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Abstract -Asynchronous Transfer Mode (ATM) switching is not defined in the ATM standards, but a 
lot of research has been done to explore various ATM switch design alternatives. Each design has its 
own merits and drawbacks, in terms of throughput, delay, scalability, buffer sharing and fault tolerance. 
By examining the features of the basic switch designs, several conclusions can be inferred about the 
design principles of ATM switching, and the various tradeoffs involved in selecting the appropriate 
approach.  
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1. Introduction 
Asynchronous Transfer Mode (ATM) is the technology of choice for the Broadband Integrated Services 
Digital Network (B-ISDN). The ATM is proposed to transport a wide variety of services in a seamless 
manner. In this mode, user information is transferred in a connection oriented fashion between 
communicating entities using fixed-size packets, known as ATM cells. The ATM cell is fifty-three bytes 
long, consisting of a five byte header and a forty-eight byte information field, sometimes referred to as 
payload.  

Because switching is not part of the ATM standards, vendors use a wide variety of techniques to build 
their switches. A lot of research has been done to explore the different switch design alternatives, and if 
one were to attempt to describe the different variations of each, this paper would turn into a book of 
several volumes. Hence only the major issues are highlighted here, and the various merits and 
drawbacks of each approach are briefly examined.  

The aim of ATM switch design is to increase speed, capacity and overall performance. ATM switching 
differs from conventional switching because of the high-speed interfaces (50 Mbps to 2.4 Gbps) to the 
switch, with switching rates up to 80 Gbps in the backplane. In addition, the statistical capability of the 
ATM streams passing through the ATM switching systems places additional demands on the switch. 
Finally, transporting various types of traffic, each with different requirements of behavior and semantic 
or time transparency (cell loss, errors, delays) is not a trivial matter. To meet all these requirements, the 
ATM switches had to be significantly different from conventional switches.  

A large number of ATM switch design alternatives exist, both in the hardware and the software 
components. The software needs to be partitioned into hardware-dependent and independent 
components, and the modularity of the whole switch design is essential to easily upgrade the switches.  

An ATM switching system is much more than a fabric that simply routes and buffers cells (as is usually 
meant by an ATM switch), rather it comprises an integrated set of modules. Switching systems not only 
relay cells, but also perform control and management functions. Moreover, they must support a set of 
traffic control requirements.  

Due to this functional division of an ATM switching system, the remainder of this survey is organized 
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as follows. First, various switching functions and requirements are discussed. Then a generic functional 
model for a switching architecture is presented to simplify the ensuing discussion. The core of the 
switch, the switch fabric, will be the main focus of this paper, and thus it is explored in great depth, 
highlighting the main design categories. Finally, the problems and tradeoffs exposed when analyzing 
these switch fabric design alternatives are used to draw some conclusions on the major switch design 
principles.  

2. Switching Functions 
An ATM switch contains a set of input ports and output ports, through which it is interconnected to 
users, other switches, and other network elements. It might also have other interfaces to exchange 
control and management information with special purpose networks. Theoretically, the switch is only 
assumed to perform cell relay and support of control and management functions. However, in practice, it 
performs some internetworking functions to support services such as SMDS or frame relay.  

It is useful to examine the switching functions in the context of the three planes of the B-ISDN model 
[3].  

2.1 User Plane 

The main function of an ATM switch is to relay user data cells from input ports to the appropriate output 
ports. The switch processes only the cell headers and the payload is carried transparently. As soon as the 
cell comes in through the input port, the Virtual Path Identifier/Virtual Channel Identifier (VPI/VCI) 
information is derived and used to route the cells to the appropriate output ports. This function can be 
divided into three functional blocks: the input module at the input port, the cell switch fabric (sometimes 
referred to as switch matrix) that performs the actual routing, and the output modules at the output ports.

2.2 Control Plane 

This plane represents functions related to the establishment and control of the VP/VC connections. 
Unlike the user data cells, information in the control cells payload is not transparent to the network. The 
switch identifies signaling cells, and even generates some itself. The Connection Admission Control 
(CAC) carries out the major signaling functions required. Signaling information may/may not pass 
through the cell switch fabric, or maybe exchanged through a signaling network such as SS7.  

2.3 Management Plane 

The management plane is concerned with monitoring the controlling the network to ensure its correct 
and efficient operation. These operations can be subdivided as fault management functions, performance 
management functions, configuration management functions, security management functions, 
accounting management and traffic management. These functions can be represented as being 
performed by the functional block Switch Management. The Switch Management is responsible for 
supporting the ATM layer Operations and Maintenance (OAM) procedures. OAM cells may be 
recognized and processed by the ATM switch. The switch must identify and process OAM cells, maybe 
resulting in generating OAM cells. As with signaling cells, OAM cells may/may not pass through cell 
switch fabric. Switch Management also supports the interim local management interface (ILMI) of the 
UNI. The Switch Management contains, for each UNI, a UNI management entity (UME), which may 
use SNMP.  
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2.4 Traffic Control Functions 

The switching system may support connection admission control, usage/network parameter control 
(UPC/NPC), and congestion control. We will regard UPC/NPC functions as handled by the input 
modules, congestion control functions as handled by the Switch Management, while special buffer 
management actions (such as cell scheduling and discarding) are supervised by the Switch Management, 
but performed inside the cell switch fabric where the buffers are located. Section 5.7 will examine how 
buffer management is carried out.  

