# High-Speed LANs Part II

Raj Jain Washington University Saint Louis, MO 63131 Jain@cse.wustl.edu

These slides are available on-line at:

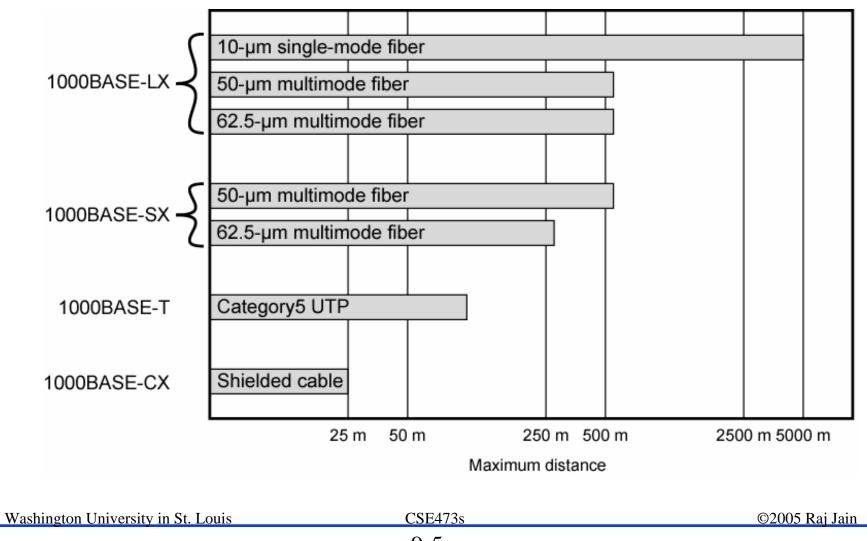
http://www.cse.wustl.edu/~jain/cse473-05/

| Washington University in St. Louis |
|------------------------------------|
|------------------------------------|

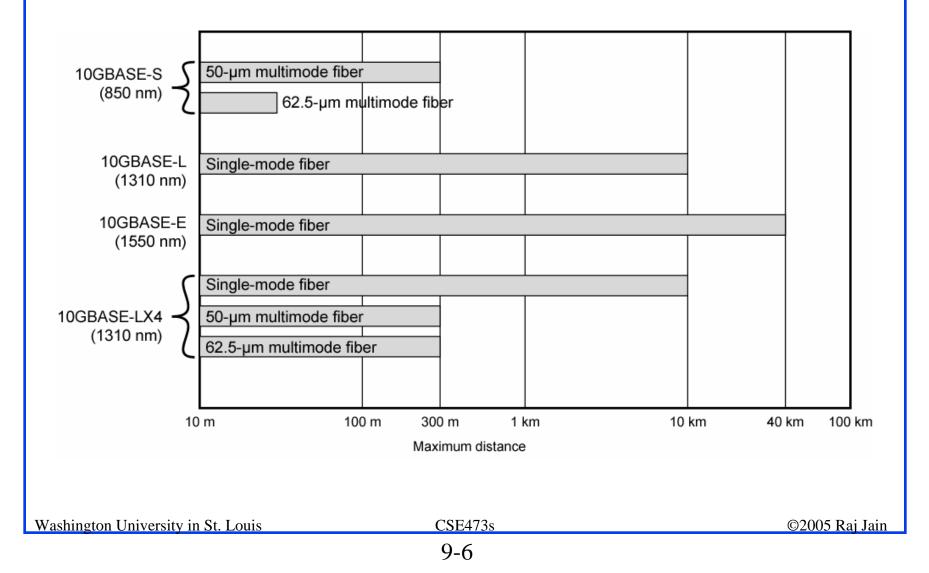


- **q** Ethernet Frame Format
- q Gigabit Ethernet
- q 10G Ethernet
- q Token Ring
- New Coding Schemes: 4b/5b-NRZI (FDDI), MLT-3 (100BASE-TX), 8b6t (100BASE-T4), 8b10b (Token Ring)

