A Review of Key Networking Concepts

Raj Jain

Raj Jain is now at Washington University in Saint Louis Jain@cse.wustl.edu

http://www.cse.wustl.edu/~jain/

- □ ISO/OSI Reference Model
- □ Ethernet/IEEE 802.3 LANs
- Interconnecting Devices
 All these concepts are taught in CIS677.

The Ohio State University Raj Jain

2-2

ISO/OSI Reference Model

File transfer, Email, Remote Login ASCII Text, Sound

Establish/manage connection

End-to-end communication: TCP

Routing, Addressing: IP

Media Sharing: Ethernet

How to transmit signal: Coding

The Ohio State University

Layering

FTP Telnet	Web Email	
TCP	UDP	
IP	IPX	 ← Same
Ethernet	Token Ring	
Twisted Pair	Fiber	

- Protocols of each layer perform a set of functions
- All alternatives for a row have the same interfaces
- Choice of protocols at each layer is independent of those of at other layers.

UDP = User Data Protocol, TCP = Transmission Control Protocol, IPX = Internetwork Packet Exchange

The Ohio State University

Layered Packet Format

□ Nth layer control info is passed as N-1th layer data.

Transmission Media

- Magnetic Media: Physically transfer data stored on a magnetic tape or floppy disk
- Guided Media: UTP, STP, Coax, Fiber

The Ohio State University

Raj Jain

2-6

Coding Terminology

- □ Signal element: Pulse
- Modulation Rate: 1/Duration of the smallest element

=Baud rate

- Data Rate: Bits per second
- □ Data Rate = Fn(Bandwidth, signal/noise ratio, encoding)

Digital Signal Encoding Formats

The Ohio State University

Figure 3.2

Decibels

- □ Attenuation = $Log_{10} \frac{Pin}{Pout}$ Bel
- ☐ Attenuation = 10 Log_{10} $\frac{\text{Pin}}{\text{Pout}}$ deciBel
- □ Attenuation = 20 Log_{10} $\frac{\text{Vin}}{\text{Vout}}$ deciBel Since P=V²/R
- **Example 1**: Pin = 10 mW, Pout=5 mW Attenuation = $10 \log_{10} (10/5) = 10 \log_{10} 2 = 3 dB$
- **Example 2**: Pin = 100mW, Pout=1 mW Attenuation = $10 \log_{10} (100/1) = 10 \log_{10} 100 = 20$ dB

The Ohio State University

Channel Capacity

- Capacity = Maximum data rate for a channel
- **Nyquist Theorem**: Bandwidth = W Data rate < 2 W
- Bilevel Encoding: Data rate = 2 × Bandwidth
 - □ Multilevel Encoding: Data rate = $2 \times \text{Bandwidth} \times \log_2 M$

Example: M=4, Capacity = $4 \times B$ and width

The Ohio State University

Shannon's Theorem

- \square Capacity = Bandwidth $\times \log_2(1 + \text{signal/noise})$
- □ Example: Phone wire bandwidth = 3100 Hz

$$S/N = 30 \text{ dB}$$
 $10 \text{ Log }_{10} \text{ S/N} = 30$
 $\text{Log }_{10} \text{ S/N} = 3$
 $S/N = 10^3 = 1000$
 $\text{Capacity} = 3100 \log_2 (1+1000)$
 $= 30,894 \text{ bps}$

Digital Data Analog Signals

9600 bps Modems

- \bigcirc 4 bits \Rightarrow 16 combinations
- \square 4 bits/element \Rightarrow 1200 baud

Analog Data Digital Signal

- □ Sampling Theorem: 2 × Highest Signal Frequency
- □ 4 kHz voice = 8 kHz sampling rate8 k samples/sec × 8 bits/sample = 64 kbps
- Quantizing Noise: S/N = 6n a dB, *n* bits, a = 0 to 1

Fig 3.11

Bit Stuffing

- Delimit with special bit pattern (bit flags)
- □ Stuff bits if pattern appears in data
- □ Remove stuffed bits at destination

The Ohio State University

Fig 3-5

Flow Control

- □ Flow Control = Sender does not flood the receiver, but maximizes throughput
- □ Sender throttled until receiver grants permission
- Methods:
 - □ Stop and wait
 - □ Sliding window

Error Control

- Error Control = Deliver frames without error, in the proper order to network layer
- □ Error control Mechanisms:
 - □ Ack/Nak: Provide sender some feedback about other end
 - □ Time-out: for the case when entire packet or ack is lost
 - □ Sequence numbers: to distinguish retransmissions from originals
- □ ARQ: Stop and Wait, Selective Reject, Go-back n

Connection-Oriented vs Connectionless

- Connection-Oriented: Telephone System
 - □ Path setup before data is sent
 - □ Data need not have address. Circuit number is sufficient.
- Connectionless: Postal System.
 - □ Complete address on each packet
 - □ The address decides the next hop at each router

Multiple Access Protocols

- □ Aloha at University of Hawaii: Transmit whenever you like Worst case utilization = 1/(2e) = 18%
- □ CSMA: Carrier Sense Multiple Access Listen before you transmit
- CSMA/CD: CSMA with Collision Detection Listen while transmitting.
 Stop if you hear someone else.
- Ethernet uses CSMA/CD.

 Standardized by IEEE 802.3 committee.

Interconnection Devices

- **Repeater**: PHY device that restores data and collision signals
- **Hub:** Multiport repeater + fault detection and recovery
- **Bridge:** Datalink layer device connecting two or more collision domains. MAC multicasts are propagated throughout "extended LAN."
- **Router:** Network layer device. IP, IPX, AppleTalk. Does not propagate MAC multicasts.
- □ **Switch**: Multiport bridge with parallel paths

These are functions. Packaging varies.

Interconnection Devices

Ethernet (IEEE 802) Address Format

□ 48-bit:1000 0000 : 0000 0001 : 0100 0011 : 0000 0000

: 1000 0000 : 0000 1100 = 80:01:43:00:80:0C

Organizationally Unique Identifier (OUI)			24 bits assigned by
Individual/ Group	Universal/ Local		OUI Owner
1	1	22	24

- □ Multicast = "To all bridges on this LAN"
- □ Broadcast = "To all stations"

= 1111111....111 = FF:FF:FF:FF:FF

The Ohio State University

Summary

- □ ISO/OSI reference model has seven layers. TCP/IP Protocol suite has four layers.
- □ Ethernet/IEEE 802.3 uses CSMA/CD.
- □ Configuration rules depend upon physical medium 10Base5, 10Base2, 10Base-T, 100Base-TX, etc.
- □ Addresses: Local vs Global, Unicast vs Broadcast.

Homework

□ For each of the following addresses: indicate whether it is a multicast and whether it is a locally assigned address?

80:01:43:00:00:00

40:01:43:00:00:01

Were these addresses assigned by the same manufacturer?