3. A Generic Switching Architecture 
It will be useful to adopt a functional block model to simplify the discussion of various design 
alternatives. Throughout this paper, we will divide switch functions among the previously defined broad 
functional blocks: input modules, output modules, cell switch fabric, connection admission control, and 
Switch Management. Figure 1 illustrates this switching model. These functional blocks are service-
independent, and the partitioning does not always have well-defined boundaries between the functional 
blocks. This framework has been developed by Chen and Liu [3]. The greater portion of this paper will 
be devoted to exploring the different cell switch fabric design alternatives.  

  

Figure 1: A generic switching model (adapted from Chen and Liu [3]) 

3.1 Switch Interface 

3.1.1 Input Modules 

The input module first terminates the incoming signal (assume it is a SONET signal) and extracts the 
ATM cell stream. This involves signal conversion and recovery, processing SONET overhead, and cell 
delineation and rate decoupling. After that, for each ATM cell the following functions should be 
performed: 

error checking the header using the Header Error Control (HEC) field
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validation and translation of VPI/VCI values  
determination of the destination output port  
passing signaling cells to CAC and OAM cells to Switch Management  
UPC/UNC for each VPC/VCC  
addition of an internal tag containing internal routing and performance monitoring information for 
use only within the switch  

3.1.2 Output Modules 

These prepare the ATM cell streams for physical transmission by: 

removing and processing the internal tag  
possible translation of VPI/VCI values  
HEC field generation  
possible mixing of cells from CAC and Switch Management with outgoing cell streams  
cell rate decoupling  
mapping cells to SONET payloads and generation of SONET overhead  
conversion of the digital bitstream to an optical signal  

3.2 Cell Switch Fabric 

The cell switch fabric is primarily responsible for routing of data cells and possibly signaling and 
management cells as well. Since the remainder of this paper focuses on the cell switch fabric, the next 
section is devoted to exploring its various components in considerable detail.  

3.3 Connection Admission Control (CAC) 

Establishes, modifies and terminates virtual path/channel connections. More specifically, it is 
responsible for:  

high-layer signaling protocols  
signaling ATM Adaptation Layer (AAL) functions to interpret or generate signaling cells  
interface with a signaling network  
negotiation of traffic contracts with users requesting new VPCs/VCCs  
renegotiation with users to change established VPCs/VCCs  
allocation of switch resources for VPCs/VCCs, including route selection  
admission/rejection decisions for requested VPCs/VCCs  
generation of UPC/NPC parameters  

If the CAC is centralized, a single processing unit would receives signaling cells from the input 
modules, interpret them, and perform admission decisions and resource allocation decisions for all the 
connections in the switch. CAC functions may be distributed to blocks of input modules where each 
CAC has a smaller number of input ports. This is much harder to implement, but solves the connection 
control processing bottleneck problem for large switch sizes, by dividing this job to be performed by 
parallel CACs. A lot of information must be communicated and coordinated among the various CACs 
[3]. In Hitachi's and NEC's ATM switches, input modules - each with its CAC - also contain a small 
ATM routing fabric. Some of the distributed CAC functions can also be distributed among output 
modules which can handle encapsulation of high-layer control information into outgoing signaling cells. 

3.4 Switch Management 
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Handles physical layer OAM, ATM layer OAM, configuration management of switch components, 
security control for the switch database, usage measurements of the switch resources, traffic 
management, administration of a management information base, customer-network management, 
interface with operations systems and finally support of network management.  

This area is still under development, so the standards are not established yet. Switch Management is 
difficult because management covers an extremely wide spectrum of activities. In addition, the level of 
management functions implemented in the switch can vary between minimal and complex.  

Switch Management must perform a few basic tasks. It must carry out specific management 
responsibilities, collect and administer management information, communicate with users and network 
managers, and supervise and coordinate all management activities. Management functions include fault 
management, performance management, configuration management, accounting management, security 
management, and traffic management. Carrying out these functions entails a lot of intraswitch 
communication between the Switch Management and other functional blocks.  

A centralized Switch Management can be a performance bottleneck if it is overloaded by processing 
demands. Hence, Switch Management functions can be distributed among input modules, but a lot of 
coordination would be required. Each distributed input module Switch Management unit can monitor 
the incoming user data cell streams to perform accounting and performance measurement. Output 
module Switch Management units can also monitor outgoing cell streams [3].  

4. The Cell Switch Fabric 
The cell switch fabric is primarily responsible for transferring cells between the other functional blocks 
(routing of data cells and possibly signaling and management cells as well). Other possible functions 
include:  

cell buffering  
traffic concentration and multiplexing  
redundancy for fault tolerance  
multicasting or broadcasting  
cell scheduling based on delay priorities  
congestion monitoring and activation of Explicit Forward Congestion Indication (EFCI)  

Each of these functions will be explored in depth in the context of the various design alternatives and 
principles.  

4.1 Concentration, Expansion and Multiplexing 

Traffic needs to be concentrated at the inputs of the switching fabric to better utilize the incoming link 
connected to the switch. The concentrator aggregates the lower variable bit rate traffic into higher bit 
rate for the switching matrix to perform the switch at standard interface speed. The concentration ratio is 
highly correlated with the traffic characteristics, so it needs to be dynamically configured. The 
concentrator can also aid in dynamic traffic distribution to multiple routing and buffering planes, and 
duplication of traffic for fault tolerance. At the outputs of the routing and buffering fabric, traffic can be 
expanded and redundant traffic can be combined.  