Washington University in St. Louis


### **IEEE 802.3 Frame Format**

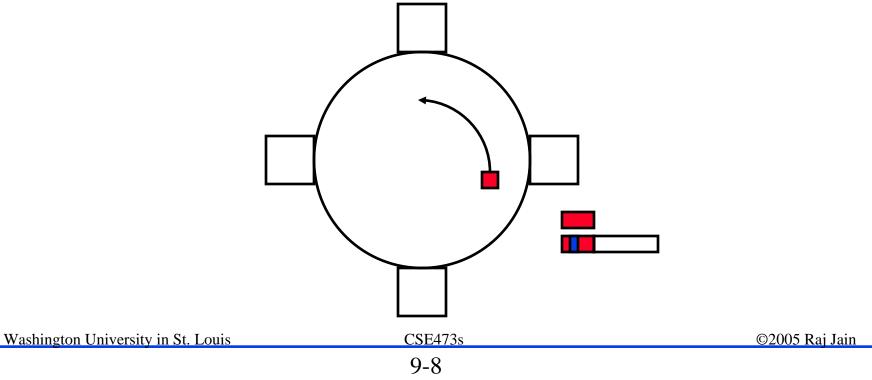
| Pre-<br>amble | Start of<br>Frame | Dest<br>Adr | Source<br>Adr | Length/<br>Prot Type | LLC<br>header | Info | Pad | FCS |   |
|---------------|-------------------|-------------|---------------|----------------------|---------------|------|-----|-----|---|
| 56b           | 8b                | 48t         | o 48b         | 16b                  |               |      |     | 32t | ) |


- q Preamble: 7 bytes of 0101 0101
- q Start of Frame: 1010 1011
- q LLC Header: Indicates higher layer
- q Protocol Type: 2048 or higher Length: 64 through 2047
- q Padding: Min frame size 64 bytes (DA thru FCS) Maximum Frame size = 1518 bytes
- q No End of Frame delimiter

| Ethernet: 1G vs 10G Designs                                           |                                                                                         |  |  |  |  |  |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--|--|--|--|--|
| <b>1G Ethernet</b>                                                    | <b>10G Ethernet</b>                                                                     |  |  |  |  |  |
| <ul> <li>q 1000 / 800 / 622 Mbps</li> <li>Single data rate</li> </ul> | <ul> <li>10.0/9.5 Gbps</li> <li>Both rates.</li> </ul>                                  |  |  |  |  |  |
| q LAN distances only                                                  | LAN and MAN distances                                                                   |  |  |  |  |  |
| <ul> <li>q No Full-duplex only</li> <li>⇒ Shared Mode</li> </ul>      | □ Full-duplex only<br>⇒ No Shared Mode                                                  |  |  |  |  |  |
| q Changes to CSMA/CD                                                  | □ No CSMA/CD protocol<br>⇒ No distance limit due to MAC<br>⇒ <i>Ethernet</i> End-to-End |  |  |  |  |  |
| Washington University in St. Louis                                    | CSE473s ©2005 Raj Jain                                                                  |  |  |  |  |  |

