Frame Relay

Raj Jain
Professor of Computer and Information Sciences

Raj Jain is now at Washington University in Saint Louis Jain@cse.wustl.edu

http://www.cse.wustl.edu/~jain/

The Ohio State University

- What is Frame Relay?
- □ Why not leased lines or X.25?
- □ Frame formats and protocols
- Signaling

Problems with Leased Lines

- No user-to-user end-to-end signaling
- \square Multiple logical links \Rightarrow Multiple connections
- □ Four nodes \Rightarrow 12 ports, 12 local exchange carrier (LEC) access lines, 6 inter-exchange carrier (IXC) connections
- One more node ⇒ 8 more ports, 8 more LEC lines, 4 more IXC circuits

Solution: Frame Relay

- □ Four nodes: 4 ports, 4 LEC access lines, 6 IXC circuits
- □ One more node: 1 more port, 1 more access line, 4 more IXC circuits
- \square Share leased lines \Rightarrow Virtual Private Networks

Data Link Control Identifiers (DLCI)

The Ohio State University

Data Link Control Identifier

- Only local significance
- □ Allows multiple logical connections over one circuit
- Some ranges preassigned
- \Box DLCI = 0 is used for signaling

X.25

- □ In-band signaling. VC setup and clearing messages in the same channel as data.
- □ Three layer protocol. Third layer for multiplexing.
- Flow control
- Error control
- \Rightarrow 12 messages for one packet transfer

Only 6 messages without flow control and error control

The Ohio State University

Raj Jain

X.25 Exchange

The Ohio State University

Raj Jain

Frame Relay Exchange

The Ohio State University

Raj Jain

Frame Relay: Key Features

- X.25 simplified
- No flow and error control
- Out-of-band signaling
- Two layers
- Protocol multiplexing in the second layer
- Congestion control added
- ⇒ Higher speed possible.X.25 suitable to 200 kbps. Frame relay to 2.048 Mbps.

Relay vs Switching

- Switching = Relaying + Ack + Flow control + Error recovery + loss recovery
- \Box Switching = X.25
- Relay = Unreliable multiplexing service

Frame Relay UNI Architecture

Control Plane

- Signaling over D channel
- Data transfer over B, D, or H
- LAPD used for reliable signaling
- □ Q.933 + Q.931 used for signaling messages
- □ SAPI = 0 in LAPD \Rightarrow Q.933 + Q.931 Frame relay message

The Ohio State University Raj Jain

User Plane

- □ Link Access Procedure for Frame-Mode bearer services (LAPF)
- \bigcirc Q.922 = Enhanced LAPD (Q.921) = LAPD + Congestion
- LAPF defined in Q.922
- Core functions defined in Q.922 appendix:
 - □ Frame delimiting, alignment, and flag transparency
 - □ Virtual circuit multiplexing and demultiplexing
 - □ Octet alignment ⇒ Integer number of octets before zero-bit insertion
 - □ Checking minimum and maximum frame sizes
 - □ Error detection, Sequence and non-duplication
 - □ Congestion control

□ LAPF control functions may be used for end-to-end signaling

Signaling

- Permanent Virtual Circuit (PVC)
- Switched Virtual Circuit (SVC)
- Q.933 used for logical FR connections over PVC or SVC
 ⇒ Q.933 is a subset of Q.931
- Message Types: Alerting, call proceeding, connect, connect ack, progress, setup, disconnect, release, release complete, status, status inquiry
- □ Frame relay forum has proposed to simplify Q.933 by deleting progress, connect ack, and alerting.
 Also delete many information element.
 Add SVC.

Digital Signaling System 1 Message Format

Bits
8 7 6 5 4 3 2 1 Octets

Protocol Discriminator										
0	0	0	0	Call Reference length						
Call Reference										
0	Message Type									
Others (information elements)										

Connection Control Messages

- Call establishment
 - 1. Alerting
 - 2. Call proceeding
 - 3. Connect
 - 4. Connect Acknowledge
 - 5. Progress
 - 6. Setup
- Call clearing
 - 7. Disconnect
 - 8. Release
 - 9. Release Complete
- Miscellaneous
 - 10. Status
 - 11. Status Enquiry

The Ohio State University

Information Elements

Information Element		2	3	4	5	6	7	8	9	10	11
Protocol discriminator		X	X	X	X	X	X	X	X	X	X
Call reference		X	X	X	X	X	X	X	X	X	X
Message type		X	X	X	X	X	X	X	X	X	X
Cause					X	X	X	X		X	
Bearer capability									X		
Channel identification		X	X						X		
Data link connection ID		X	X						X		
Progress indicator		X	X			X			X		
Network specific facilities									X		
Call state										X	
Display	X	X	X	X	X	X	X	X	X	X	X
End to end transit delay			X						X		