4.2 Routing and Buffering 
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The routing and buffering functions are the two major functions performed by the cell switch fabric. The 
input module attaches a routing tag to each cell, and the switch fabric simply routes the arriving cells 
from its inputs to the appropriate outputs. Arriving cells may be aligned in time by means of single-cell 
buffers. Because cells may be addressed to the same output simultaneously, buffers are needed. Several 
routing and buffering switch designs have aided in setting the important switch design principles. All 
current approaches employ a high degree of parallelism, distributed control, and the routing function is 
performed at the hardware level.  

Before examining the impact of the various design alternatives, we need to consider the essential criteria 
for comparing among them. The basic factors are:  

1. throughput (total output traffic rate/input traffic rate)  
2. utilization (average input traffic rate/maximum possible output traffic rate)  
3. cell loss rate  
4. cell delays  
5. amount of buffering  
6. complexity of implementation  

Traditionally switching has been defined to encompass either space switching or time switching or 
combinations of both techniques. The classification adopted here is slightly different in the sense that it 
divides the design approaches under the following four broad categories [3]:  

1. shared memory  
2. shared medium  
3. fully interconnected  
4. space division  

For simplicity, the ensuing discussion will assume a switch with N input ports, N output ports, and all 
port speeds equal to V cells/s. Multicasting and broadcasting will be addressed with the other issues in 
the next section, so they will be temporarily ignored in this discussion.  

4.2.1 Shared Memory Approach 

Figure 2 illustrates the basic structure of a shared memory switch. Here incoming cells are converted 
from serial to parallel form, and written sequentially to a dual port Random Access Memory. A memory 
controller decides the order in which cells are read out of the memory, based on the cell headers with 
internal routing tags. Outgoing cells are demultiplexed to the outputs and converted from parallel to 
serial form. 
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Figure 2: Basic structure of a shared-memory switch (adapted from Black [8]) 

This approach is an output queueing approach, where the output buffers all physically belong to a 
common buffer pool. The approach is attractive because it achieves 100% throughput under heavy load. 
The buffer sharing minimizes the amount of buffers needed to achieve a specified cell loss rate. This is 
because if a large burst of traffic is directed to one output port, the shared memory can absorb as much 
as possible of it. CNET's Prelude switch was one of the earliest prototypes of this technique, which 
employed slotted operation with packet queueing [2,7]. Hitachi's shared buffer switch and AT&T's 
GCNS-2000 are famous examples of this scheme [7].  

The approach, however, suffers from a few drawbacks. The shared memory must operate N times faster 
than the port speed because cells must be read and written one at a time. As the access time of memory 
is physically limited, the approach is not very scalable. The product of the number of ports times port 
speed (NV) is limited. In addition, the centralized memory controller must process cell headers and 
routing tags at the same rate as the memory. This is difficult for multiple priority classes, complicated 
cell scheduling, multicasting and broadcasting.  

4.2.2 Shared Medium Approach 

Cells may be routed through a shared medium, like a ring, bus or dual bus. Time-division multiplexed 
buses are a popular example of this approach, and figure 3 illustrates their structure. Arriving cells are 
sequentially broadcast on the TDM bus in a round-robin manner. At each output, address filters pass the 
appropriate cells to the output buffers, based on their routing tag. The bus speed must be at least NV for 
cells/s to eliminate input queueing. 
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Figure 3: A shared bus switch (adapted from Chen and Liu [3]) 

The outputs are modular, which makes address filters and output buffers easy to implement. Also the 
broadcast-and-select nature of the approach makes multicasting and broadcasting straightforward. As a 
result, many such switches have been implemented, such as IBM's Packetized Automated Routing 
Integrated System (PARIS) and plaNET, NEC's ATM Output Buffer Modular Switch (ATOM), and 
Fore Systems' ForeRunner ASX-100 to mention a few [7,10]. The Synchronous Composite Packet 
Switching (SCPS) which uses multiple rings is also one of the most famous experiments of shared 
medium switches [2].  

However, because the address filters and output buffers must operate at the shared medium speed, which 
is N times faster than the port speed, this places a physical limitation on the scalability of the approach. 
In addition, unlike the shared memory approach, output buffers are not shared, which requires more total
amount of buffers for the same cell loss rate.  

4.2.3 Fully Interconnected Approach 

In this approach, independent paths exist between all N squared possible pairs of inputs and outputs. 
Hence arriving cells are broadcast on separate buses to all outputs and address filters pass the 
appropriate cells to the output queues. This architecture is illustrated in figure 4. 

  

Figure 4: A fully interconnected switch (adapted from Chen and Liu [3])
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This design has many advantages. As before, all queueing occurs at the outputs. In addition, 
multicasting and broadcasting are natural, like in the shared medium approach. Address filters and 
output buffers are simple to implement and only need to operate at the port speed. Since all of the 
hardware operates at the same speed, the approach is scalable to any size and speed. Fujitsu's bus matrix 
switch and GTE Government System's SPANet are examples of switches in which this design was 
adopted.  