### **Gigabit Ethernet PHYs**

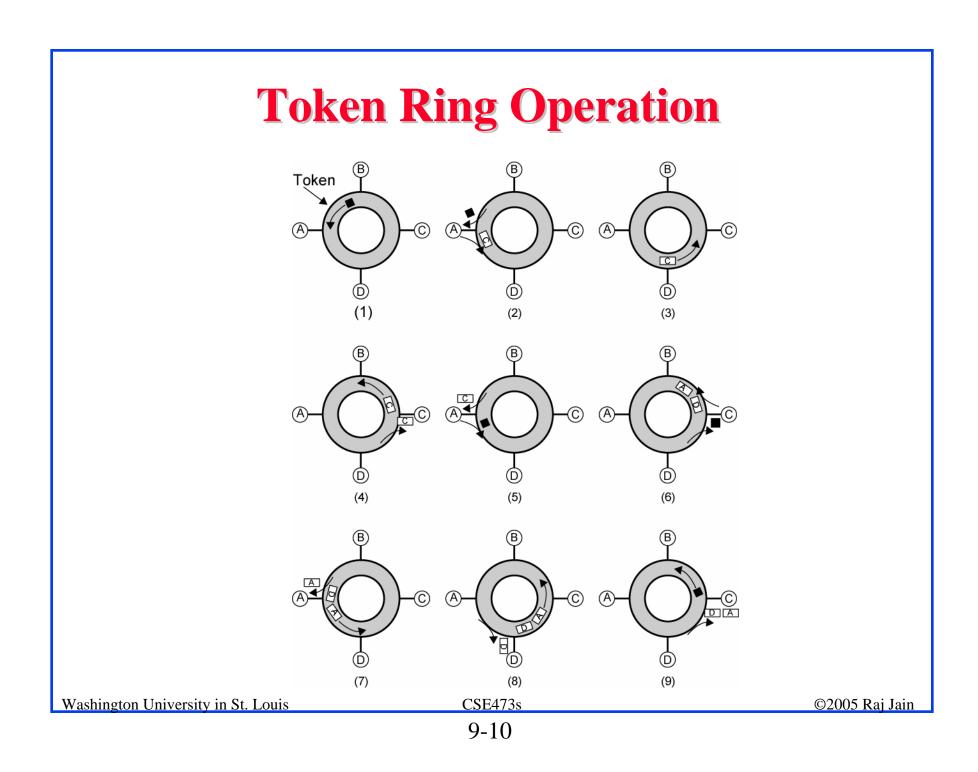



### **10Gbps Ethernet PHYs**



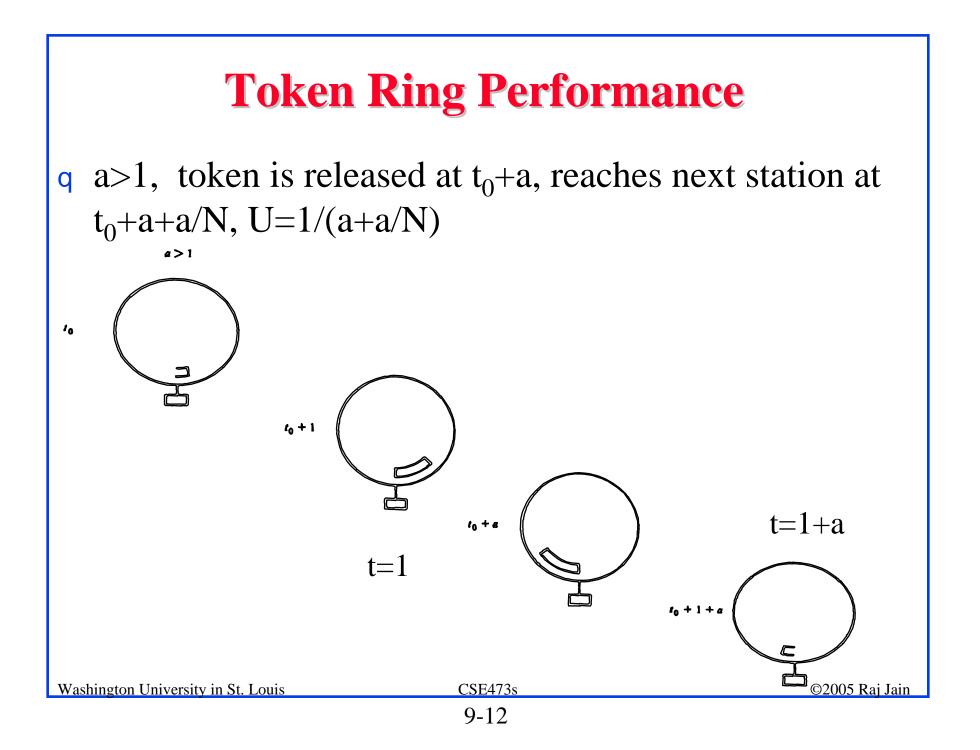
| <b>10 GbE PMD Types</b>                                   |                                         |       |       |  |  |  |  |  |
|-----------------------------------------------------------|-----------------------------------------|-------|-------|--|--|--|--|--|
| PMD                                                       | Description                             | MMF   | SMF   |  |  |  |  |  |
| <b>10GBASE-R:</b>                                         |                                         |       |       |  |  |  |  |  |
| 10GBASE-SR                                                | 850nm Serial LAN                        | 300 m | N/A   |  |  |  |  |  |
| 10GBASE-LR                                                | 1310nm Serial LAN                       | N/A   | 10 km |  |  |  |  |  |
| 10GBASE-ER                                                | 1550nm Serial LAN                       | N/A   | 40 km |  |  |  |  |  |
| <b>10GBASE-X:</b>                                         |                                         |       |       |  |  |  |  |  |
| 10GBASE-LX4                                               | 1310nm WWDM LAN                         | 300 m | 10 km |  |  |  |  |  |
| <b>10GBASE-W:</b>                                         |                                         |       |       |  |  |  |  |  |
| 10GBASE-SW                                                | 850nm Serial WAN                        | 300 m | N/A   |  |  |  |  |  |
| 10GBASE-LW                                                | 1310nm Serial WAN                       | N/A   | 10 km |  |  |  |  |  |
| 10GBASE-EW                                                | 1550nm Serial WAN                       | N/A   | 40 km |  |  |  |  |  |
| 10GBASE-LW4                                               | 10GBASE-LW4 1310nm WWDM WAN 300 m 10 km |       |       |  |  |  |  |  |
| q S = Short Wave, L=Long Wave, E=Extra Long Wave          |                                         |       |       |  |  |  |  |  |
| q R = Regular reach (64b/66b), W=WAN (64b/66b + SONET     |                                         |       |       |  |  |  |  |  |
| Encapsulation), $X = 8b/10b \Box 4 = 4 \lambda$ 's        |                                         |       |       |  |  |  |  |  |
| Washington University in St. Louis CSE473s ©2005 Raj Jain |                                         |       |       |  |  |  |  |  |

