ISDN

Raj Jain Professor of CIS

Raj Jain is now at Washington University in Saint Louis Jain@cse.wustl.edu

http://www.cse.wustl.edu/~jain/

The Ohio State University

- History
- Interfaces and protocol layers
- Reference points
- Addressing

The Ohio State University

Raj Jain

Integrated Digital Networks (IDN)

- □ Integrated \Rightarrow Both transmission and Switching
- Access was still analog

Integrated Service Digital Network

- □ Past: IDN = Integrated Digital Network ⇒ Standardized digital techniques for switching and transmission (T1 etc)
- □ 1980: ISDN ⇒ Integrated access to all services ⇒ Digital end-to-end (Digital subscriber loop)
- □ A single set of interfaces for all services at multiple speeds
- Supports voice, data, videotex
- Supports both circuit switching and packet switching
- Out-of-band signaling
- □ Sophisticated network management and maintenance using Signaling System 7 (SS7)
- Layered protocol architecture

History

- □ 1968: Study Group D set by CCITT to study digital voice
- 1972: G.702 Integrated digital switching and transmission (IDN) concept
- □ 1976: Digital switching and signaling (SS7) spec
- □ 1980: G.705 One page recommendation on ISDN
- 1984: First set of standards in 1984. Inconsistent and incomplete.
- □ 1988: Revised set of standards. Implementation feasible.
- 1992: Additional revisions

ISDN Channels

- B: 64 kbps for data or voice
- □ D: 16 or 64 kbps for signaling or packet switched data
- □ H: 384 kbps (H0), 1536 kbps (H11), 1920 kbps (H12)

The Ohio State University

Raj Jain

ISDN Access Interfaces

- □ Basic Rate Interface (BRI): $2B + D = 2 \times 64 + 16 = 144$ kbps (192 kbps total)
- □ Primary Rate Interface (PRI): For LANs or PBX

$$\square$$
 23 B + D = 23 × 64 + 64 = 1.544 Mbps

$$\square$$
 30 B+ D = 30 × 64 + 64 = 2.048 Mbps = 5H0+D (Europe)

The Ohio State University

Other PRI Interfaces

PRI H0:

- \Box 3H0+D or 4H0 = 1.544 Mbps
- \Box 5H0+D = 2.048 Mbps

PRI H1:

- □ One H11 in 1.544 Mbps
- □ One H12 in 2.048 Mbps

■ PRI for Mixture of B and H0:

□ 0 or 1 D and any combination of B and H0, e.g., 3H0+5B+D or 3H0+6B for 1.544 Mbps

ISDN Functional Groupings

- □ Terminal Equipment 1 (TE1): ISDN terminal
- Terminal Equipment 2 (TE2): Non-ISDN terminal, e.g.,
 POT
- □ Terminal Adapter (TA): Allows non-ISDN devices on ISDN
- Network Termination 1 (NT1): Physical layer device. Separates user premises from phone company. Owned by user in USA. Owned by PTT in many countries.
- Network Termination 2 (NT2): OSI layers 2-3, e.g., PBX, LAN
- Network Termination 1,2 (NT12): NT1 and NT2 combined

Functional Groupings

- □ NT1:
 - □ Physical and electrical terminal of ISDN on user's premises
 - □ Isolates the user from the transmission technology of the subscriber loop
 - □ Line maintenance functions such as loopback testing and monitoring
 - □ Bit multiplexes various B and D channels
 - □ Supports multi-drop lines ⇒ Telephone, personal computer, and alarm on one NT1
- □ NT2:
 - □ Digital PBX, LAN, Terminal controller
 - Switching and concentration

ISDN Reference Points

- Rate (R): Between Non-ISDN and Terminal Adapter. Uses X or V series recommendations.
- □ System (S): Between ISDN equipment and NT2. Separates user equipment from switching equipment.
- □ Terminal (T): Between NT2 and NT1.Separates network from user.
- User (U): Between NT1 and Provider.
 U interface not defined by ITU.
 Defined in North America since NT1 owned by user.

ISDN Protocol Reference Model

- Similar to OSI 7-layer model
- Separate user, control, and management planes
- □ Control = signaling
- Management = network diagnosis, maintenance, and operation

The Ohio State University

ISDN Protocols at UNI

	Application	End-to-					
	Presentation						
	Session	user signaling					
	Transport	Signainig					
	Network	Q.931	X.25 packet				X.25 packet
	Datalink	LAF	1		I.465/\	V.120	LAPB
	Physical	I.430 basic interface + I.431 Primary interface					
		Control Signaling			Ckt tched	Semi permanent	Packet Switched
The Ohio State University		D Char	nel		H	3 Channel	Raj Jain

LAPD

- Link Access Protocol for D Channel
- Similar to HDLC and LAPB
- X.25 packets are transmitted in LAPD frames
- □ LAPD used for signaling messages

The Ohio State University

Raj Jain

ISDN Services

Six types of services

- Circuit switched calls over a B or H channel
- □ Semipermanent connections over a B or H channel
- Packet switched calls over a B or H channel
- Packet switched calls over a D channel
- □ Frame relay calls over a B or H channel
- ☐ Frame relay calls over a D channel

The Ohio State University

Raj Jain

ISDN Addressing

- E.164 numbering designed for ISDN allows up to 15 digits
 - = Superset of E.163 numbering plan for telephony (12 digits)
- Country code: 1 to 3 digits
- National Destination Code: Provider ID or Area code
- □ ISDN Address
 - = ISDN number + ISDN subaddress (40 digits max)

Country	National	ISDN	ISDN Subaddress
Country Code	Destination	Subscriber	
Code	Code	Number	(Max 40 digits)

National ISDN Number

International ISDN Number (max 15 digits)

ISDN Address (max 55 digits)

The Ohio State University

Other Addressing Structures

■ X.121 Data Networks

Zone | Country code | PDN code | Network terminal number

Data Network Identification Code

Data country code National number

9 Country code National significant number

E.163

8 Telex destination code

National telex number

□ ISO 7498

Authority and	Initial domain	Domain specific
format identifier	identifier	part

The Ohio State University

Other Addressing Structures (Cont.)

- □ IDI = Initial domain identifier
- □ DSP = Domain specific part
- □ AFI = Authority and format identifier (Six authorities):
 - □ Four ITU controlled:
 - + Packet-switched Data Networks (PSDN),
 - + Telex,
 - + Packet-switched Telephone Networks (PSTN),
 - + ISDN.
 - □ Two ISO Controlled:
 - + ISO geographic domain: Assigned by countries
 - + International organization domain, e.g., NATO.
- Arr AFI = 44 \Rightarrow ISDN in decimal digits, 45 \Rightarrow ISDN in binary

- □ B, D, and H channels
- BRI and PRI
- NT1, NT2, TE1, TE2, TA
- R, S, T, and U reference points
- □ Addressing, E.164, ISO

Homework

- □ Read Chapters 4, 5.1-5.5 of Stallings ISDN book
- □ Submit answers to Exercise 5.1