Voice over IP

Raj Jain

Raj Jain is now at Washington University in Saint Louis Jain@cse.wustl.edu

http://www.cse.wustl.edu/~jain/

Raj Jain

ht

- Sample Products and Services
- □ 13 Technical Issues
- 4 Other Issues
- □ H.323 Standard
- Session Initiation Protocol (SIP)

Scenario 1: PC to PC

- □ Need a PC with sound card
- □ IP Telephony software: Cuseeme, Internet Phone, ...
- Video optional

Scenario 2: PC to Phone

■ Need a gateway that connects IP network to phone network (Router to PBX)

Scenario 3: Phone to Phone

- Need more gateways that connect IP network to phone networks
- □ The IP network could be dedicated intra-net or the Internet.
- □ The phone networks could be intra-company PBXs or the carrier switches

Sample Products

- □ VocalTec Internet Phone: PC to PC.
- □ Microsoft NetMeeting: PC to PC. Free.
- □ Internet PhoneJACK: ISA card to connect a standard phone to PC. Works with NetMeeting, InternetPhone etc. Provides compression.
- □ Internet LineJACK: Single-line gateway.
- □ Micom V/IP Family:
 - Analog and digital voice interface cards
 - PC and/or gateway

Products (Cont) PBX Gateway

- Features:
 - Compression

PC w

V/IP S/w

Phone number to IP address translation.

Router

- □ Supports RSVP.
- □ Limits number of calls.

Raj Jain

IP Network

Products (Cont)

- VocalTec Internet Telephony Gateway:
 - Similar to Micom V/IP
 - Interactive voice response system for problem reporting
 - Allows WWW plug in
 - Can monitor other gateways and use alternate routes including PSTN
 - Sold to Telecom Finland. New Zealand Telecom.
- Lucent's Internet Telephony Server: Gateway|
 Lucent PathStar Access Server

Products (Cont)

- □ CISCO 2600 Routers: Voice interface cards (VICs) Reduces one hop.
- Baynetworks, 3COM, and other router vendors have announced product plans

Sample Services

- □ IDT Corporation offers Net2Phone, Carrier2Phone, Phone2Phone services.
- Global Exchange Carrier offers international calls using VocalTec InternetPhone s/w and gateways
- Qwest offers 7.5¢/min VOIP Q.talk service in 16 cities.
- □ ITXC provides infrastructure and management to 'Internet Telephone Service Providers (ITSPs)'
- □ America On-line offers 9¢/min service.
- □ AT&T announced 7.5¢/min VOIP trials in 9 US cities.

Services (Cont)

- Other trials: USA Global link, Delta 3, WorldCom, MCI, U.S. West, Bell Atlantic, Sprint, AT&T/Japan, KDD/Japan, Dacom/Korea, Deutsche Telekom in Germany, France Telecom, Telecom Finland, and New Zealand Telecom.
- Level 3 is building a nation wide IP network for telephony.
- □ Bell Canada has formed 'Emergis' division.
- □ Bellcore has formed 'Soliant Internet Systems' unit
- □ Bell Labs has formed 'Elemedia' division

Technical Issues

1. Large Delay

- Normal Phone: 10 ms/kmile ⇒ 30 ms coast-tocoast
- G.729: 10 ms to serialize the frame + 5 ms look ahead + 10 ms computation = 25 ms one way algorithmic delay
- \circ G.723.1 = 100 ms one-way algorithmic delay
- \circ Jitter buffer = 40-60 ms
- \circ Poor implementations \Rightarrow 400 ms in the PC
- In a survey, 77% users found delay unacceptable.

Technical Issues (Cont)

- 2. Delay Jitter: Need priority for voice packets. Shorter packets? IP precedence (TOS) field.
- 3. Frame length: 9 kB at 64 kbps = 1.125 s Smaller MTU \Rightarrow Fragment large packets
- 4. Lost Packets: Replace lost packets by silence, extrapolate previous waveform
- 5. Echo cancellation: 2-wire to 4-wire. Some FR and IP systems include echo suppressors.

Technical Issues (Cont)

- 6. Silence suppression
- 7. Address translation: Phone # to IP. Directory servers.
- 8. Telephony signaling: Different PBXs may use different signaling methods.
- 9. Bandwidth Reservations: Need RSVP.
- 10. Multiplexing: Subchannel multiplexing
 - ⇒ Multiple voice calls in one packet.
- 11. Security: Firewalls may not allow incoming IP traffic
- 12. Insecurity of internet
- 13. Voice compression: Load reduction

Other Issues

- 1. Per-minute distance-sensitive charge vs flat time-insensitive distance-insensitive charge
- 2. Video requires a bulk of bits but costs little. Voice is expensive. On IP, bits are bits.
- 3. National regulations and government monopolies
 - ⇒ Many countries forbid voice over IP
 In Hungary, Portugal, etc., it is illegal to access a web
 site with VOIP s/w. In USA, Association of
 Telecommunications Carriers (ACTA) petitioned FCC
 to levy universal access charges in ISPs
- 4. Modem traffic can't get more than 2400 bps.