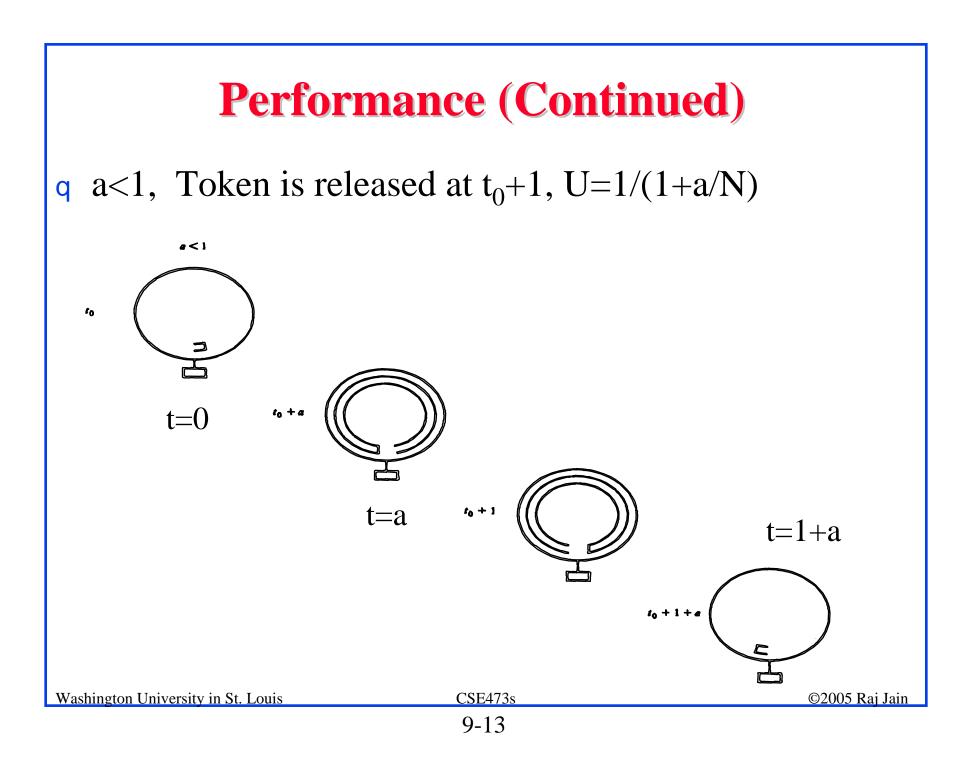
### Token Ring (IEEE 802.5)