Unfortunately, the quadratic growth of buffers limits the number of output ports for practical reasons. 
However, the port speed is not limited except by the physical limitation on the speed of the address 
filters and output buffers.  

The Knockoutswitch developed by AT&T was an early prototype where the amount of buffers was 
reduced at the cost of higher cell loss [2,7]. Instead of N buffers at each output, it was proposed to use 
only a fixed number of buffers L for a total of NxL buffers. This technique was based on the observation 
that it is unlikely that more than L cells will arrive for any output at the same time. It was argued that 
selecting the L value of 8 was sufficient for achieving a cell loss rate of 1/1 Million under uniform 
random traffic conditions for large values of N.  

4.2.4 Space Division Approach 

The crossbarswitch is the simplest example of a matrix-like space division fabric that physically 
interconnects any of the N inputs to any of the N outputs. Genda et al. [31] show how a crossbar switch 
can be used to achieve a rate of 160 Gbps, using input/output buffering and a bidirectional arbitration 
algorithm. Multistage interconnection networks (MINs)which are more tree-like structures, were then 
developed to reduce the N squared crosspoints needed for circuit switching, multiprocessor 
interconnection and, more recently, packet switching. 

4.2.4.1 Banyan networks 

One of the most common types of MINs is the banyan network (it is interesting to note that it was given 
this name because its shape resembles the tropical tree of that name [5]). The Banyan network is 
constructed of an interconnection of stages of switching elements. A basic 2x2 switching element can 
route an incoming cell according to a control bit (output address). If the control bit is 0, the cell is routed 
to the upper port address, otherwise it is routed to the lower port address.
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Figure 5: Switching element, 4x4 banyan network and 8x8 banyan network (combined from Chen 
and Liu [3] and Onvural [7]) 

To better understand the composition of banyan networks, consider forming a 4x4 banyan network. 
Figure 5 shows the step-by-step interconnection of switching elements to form 4x4, and then 8x8 
banyan networks. The interconnection of two stages of 2x2 switching elements can be done by using the 
first bit of the output address to denote which switching element to route to, and then using the last bit to 
specify the port. 8x8 banyans can be recursively formed by using the first bit to route the cell through 
the first stage, either to the upper or lower 4x4 network, and then using the last 2 bits to route the cell 
through the 4x4 network to the appropriate output port.  

In general, to construct an NxN banyan network, the nth stage uses the nth bit of the output address to 
route the cell. For N = 2 to the power of n, the banyan will consist of n = log to the base 2 of N stages, 
each consisting of N/2 switching elements. A MIN is called self-routing when the output address 
completely specifies the route through the network (also called digit-controlled routing).  

The banyan network technique is popular because switching is performed by simple switching elements, 
cells are routed in parallel, all elements operate at the same speed (so there is no additional restriction on 
the size N or speed V), and large switches can be easily constructed modularly and recursively and 
implemented in hardware. Bellcore's Sunshine switch, and Alcatel Data Networks' 1100 are just a few 
examples of switches employing this technique.  

It is clear that in a banyan network, there is exactly one path from any input to any output. Regular 
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banyans use only one type of switching element, and SW-banyans are a subset of regular banyans, 
constructed recursively from LxM switching elements.  

4.2.4.1.1 Delta Networks 

Delta networks are a subclass of SW-banyan networks, possessing the self-routing property. There are 
numerous types of delta networks, such as rectangular delta networks (where the switching elements 
have the same number of outputs as inputs), omega, flip, cube, shuffle-exchange (based on a perfect 
shuffle permutation) and baseline networks. A delta-b network of size NxN is constructed of bxb 
switching elements arranged in log to the base b of N stages, each stage consisting of N/b switching 
elements [2]. 

4.2.4.1.2 Blocking and Buffering 

Unfortunately, since banyan networks have less than N squared crosspoints, routes of two cells 
addressed to two different outputs might conflict before the last stage. When this situation, called 
internal blocking, occurs, only one of the two cells contending for a link can be passed to the next stage, 
so overall throughput is reduced. A solution to this problem is to add a sort network (such as a Batcher 
bitonic sort network) to arrange the cells before the banyan network. This will be internally non-
blocking for cells addressed to different outputs [2]. However, if cells are addressed to the same output 
at the same time, the only solution to the problem is buffering. Buffers can be placed at the input of the 
Batcher network, but this can cause "head-of-line" blocking, where cells wait for a delayed cell at the 
head of the queue to go through, even if their own destination output ports are free. This situation can be 
remedied by First-In-Random-Out buffers, but these are quite complex to implement. 

Alternatively, buffers may be placed internally within the banyan switching elements. Thus if two cells 
simultaneously attempt to go to the same output link, one of them is buffered within the switching 
element. This internal buffering can also be used to implement a backpressure control mechanism, 
where queues in one stage of the banyan will hold up cells in the preceding stage by a feedback signal. 
The backpressure may eventually reach the first stage, and create queues at the banyan network inputs 
[3]. It is important to observe that internal buffering can cause head-of-line blocking at each switching 
element, and hence it does not achieve full throughput. Awdeh and Mouftah [23] have designed a delta-
based ATM switch with backpressure mechanism capable of achieving a high throughput, while 
significantly reducing the overall required memory size.  