Telephony/Conferencing Systems

Conferencing Standards

Network	ISDN	ATM	PSTN	LAN	POTs
Conf. Std.	H.320	H.321	H.322	H.323 V1/V2	H.324
Year	1990	1995	1995	1996/1998	1996
Audio	G.711,	G.711,	G.711,	G.711,	G.723.1,
Codec	G.722,	G.722,	G.722,	G.722,	G.729
	G.728	G.728	G.728	G.723.1,	
				G.728, G.729	
Audio Rates	64, 48-64	64, 48-64,	64, 48-64,	64, 48-64, 16,	8, 5.3/6.3
kbps		16	16	8, 5.3/6.3	
Video	H.261	H.261,	Н.261,	H.261	H.261
Codec		H.263	H.263	H.263	H.263
Data Sharing	T.120	T.120	T.120	T.120	T.120
Control	H.230,	H.242	H.242,	H.245	H.245
	H.242		H.230		
Multiplexing	H.221	H.221	H.221	H.225.0	H.223
Signaling	Q.931	Q.931	Q.931	Q.931	-

H.323 Protocols

- Multimedia over LANs
- Provides component descriptions, signaling procedures, call control, system control, audio/video codecs, data protocols

Video	Audio	Control and Management			Data			
H.261 H.263	G.711, G.722, G.723.1, G.728, G.729	RTCP	H.225.0 RAS	H.225.0 Signaling		T.124		
RTP			X.224 Class 0			T.125		
UDP			TCP			T.123		
Network (IP)								
Datalink (IEEE 802.3)								

H.323 Components **Multipoint Control** Gatekeeper **Terminals** Unit ISDN → Firewall H.323 Router Proxy PSTN← → To Internet Router ATM Gateway Raj Jain

H.323 Gatekeepers

- □ Provide call control services to registered end points.
- One gatekeeper can serve multiple LANs
- □ Address translation (LAN-IP)
- Admission Control: Authorization
- Bandwidth management
 (Limit number of calls on the LAN)
- Zone Management: Serve all registered users within its zone of control
- Forward unanswered calls
- May optionally handle Q.931 call control

Session Initiation Protocol (SIP)

- Application level signaling protocol
- Allows creating, modifying, terminating sessions with one or more participants
- Carries session descriptions (media types) for user capabilities negotiation
- □ Supports user location, call setup, call transfers
- Supports mobility by proxying and redirection
- Allows multipoint control unit (MCU) or fully meshed interconnections
- Gateways can use SIP to setup calls between them

SIP (Cont)

- □ SIP works in conjunction with other IP protocols for multimedia:
 - RSVP for reserving network resources
 - RTP/RTCP/RTSP for transporting real-time data
 - Session Announcement Protocol (SAP) for advertising multimedia session
 - Session description protocol (SDP) for describing multimedia session
- □ Can also be used to determine whether party can be reached via H.323, find H.245 gateway/user address

SIP (Cont)

- □ SIP is text based (similar to HTTP)
 - ⇒ SIP messages can be easily generated by humans, CGI, Perl, or Java programs.
- □ SIP Uniform Resource Locators (URLs):
 Similar to email URLs
 sip:jain@cse.ohio-state.edu
 sip:+1-614-292-3989:123@osu.edu?subject=lecture
- □ SIP messages are sent to SIP server at the specified IP address
- □ SIP can use UDP or TCP

Locating using SIP

- □ Allows locating a callee at different locations
- Callee registers different locations with SIP Server
- Servers can also use finger, rwhois, ldap to find a callee
- □ SIP Messages: Ack, Bye, Invite, Register, Redirection, ...

Media Gateway Control Protocol

- □ Gateway = Signaling Fns + Media Transfer Fns
- □ Call Agents: Signaling functions ⇒ Intelligent
 - \Rightarrow More complex \Rightarrow Fewer
 - \Rightarrow Control multiple media gateways \Rightarrow Need MGCP
- □ MGCP = Simple Gateway Control Protocol (SGCP)
 - + Internet Protocol Device Control (IPDC)

MGCP Commands

- Endpoint Configuration (EPCF): Specify coding
- □ Notification Request (RQNT): Watch for event
- □ Notify (NTFY): Used by gateway to inform Call agent
- Create Connection (CRCX)
- Modify Connection (MDCX)
- Delete Connection (DLCX)
- □ Audit Endpoint (AUEP): Give me status
- Audit Connection (AUCX)
- □ Restart in Progress (RSIP): Used by gateway to indicate initialization/shutdown of endpoints/gateway

<u>Sum</u>mary

- Voice over IP products and services are being rolled out
- □ Ideal for computer-based communications
- □ IP needs QoS for acceptable quality
- □ A number of working group at IETF are working on it
- H.323 provides interoperability

References

See

http://www.cse.ohio-state.edu/~jain/refs/ref_voip.htm
for a detailed list of references.