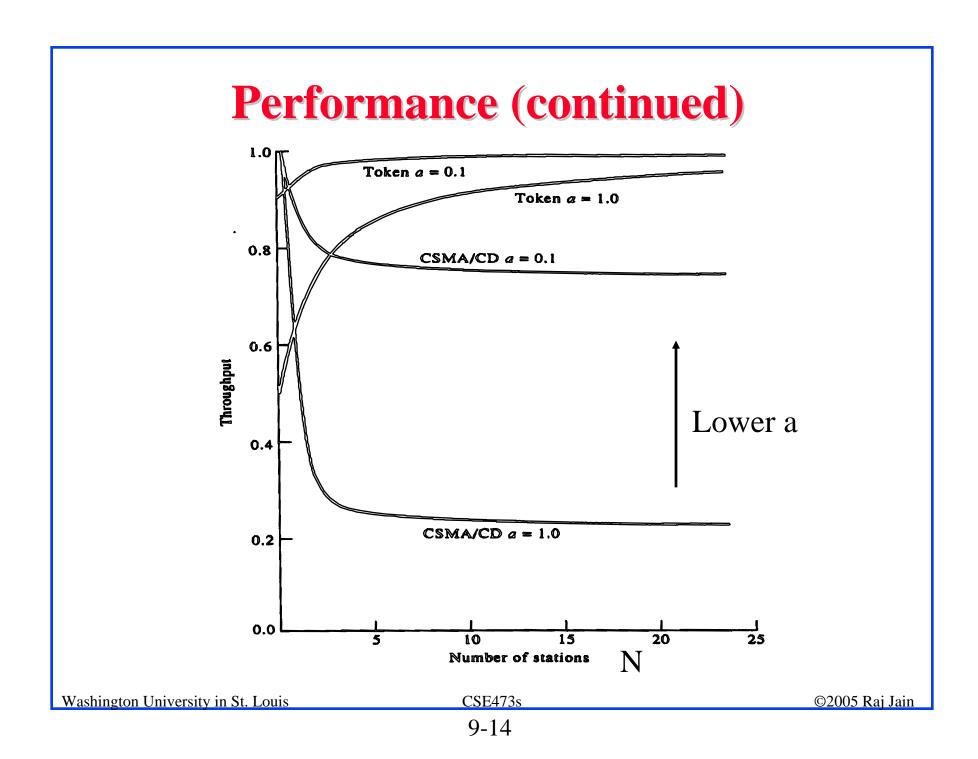

- q Developed from IBM's commercial token ring
- q Each repeater connects to two others via unidirectional transmission links. Single closed path
- q Data transferred bit by bit from one repeater to the next
- q Packet removed by transmitter after one trip around the ring

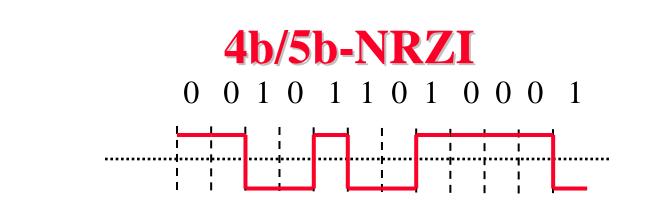


### **802.5 MAC Protocol**


- q Small frame (token) circulates when idle
- **q** Station waits for token
- q Changes one bit in token to make it Start of Frame (SOF)Append rest of data frame
- q Frame makes round trip and then removed by transmitting station
- q Station then inserts new token when transmission has finished and leading edge of returning frame arrives
- q Delayed token release vs Immediate token release Under light loads, some inefficiency
- q At 100 Mbps and up, only point-to-point operation using switches ⇒ No tokens = Switched Mode = Dedicated Token Ring (DTR)