A third alternative is to use a recirculating buffer external to the switch fabric. This technique has been 
adopted in Bellcore's Sunshine and AT&T's Starlite wideband digital switch [2]. Here output conflicts 
are detected after the Batcher sorter, and a trap network selects a cell to go through, and recirculates the 
others back to the inputs of the Batcher network. Unfortunately, this approach requires complicated 
priority control to maintain the sequential order of cells and increases the size of the Batcher network to 
accommodate the recirculating cells [3].  

As discussed before, output buffering is the most preferable approach. However, banyan networks 
cannot directly implement it since at most one cell per cell time is delivered to every output. Possible 
ways to work around this problem include:  

increasing the speed of internal links  
routing groups of links together  
using multiple banyan planes in parallel  
using multiple banyan planes in tendem or adding extra switching stages  
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4.2.4.2 Multiple-Path MINs 

Apart from banyan networks, many types of MINs with multiple paths between inputs and outputs exist. 
Classical examples include the non-blocking Benesand Closnetworks, the cascaded banyan networks, 
and the randomized route banyan network with load distribution (which eliminates internal buffering). 
Combining a number of banyan planes in parallel can also be used to form multipath MINs. 

The multipath MINs achieve more uniform traffic distribution to minimize internal conflicts, and exhibit 
fault tolerance. However if cells can take independent paths with varying delays, a mechanism is needed 
to preserve the sequential ordering of cells of the same virtual connection at the output. Since this might 
involve considerable processing, it is better to select the path during connection setup and fix it during 
the connection. Special attention must be paid during path selection to prevent unnecessary blocking of 
subsequent calls. Widjaja and Leon-Garcia [25] have proposed a helical switch using multipath MINs 
with efficient buffer sharing. They have used a virtual helix architecture to force cells to proceed in 
sequence.  

5. Switch Design Principles 
From the preceding section, it can be seen that each design alternative has its own merits, drawbacks, 
and considerations. The general design principles and issues exposed in the last section are analyzed in 
more detail here.  

5.1 Internal Blocking 

A fabric is said to be internally blocking if a set of N cells addressed to N different outputs can cause 
conflicts within the fabric. Internal blocking can reduce the maximum possible throughput. Banyan 
networks are blocking, while TDM buses where the bus operates at least N times faster than the port 
speed are internally nonblocking. By the same concept, shared memory switches which can read and 
write at the rate of NV cells per second are internally non-blocking, since if N cells arrive for N different 
outputs, no conflicts will occur. Hence, to prevent internal blocking, shared resources must operate at 
some factor greater than the port speed. Applying this to banyan networks, the internal links need to run 
square root of N times faster than the highest speed incoming link [7]. This factor limits the scalability 
and throughput of the switch. Coppo et al. [20] have developed a mathematical model for analyzing the 
optimal blocking probability versus complexity tradeoff.  

5.2 Buffering Approaches 

Buffering is necessary in all design approaches. For instance, in a banyan network, if two cells 
addressed to the same output successfully reach the last switching stage at the same time, output 
contention occurs and must be resolved by employing buffering. The location and size of buffers are 
important issues that must be decided [7].  

There are four basic approaches to the placement of buffers. These basic approaches are illustrated in 
figure 6. The literature abounds with comparative studies of these, augmented with numerous queueing 
analyses and simulation results. Uniform random traffic, as well as bursty traffic have been examined. 
Although each approach has its own merits and drawbacks, output queueing is the preferred technique 
so far.  
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Figure 6: The various buffering approaches (Combined from Chen and Liu [3] and Onvural [7]) 

5.2.1 Input Queueing 

Buffers at the input of an internally nonblocking space division fabric (such as Batcher banyan network) 
illustrate this type of buffering. This approach suffers from head-of-the-line blocking. When two cells 
arrive at the same time and are destined to the same output, one of them must wait in the input buffers, 
preventing the cells behind it from being admitted. Thus capacity is wasted. 

Several methods have been proposed to tackle the head-of-the-line blocking problem, but they all 
exhibit complex design. Increasing the internal speed of the space division fabric by a factor of four, or 
changing the First-In-First-Out (FIFO) discipline are two examples of such methods.  

5.2.2 Output Queueing 

This type of buffering can be evident by examining the buffers at the output ports of a shared bus fabric. 
This approach is optimal in terms of throughput and delays, but it needs some means of delivering 
multiple cells per cell time to any output. Hence, either the output buffers must operate at some factor 
times the port speed, or there should be multiple buffers at each output. In both cases, the throughput 
and scalability are limited, either by the speedup factor or by the number of buffers. 

5.2.3 Internal Queueing 

Buffers can be placed within the switching elements in a space division fabric. For instance, in a banyan 
network, each switching element contains buffers at its inputs to store cells in the event of conflict. 
Again, head-of-the-line blocking might occur within the switching elements, and this significantly 
reduces throeghput, especially in the case of small buffers or larger networks. Internal buffers also 
introduce random delays within the switch fabric, causing undesirable cell delay variation. 
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5.2.4 Recirculating Buffers 

This technique allows cells to re-enter the internally nonblocking space division network. This is needed 
when more than one cell is addressed to the same output simultaneously, so the extra cells need to be 
routed to the inputs of the network through the recirculating buffers. Although this approach has the 
potential for achieving the optimal throughput and delay performance of output queueing, its 
implementation suffers from two major complexities. First, the switching network must be large enough 
to accommodate the recirculating cells. Second, a control mechanism is essential to sequentially order 
the cells. 