The Ohio State University

Information Elements (cont)

Information Element	1	2	3	4	5	6	7	8	9	10	11
Packet binary parameters			X						X		
Link core parameters			X						X		
Link protocol parameters			X						X		
Calling party number									X		
Called party number									X		
Called party subaddress									X		
Connected number			X		X		X	X			
Connected subaddress			X		X		X	X			
Transit network selection									X		
Repeat indicator									X		
Low layer compatibility			X						X		
High layer compatibility									X		
User-User	X		X		X		X	X	X		
The Ohio State University										Raj	Jain

Signaling Example (cont) NT ISDN Frame Relay B-Channel Q.933 Disconnect Disconnect exchange to Release Release release **B-Channel** Release Release frame-mode Complete Complete connection Disconnect **D-Channel** Disconnect Q.931 exchange Release to release Release **B-Channel** Release Release Circuit switched Complete Complete Connection Raj Jain The Ohio State University

Local Management Interface (LMI)

- Extension designed by a group of vendors
- □ To overcome problems observed in early implementations
- May be standardized by both ANSI and ITU-T
- Status Enquiry message from user to network
- Status message from network to user
- □ Uses HDLC UI frames (with sequence numbers)
- □ Uses protocol ID=00001001, DLCI=1023

LMI Operation

User

Network

The Ohio State University

DLCI Extensions

- Global DLCI
 - ⇒ DLCI points to the same destination at all time and points (OK for small networks)
- Multicasting
 - □ One-way multicasting: 1 to N
 - □ Two-way multicasting: 1 to N and N to 1
 - □ N-way Multicasting: N to N

Network-to-Network Interface (NNI)

- □ Developed by frame relay forum: FRF 92.08R1, FRF 92.62
- Working draft of ANSI T1S1.2
- Adding/deleting PVCs between networks
- Diagnosing PVC failures

Major NNI Operations

- Notification of adding a PVC
- Notification of deleting a PVC
- Notification of UNI or NNI failures
- Notification of a PVC segment availability or unavailability
- Verification of links between frame relay nodes
- Verification of frame relay nodes

Physical Layer Options

- Both ANSI and ITU-T define frame relay on ISDN
- □ Frame relay forum's implementation agreements:
 - □ Metallic interface at DS1 1.544 Mbps (ANSI T1.403)
 - □ Leased lines at 56 kbps (V.35)
 - □ Metallic interface at E1 2.048 Mbps (G.703)
 - □ Synchronous interface at E1 2.048 Mbps (G.704)
 - □ X.21 interface for synchronous transmission
- MCI offers frame relay at 56 kbps, 64 kbps, fractional T1, $N \times 56$ or $N \times 64$ kbps.

- X.25 designed for unintelligent devices over error-prone networks ⇒ Slow
- \Box Frame relay = simplified X.25
- □ Higher data rates than X.25
- Developed for ISDN but runs in non-ISDN environments
- □ Two layer protocol architecture

Homework

□ Read Chapter 11 of Stallings' ISDN book

Frame Relay ITU standards

- □ I.122, Framework for Frame Mode Bearer Services, 1993.
- I.223, Frame Mode Bearer Services, 1992.
- I.370, Congestion management for the ISDN Frame Relaying Bearer Service, 1991.
- I.372, Frame Relay Bearer Service Network-to-network Interface Requirements, 1993.
- □ I.555, Frame Mode Bearer Services Interworking, 1992.
- Q.922, ISDN Data Link Layer Specification for Frame Mode Bearer Services, 1992.
- Q.933, Signaling Specifications for Frame Mode Call Control, 1992.

Frame Relay ANSI standards

- □ T1.606, Architectural Framework and Service Description for Frame-Relaying Bearer Service, 1990.
- □ T1.617, Signaling Specification for Frame Relay Bearer Service for DSS1, 1991.
- □ T1.618, Core Aspects of Frame Protocol for Use with Frame Relay Bearer Service, 1991.

The Ohio State University Raj Jain

Implementation Agreements

- □ FRF.1, The User-Network Interface (UNI)
- □ FRF.2, The network-to-network interface (NNI)
- □ FRF.3, Multiprotocol encaptulation
- □ FRF.4, Switched virtual circuit (SVC)
- □ FRF.5, Frame relay/ATM network interworking
- □ FRF.6, Frame relay service customer network management

Available from Frame Relay Forum, http://frame-relay.indiana.edu/