Washington University in St. Louis





### **IEEE 802.5 PHYs**

| Data                                                          | 4 Mbps   | 16 Mbps  | 100      | 100      | 1 Gbps   |  |
|---------------------------------------------------------------|----------|----------|----------|----------|----------|--|
| Rate                                                          |          |          | Mbps     | Mbps     |          |  |
| Trans.                                                        | UTP,     | UTP,     | UTP or   | Fiber    | Fiber    |  |
| Medium                                                        | STP,     | STP,     | STP      |          |          |  |
|                                                               | Fiber    | Fiber    |          |          |          |  |
| Signaling                                                     | Diff.    | Diff.    | MLT-3    | 4b5b-    | 8b/10b   |  |
|                                                               | Manches. | Manches. |          | NRZI     |          |  |
| Max                                                           | 4550 B   | 18,200 B | 18,200 B | 18,200 B | 18,200 B |  |
| Frame                                                         |          |          |          |          |          |  |
| Access                                                        | TP or    | TP or    | DTR      | DTR      | DTR      |  |
| Control                                                       | DTR      | DTR      |          |          |          |  |
| Washington University in St. Louis   CSE473s   ©2005 Raj Jain |          |          |          |          |          |  |









- q NRZI:
  - + Differential  $\Rightarrow$  Polarity mix up is not an issue
  - No transitions for a string of all zeros
  - No line state or control symbols
  - No error detection
- q Manchester encoding used in 10 Mbps Ethernet results in 200 MBaud at 100 Mbps
- q 4b/5b is used to fix the deficiencies of NRZI

## 4b/5b Coding

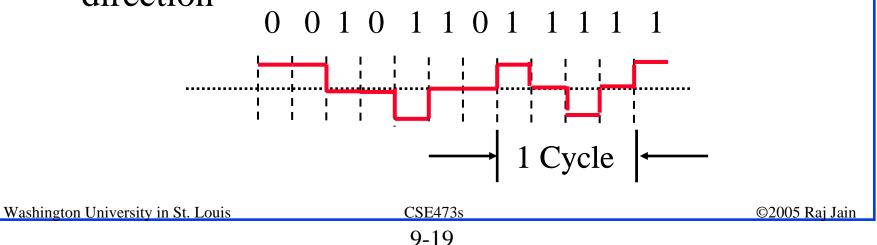
- **4b/5b**: 5 bits are transmitted for every 4 bits of data
  - q 16 of 32 possible combinations are used for data
  - The data symbols have zero dc balance and good transition density (No more 3 zeros in a row)
  - q Six of the remaining combinations are used for control:
    - : Idle: 11111
    - : Start of Stream: 11000-10001
    - : End of Stream: 01101-00111
    - : Transmit error: 00100
  - q 10 Symbols with poor transition density or DC imbalance are not used
- q Selected for 100 Mbps Fiber optic LAN:Fiber Distributed Data Interface (FDDI), 100BASE-FX
- q 100 Mbps data rate  $\Rightarrow$  125 MBaud signal