5.3 Buffer Sharing 

The number and size of buffers has a significant impact on switch design. In shared memory switches, 
the central buffer can take full advantage of statistical sharing, thus absorbing large traffic bursts to any 
output by giving it as much as is available of the shared buffer space. Hence, it requires the least total 
amount of buffering. For a random and uniform traffic and large values of N, a buffer space of only 12 
N cells is required to achieve a cell loss rate of 1/10 to the power of 9, under a load of 0.9.  

For a TDM bus fabric with N output buffers, and under the same traffic assumptions as before, the 
required buffer space is about 90 N cells. Also a large traffic burst to one output cannot be absorbed by 
the other output buffers, although each output buffer can statistically multiplex the traffic from the N 
inputs. Thus buffering assumes that it is improbable that many input cells will be directed 
simultaneously to the same output.  

Neither statistical multiplexing between outputs or at any output can be employed with fully 
interconnected fabrics with N squared output buffers. Buffer space grows exponentially in this case.  

5.4 Scalability of Switch Fabrics 

If ATM switches will ever replace today's large switching systems, then an ATM switch would require a 
throughput of almost 1 Tbps. The problem of achieving such high throughput rates is not a trivial one.  

In all four switch design techniques previously analyzed, it is technologically infeasible to realize high 
throughputs. The memory access time limits the throughput attained by the shared memory and shared 
medium approaches, and the design exhibits a tradeoff between number of ports and port speed. The 
fully interconnected approach can attain high port speeds, but it is constrained by the limitations on the 
number of buffers.  

The space division approach, although unconstrained by memory access time or number of buffers, also 
suffers from its own limitations:  

1. Batcher-banyan networks of significant size are physically limited by the possible circuit density 
and number of input/output pins of the integrated circuit. To interconnect several boards, 
interconnection complexity and power dissipation place a constraint on the number of boards that 
can be interconnected  

2. The entire set of N cells must be synchronized at every stage  
3. Large sizes increases the difficulty of reliability and repairability  
4. All modifications to maximize the throughput of space-division networks increase the 

implementation complexity  
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Thus the previous discussion illustrates the infeasibility of realizing large ATM switches with high 
throughputs by scaling up a certain fabric design. Large fabrics can only be attained by interconnecting 
small switch modules (of any approach) of limited throughput.  

  

Figure 7: The Clos (N,n,m) network (adapted from Onvural [7]) 

There are several ways to interconnect switch modules. The most popular one is the multistage 
interconnection of network modules. Figure 7 illustrates the 3 stage Clos (N,n,m) network, which is a 
famous example of such an interconnection, and is used in Fujitsu's FETEX-150, NEC's ATOM and 
Hitachi's hyper-distributed switching system. There are N/n switch modules in the first stage, and each is 
of size nxm. Thus the second stage contains m modules each of size N/nxN/n, and the last stage again 
has N/n modules of size nxm. Since this configuration provides m distinct paths between any pair of 
input and output, the traffic distribution can be balanced. Because each cell can take an independent 
path, cell sequence must be recovered at the outputs. Usually the least-congested path is selected during 
connection-setup. A new request cannot be accepted if the network is internally congested. Clos 
networks are strictly non-blocking if there always exists an available path between any free input-output 
pair, regardless of the other connections in the network. Since in ATM, the bandwidth used by a 
connection may change at different times, defining the nonblocking condition is not a trivial issue.  

The throughput of the Clos network can be increased if the internal links have a higher speed than the 
ports. In that case, special care must be taken in selecting the size of the buffers at the last switching 
stage where most of the queueing occurs.  

The output buffering principle for Clos networks has been proposed to optimize throughput, where all 
buffering is located in the last stage of the interconnection network. This places an emphasis on the 
proper choice of the parameter m. m is usually selected according to the knockout principle previously 
discussed, which states that for a sufficiently large value of m, it is unlikely for more than m cells to 
arrive simultaneously for the same last stage module.  

Another completely different approach for interconnection is to attempt to find the optimal partitioning 
of a large NxN fabric into small modules. The set of N inputs can be divided into K subsets, each 
handled by an N/KxN switch module. The K outputs are then multiplexed. The small switching modules 
in this case can be implemented as a Batcher sorting network, an expansion network or parallel banyan 
planes.  

5.5 Multicasting 

Many services, such as video, will need to multicast an input cell to a number of selected outputs, or 
broadcast it to all outputs. Designing multicasting capability can be done by either adding a separate 
copy network to the routing fabric, or designing each interconnected switching module for multicasting. 
Multicasting in different switch design is discussed next.  

5.5.1 Shared Medium and Fully Interconnected Output-Buffered Approaches 
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Here multicasting is inherently natural, since input cells are broadcast anyway, and the address filters at 
the output buffers select the appropriate cells. Thus the address filters can simply filter according to the 
multicast addresses, in addition to the output port address. 

5.5.2 Shared Memory Approach 

Multicasting requires additional circuitry in this case. The cell to be multicast can be duplicated before 
the memory, or read several times from the memory. Duplicating cells requires more memory, while 
reading a cell several times from the same memory location requires the control circuitry to keep the cell 
in memory until it has been read to all output ports in the multicast group. 

