing
- □ Four types of destination addressing:
 - □ Null: Destination on the same LAN
 - □ Nonbroadcast: Includes a route to destination
 - □ All-route Broadcast: Flooded.

Bridges record route in the frame.

□ Single-route Broadcast: Once and only once on each LAN.

Spanning tree used for broadcast

The Ohio State University Raj Jain

Route Discovery

- Manually on small internets
- □ Route server
- Dynamic route discovery
 - □ Transmit "All-route request frame" to destination
 The destination sends back "nonbroadcast response" on
 each frame. Source knows all routes to the destination.
 Selects one.
 - ☐ Transmit "single-route request frame" to destination The destination responds with one "All-routes response." The source receives many responses and discovers all routes.

The Ohio State University

Raj Jain

11-15

Internet Protocol (IP)

- □ IP deals with only with host addresses
- Services:
 - □ Send: User to IP
 - □ Deliver: IP to User
 - □ Error (optional): IP to User
- IP Header

The Ohio State University

IP Header

- □ Version (4 bits)
- ☐ Internet header length (4 bits): in 32-bit words. Min header is 5 words or 20 bytes.
- ☐ Type of service (8 bits): Reliability, precedence, delay, and throughput
- □ Total length (16 bits): header+data in bytes
- ☐ Identifier (16 bits): Helps uniquely identify the datagram during its life for a given source, destination address
- □ Flags (3 bits): More flag used for fragmentation

No-fragmentation

Reserved

The Ohio State University

Raj Jain

11-18

IP Header

- □ Fragment offset (13 bits): In units of 8 bytes
- ☐ Time to live (8 bits): Specified in router hops
- □ Protocol (8 bits): Next level protocol to receive the data
- ☐ Header checksum (16 bits): 1's complement sum of all 16-bit words in the header
- □ Source Address (32 bits)
- □ Destination Address (32 bits)
- □ Options (variable): Security, source route, record route, stream id (used for voice) for reserved resources, timestamp recording
- □ Padding (variable): Makes header length a multiple of 4
- \square Data (variable): Data + header \leq 65,535 bytes

The Ohio State University

IP vs ISO CLNP (Continued)

Function

Options

IP

Security

Precedence bits in TOS Stricter source route

Loose source route Record route

Padding

Timestamp

ISO CLNP

Security

Priority

Complete source route

Partial source route

Record route

Padding

Not present

The Ohio State University

Ref: Piscitello and Chapin, p 384.

Raj Jain

11-22

Address Resolution Protocol (ARP)

- □ Problem: Given an IP address find the MAC address
- □ Solution: Address resolution protocol
- ☐ The host broadcasts a request: "What is the MAC address of 127.123.115.08?"
- □ The host whose IP address is 127.123.115.08 replies back: "The MAC address for 127.123.115.08 is 8A-5F-3C-23-45-56₁₆"
- □ A router may act as a proxy for many IP addresses

The Ohio State University

Internet Control Message Protocol (ICMP)

- □ Required companion to IP. Provides feedback from the network.
 - □ Destination unreachable
- □ Echo reply
- □ Time exceeded
- □ Timestamp
- □ Parameter problem
- □ Timestamp reply
- □ Source quench
- □ Information Request

□ Redirect

■ Information reply

- □ Echo

The Ohio State University

Raj Jain

11-24

Autonomous Systems

☐ An internet connected by homogeneous routers under the administrative control of a single entity

The Ohio State University

Fig 11.21

Other Router-level Protocols

- ☐ Interior Router Protocol (IRP): Used for passing routing information among routers internal to an autonomous system
- ☐ Exterior Router Protocol (ERP): Used for passing routing information among routers between autonomous systems
- □ Routing Information Protocol (RIP): First generation ARPAnet IRP protocol. Entire routing table sent to neighbors. Distance vector routing.
- ☐ Open Shortest Path First (OSPF): Interior routing protocol.

 Provides least-cost path routes using a fully user configurable routing metric (any fn of delay, data rate, dollar cost, etc.)

 Link costs flooded (Link-state routing)
- Exterior Gateway Protocol (EGP): Periodic hellos and responses with cost to other networks

The Ohio State University

Raj Jain

11-26

- □ Subnetwork, IS, ES
- Bridges and routers
- Spanning tree, source routing, route discovery
- □ IP: Address, header
- □ ARP, ICMP, EGP, OSPF

The Ohio State University