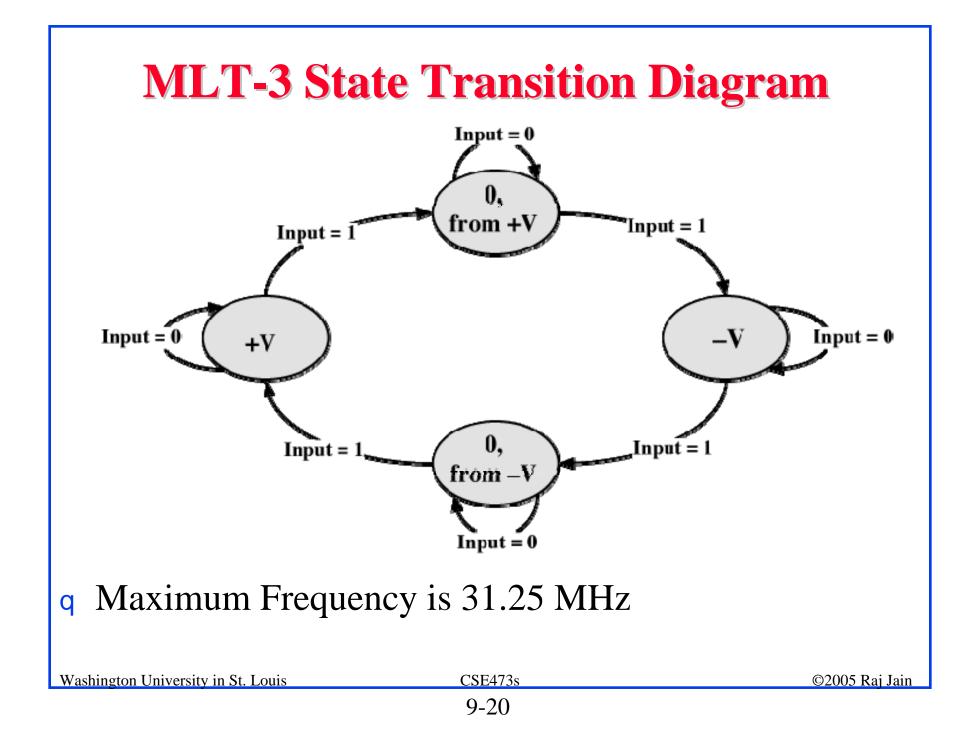
### 4b/5b Coding (Cont)

| Data Input<br>(4 bits) | Code Group<br>(5 bits) | NRZI pattern | Interpretation |
|------------------------|------------------------|--------------|----------------|
| 0000                   | 11110                  |              | Data 0         |
| 0001                   | 01001                  |              | Data 1         |
| 0010                   | 10100                  |              | Data 2         |
| 0011                   | 10101                  |              | Data 3         |
| 0100                   | 01010                  |              | Data 4         |
| 0101                   | 01011                  |              | Data 5         |
| 0110                   | 01110                  |              | Data 6         |
| 0111                   | 01111                  |              | Data 7         |
| 1000                   | 10010                  |              | Data 8         |
| 1001                   | 10011                  |              | Data 9         |
| 1010                   | 10110                  |              | Data A         |
| 1011                   | 10111                  |              | Data B         |
| 1100                   | 11010                  |              | Data C         |

| 1101 | 11011 | Data D                               |
|------|-------|--------------------------------------|
| 1110 | 11100 | Data E                               |
| 1111 | 11101 | Data F                               |
|      | 11111 | Idle                                 |
|      | 11000 | Start of stream<br>delimiter, part 1 |
|      | 10001 | Start of stream delimiter, part 2    |
|      | 01101 | End of stream<br>delimiter, part 1   |
|      | 00111 | End of stream<br>delimiter, part 2   |
|      | 00100 | Transmit error                       |
|      | other | invalid codes                        |

Washington University in St. Louis


CSE473s


### MLT-3

- q 4b/5b-NRZI produces 62.5 MHz signal (when the line is idle) Too high for UTP
- q MLT-3: Replace NRZI with a 3-level coding similar to AMI

q Zero  $\Rightarrow$  No transition

• One  $\Rightarrow$  Transition to next level in the same direction



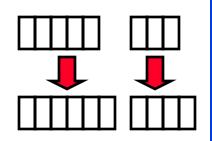


### **8b6t**

- q Ternary symbols = 3 levels + 0
- q 8b are coded as 6 ternary-symbols
- q 6 Ternary symbols =  $3^6 = 729$  possible combinations 256 combinations are used for data
- q In 100BASE-T4, three wire pairs are used Two symbols are transmitted on each pair
- q Baud Rate = 100 Mbps  $\div$  8 bits × 6 Baud  $\div$  3 = 25 MBaud per pair