5.5.3 Space Division Fabrics 

5.5.3.1 Crossbar Switches 

Here multicasting is simple to implement, but significantly impacts the switch performance. In crossbar 
switches with input buffering, broadcasting an input cell to multiple output ports is straightforward, but 
increases the head-of-the-line blocking at the input buffers. The only solutions to reduce this head-of-
the-line blocking significantly increase the complexity of buffer control. 

5.5.3.2 Broadcast Banyan Networks 

In buffered banyan networks, multicasting can be realized if each switching element can broadcast an 
input cell to both outputs, while buffering another incoming cell. This technique, called a broadcast 
banyan network (BBN), results in a number of complications. First, each switching element will have 
four possible states, and hence each cell will need two bits of control information at each stage of the 
banyan. Furthermore, the two duplicate cells generated by the switching element are identical and thus 
would be routed to the same output port. This problem can be solved in either one of two ways. The first 
method would be to give multicast cells a multicast address instead of the output port address. This 
multicast address can be transparently carried and used to determine routing information at each 
switching element. This method has the drawback of requiring more memory at each switching element. 
The second alternative would be to carry the entire set of output addresses in each multicast cell, so that 
the switching element can use this information to route and duplicate cells. This method obviously 
suffers from many problems. 

5.5.3.3 Copy Networks 

From the preceding discussion, it is clear that multicasting significantly increases the complexity of the 
space division fabric, and this has led several researchers to propose the separation of the cell 
duplication and routing functions into a distinct copy network and routing network. In this case, the 
copy network precedes the routing network. The copy network can recognize multicast cells and make 
the denoted number of duplicates, without being concerned with the careful routing of the duplicated 
cells. The routing network can then simply perform point-to-point routing, including routing all copies 
of the same cell (which is somewhat a drawback). But if the copy network follows the routing network, 
it will need to duplicate the cells, as well as deliver them, and we are back to the complexities of the 
broadcast network. 

Implementing the copy network itself has been usually done by banyan networks. The multicast cell is 
either randomly routed or duplicated at each switching stage, but duplication is delayed as much as 
possible to minimize resource usage. All duplicates of a cell will have the same addressing information, 
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so the copy network will randomly route the cells. After the copy network, translation tables alter the 
multicast address to the appropriate output addresses [7].  

After observing that the broadcast banyan network is nonblocking if (a) the active inputs are 
concentrated, (b) there are N or fewer outputs, and (c) the sets of outputs corresponding to inputs are 
disjoint and sequential, concentration was proposed to be added before a broadcast banyan network. The
nonblocking feature of broadcast banyans also holds if the consecutiveness of inputs and outputs is 
regarded in a cyclic fashion. Byun and Lee [18] investigate an ATM multicast switch for broadcast 
banyan networks, aimed at solving input fairness problems, while Chen et al. [27] conclude that a neural
network method for resolving output port conflict is better than a cyclic priority input access method for 
multicast switches.  

5.6 Fault Tolerance 

Because reliability is essential in switching systems, redundancy of the crucial components must be 
must be employed. The routing and buffering fabric, one of the most important elements of a switching 
system, can either be duplicated or redundant, and fault detection and recovery techniques must be 
implemented. 

Traffic can be distributed among the parallel fabric planes into disjoint subsets, partially overlapping 
subsets or it can be duplicated into identical sets. While the first approach provides the least redundancy, 
each plane carries only a small fraction of the total traffic, so it can be small and efficient. In contrast, 
duplicating the traffic into identical sets provides the greatest fault tolerance, but the least throughput. 
Partially overlapping subsets are a compromise.  

Composing the routing and buffering fabric of parallel planes enhances fault tolerance, but adding 
redundancy within each individual fabric plane is still important. Designing fault-tolerant MINs has 
been the subject of a great deal of study. Banyan networks are especially fault-prone since there is only a 
single path between each input-output pair. Multipath MINs are more fault tolerant. To add redundancy 
to banyans, extra switching elements, extra stages, redundant links, alternate links or more input and 
output ports can be added. These techniques increase fault tolerance by providing more than one path 
between each input and output, and throughput of the banyan can also increase. Of course, this is at the 
cost of a more complex implementation and routing. Time redundancy, where a cell attempts multiple 
passes through the MIN, has also been proposed. A Baseline tree approach has also been investigated by 
Li and Weng [19]. This approach preserves most of the advantages of MINs, while providing a good 
performance under high traffic loads in the presence of faults in the switch.  

A testing mechanism now needs to be implemented to verify the MIN operation and detect faults. A 
possible method can be to periodically inject test cells in a predetermined pattern and observe these cells 
at the outputs to detect the cell pattern. Addition of housekeeping information to the cell header can also 
aid in discovering cell less, misrouting or delays. Once a fault has been detected, traffic should be 
redistributed until the fault is repaired. The redistribution function can be carried out by concentrators, 
or by the MIN itself [3].  

5.7 Using Priorities in Buffer Management 

The cell switch fabric needs to handle the different classes of ATM traffic differently according to the 
Quality of Service (QoS) requirements of each. The traffic classes are mainly distinguished by their cell 
delay and cell loss priorities. Since output queueing was discovered to be the preferred approach, the 
switch fabric will have multiple buffers at each output port, and one buffer for each QoS traffic class. 
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Each buffer is FIFO to preserve the order of cells within each VPC/VCC, but the queueing discipline 
must not necessarily be FIFO.  