### **8b6t Code Table (Partial)**

| Data<br>octet | 6T code<br>group |
|---------------|------------------|---------------|------------------|---------------|------------------|---------------|------------------|
| 00            | +-00+-           | 10            | +0+0             | 20            | 00-++-           | 30            | +-00-+           |
| 01            | 0+-+-0           | 11            | ++0-0-           | 21            | +00+             | 31            | 0++0             |
| 02            | +-0+-0           | 12            | +0+-0-           | 22            | ++-0+-           | 32            | +-0-+0           |
| 03            | -0++-0           | 13            | 0++-0-           | 23            | ++-0-+           | 33            | -0+-+0           |
| 04            | -0+0+-           | 14            | 0++0             | 24            | 00+0-+           | 34            | -0+0-+           |
| 05            | 0+0+             | 15            | ++00             | 25            | 00+0+-           | 35            | 0+-+0-           |
| 06            | +-0-0+           | 16            | +0+0             | 26            | 00-00+           | 36            | +-0+0-           |
| 07            | -0+-0+           | 17            | 0++0             | 27            | +++_             | 37            | -0++0-           |
| 08            | -+00+-           | 18            | 0+-0+-           | 28            | -0-++0           | 38            | -+00-+           |
| 09            | 0-++-0           | 19            | 0+-0-+           | 29            | 0+0+             | 39            | 0-+-+0           |
| 0A            | -+0+-0           | 1A            | 0+_++_           | 2A            | -0-+0+           | 3A            | -+0-+0           |
| 0B            | +0-+-0           | 1B            | 0+-00+           | 2B            | 0+0+             | 3B            | +0+0             |
| 0C            | +0-0+-           | 1C            | 0-+00+           | 2C            | 0++0             | 3C            | +0-0-+           |
| 0D            | 0-+-0+           | 1D            | 0-+++-           | 2D            | 00++             | 3D            | 0-++0-           |
| 0E            | -+0-0+           | 1E            | 0-+0-+           | <b>2</b> E    | -0-0++           | 3E            | -+0+0-           |
| 0F            | +00+             | 1F            | 0-+0+-           | 2F            | 00++             | 3F            | +0-+0-           |


9-22

### **8b/10b**

- q Used in Fiber Channel (100 MB/s interconnect used in storage) and in Gigabit Ethernet
- **q** 8 data bits are coded as 10 signaling bits
  - q First 5 data bits are coded as 6 signaling bits
  - q Last 3 data bits are coded as 4 signaling bits

#### q **Disparity Control**:

- q Too many ones or too many zeros = Disparity
- If the next block will increase the disparity, the signaling bits are complemented
   10101 00101 10101 01101 01010 10010
   No Disparity Disparity





- q Gigabit Ethernet standard allows shared mode but
- q 10 G runs at 10G and 9.5G
- q Token ring at 4/16/100/1000 Mbps.
- **q** New Signaling for 100 Mbps and up:
  - q NRZI does not have line state, control symbols
  - q 4b/5b provides line state, control symbols, and error detection
  - q MLT-3 reduces the bandwidth requirements for UTP
  - q 8b6t reduces the Baud rate to 75 MBaud
  - q 8b/10b provides disparity control

Washington University in St. Louis

CSE473s

### **Reading Assignment**

q Read Appendix 16A, Appendix 16B of Stallings 7<sup>th</sup>
 Edition.

### Homework

q 1a. List 3 differences between 10BASE5 and 10BASE2

1b. List 3 differences between 100BASE-TX and 100BASE-T4 when both are using UTP.

Q 2. Draw the 4b/5b-NRZI, 4b/5b-MLT-3, 8b6t signal waveforms for the data byte 00010111 assuming that the signal is at +V and no disparity.