Buffer management refers to the discarding policy for the input of cells into the buffers and the 
scheduling policy for the output of cells from the buffers. These functions are a component of the traffic 
control functions handled by the Switch Management. Inside the switch fabric, the queues need to be 
monitored for signs of congestion to alert the Switch Management and attempt to control the congestion. 
A performance analysis of various buffer management schemes can be found in the paper by Huang and 
Wu [24]. They also propose a priority management scheme to provide real-time service and reduce the 
required buffer size.  

5.7.1 Preliminaries 

The Cell Loss Priority (CLP) bit in the ATM cell header is used to indicate the relative discard 
eligibility of the cells. When buffers overflow, queued cells with CLP=1 are discarded before cells with 
CLP=0. The CLP bit is either set by the user to denote relatively low priority information, or set by the 
UPC when the user exceeds the traffic agreed upon. 

Several degrees of delay priority can be associated with each virtual circuit connection. Since this is not 
part of the ATM cell header, it is usually associated with each VPI/VCI in the translation table within 
the switch. It can also be part of the internal routing tag associated with each cell within the switch. Of 
course, cells of the same VCC must have the same delay priority, though they can have different cell 
loss priorities.  

5.7.2 Cell Scheduling 

Cell scheduling sets the order of transmission of cells out of the buffers. Since various QoS classes will 
usually have varying cell delay requirements, higher priority needs to be given to the class with more 
strict constraints. Static priorities whereby the lower priority class will be output only when there is no 
higher priority traffic has proved to be an unfair, as well as inflexible approach. This is because a large 
burst of higher priority traffic can cause excessively long queueing delays for the lower priority traffic. 

A better approach is the deadline scheduling, whereby each cell has a target departure time from the 
queue based on its QoS requirements. Cells missing their deadlines might be discarded based on switch 
implementation and traffic requirements. If service is given to the cell with most imminent deadline, the 
number of discarded cells can be minimized. A different scheduling scheme divides time into cycles, 
and takes scheduling decisions only at the start of each cycle, instead of before each cell [3].  

5.7.3 Cell Discarding 

Because cells of the same VPC/VCC must be maintained in sequential order, cells of different cell loss 
priorities might be mixed in the same buffer. A policy is needed to determine how cells with CLP=0 and 
cells with CLP=1 are admitted into a full buffer. 

In the push-out scheme, cells with CLP=1 are not admitted into a full buffer, while those with CLP=0 
are admitted only if some space can be freed by discarding a cell with CLP=1. This scheme has an 
optimal performance. In contrast, the partial buffer-sharing approach entails that the cells with CLP=0 
and CLP=1 can both be admitted when the queue is below a given threshold. When the queue exceeds 
this threshold, only cells with CLP=0 can be admitted as long as there is buffer space available. This can 
lead to inefficiency since CLP=1 cells can be blocked even when buffer space is available. This scheme 
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can be designed for a good performance, and its implementation is much simpler than the push-out one. 
Choudhury and Hahne [22] propose a technique for buffer management that combines the backpressure 
mechanism with a push-out scheme to achieve a very low cell loss rate.  

5.7.4 Congestion Indications 

Buffer management will monitor queue statistics and alert the Switch Management if congestion is 
detected within the fabric. Queue statistics must be indicative enough for the Switch Management to 
determine whether congestion is increasing or receding, and whether it is focused or widespread. Buffer 
management must thus examine several fields in the internal routing tag, such as timestamps and 
housekeeping information. 

Buffer management should be able to provide the Switch Management with performance data, 
congestion information, records of discarded cells, and usage management data for accounting. When 
congestion is detected, the Switch Management may instruct the buffer management to adjust the cell 
scheduling and discarding policies. The Explicit Forward Congestion Indication (EFCI) can be 
triggered, and in this case buffer management must alter the payload type field in the ATM cell header. 
Explicit rate schemes can also be activated for better congestion control. Most currently available 
switches only provide EFCI congestion control, such as ForeSystems ForeRunner and ForeThought 
ASX families [10].  

6. Summary 
There are numerous different design alternatives for ATM switches, and each has its own merits and 
drawbacks. By examining the general highlights of each design, several conclusions can be drawn about 
the design principles of ATM switches, and the various tradeoffs involved in selecting among them.  

An ATM switching system is composed of the switch interface, divided into the input and output 
modules, the connection admission control and Switch Management responsible for connection and 
OAM functions, and the core of the switch, the cell switch fabric. This has been the main focus of this 
survey.  

The cell switch fabric, sometimes referred to as the switch matrix, may consist of 
concentration/duplication, expansion/combination and buffer management. Buffer management is quite 
complicated due to the varying requirements of different QoS classes, which affect the cell scheduling 
and discarding policies, as well as the congestion control indication. The routing and buffering fabric, 
however, constitutes the heart of the switch.  

The design principles of the routing and buffering fabric were developed after analyzing the main switch 
design categories, namely the shared memory, shared medium, fully interconnected and space division 
approaches and their variations. The problem of the speedup factor for shared resources, the contrasting 
of the types of buffering and the statistical sharing of buffers are only a few of the issues that become 
apparent when examining the various available designs. In addition, the interconnection of switching 
modules was discussed, as well as fault tolerance, multicasting and priority considerations.  
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