Internet Protocol Version 6 (IPv6)

Raj Jain
Washington University
Saint Louis, MO 63131
Jain@cse.wustl.edu

These slides are available on-line at:

http://www.cse.wustl.edu/~jain/cse473-05/

Washington University in St. Louis

CSE473s

- q Limitations of IPv4 Addressing
- q IPv6 Enhancements
- q IPv6 Addresses
- q IP v6 Header
- q IPv6 Extension Headers

Washington University in St. Louis

CSE473s

IP Addresses

- **e Example**: 164.107.134.5
 - $= 1010\ 0100: 0110\ 1011: 1000\ 0110: 0000\ 0101$
 - = A4:6B:86:05 (32 bits)
- Maximum number of address = $2^{32} = 4$ Billion
- q Class A Networks: 15 Million nodes
- q Class B Networks: 64,000 nodes or less
- q Class C Networks: 254 nodes or less

Washington University in St. Louis

CSE473s

IP Address Format

- Three all-zero network numbers are reserved
- q 127 Class A + 16,381 Class B + 2,097,151 Class C networks = 2,113,659 networks total
- q Class B is most popular.
- q 20% of Class B were assigned by 7/90 and doubling every 14 months ⇒ Will exhaust by 3/94
- q Question: Estimate how big will you become?Answer: More than 256!Class C is too small. Class B is just right.

Washington University in St. Louis

CSE473s

How Many Addresses?

- q 10 Billion people by 2020
- q Each person will be served by more than one computer
- Assuming 100 computers per person $\Rightarrow 10^{12}$ computers
- q More addresses may be required since
 - q Multiple interfaces per node
 - q Multiple addresses per interface
- Some believe 2^6 to 2^8 addresses per host
- Safety margin $\Rightarrow 10^{15}$ addresses
- q IPv6 Requirements $\Rightarrow 10^{12}$ end systems and 10^{9} networks. Desirable 10^{12} to 10^{15} networks

Washington University in St. Louis

CSE473s

IPv6 Enhancements

- 1. Expanded address space: 128 bit
- 2. Address auto-configuration: Dynamic assignment
- 3. Increased addressing flexibility: Anycast + Multicast
- 4. Improved option mechanism: Extension Headers
 - q Improved speed and simplified router processing
- 5. Support for resource allocation
 - q Replaces type of service
 - q Labeling of packets to particular traffic flow

Washington University in St. Louis

CSE473s

IPv6 Addresses

- q 128-bit long. Fixed size
- q $2^{128} = 3.4 \times 10^{38}$ addresses $\Rightarrow 665 \times 10^{21}$ addresses per sq. m of earth surface
- q If assigned at the rate of $10^6/\mu s$, it would take 20 years
- Expected to support 8×10^{17} to 2×10^{33} addresses $8 \times 10^{17} \Rightarrow 1,564$ address per sq. m
- Allows multiple interfaces per host.
- q Allows multiple addresses per interface
- q Allows unicast, multicast, anycast
- q Allows provider based, site-local, link-local

Washington University in St. Louis

CSE473s

Colon-Hex Notation

- **pot-Decimal**: 127.23.45.88
- **q** Colon-Hex:

FEDC:0000:0000:0000:3243:0000:0000:ABCD

- q Can skip leading zeros of each word
- q Can skip one sequence of zero words, e.g.,

FEDC::3243:0000:0000:ABCD

::3243:0000:0000:ABCD

- q Can leave the last 32 bits in dot-decimal, e.g.,
 - ::127.23.45.88
- q Can specify a prefix by /length, e.g.,

2345:BA23:0007::/50

Washington University in St. Louis

CSE473s

Local-Use Addresses

q Link Local: Not forwarded outside the link,

FE:80::xxx

10 bits	n bits	118-n
1111 1110 10	0	Interface ID

□ Site Local: Not forwarded outside the site,

FE:C0::xxx

10 bits	n bits	m bits	118-n-m bits
1111 1110 11	0	Subnet ID	Interface ID

Provides plug and play

Washington University in St. Louis

CSE473s

Multicast Addresses

8 bits	4 bits	4 bits	_ 112 bits _	
1111 1111	Flags	Scope	Group ID	
000T				

- q $T = 0 \Rightarrow$ Permanent (well-known) multicast address, 1 \Rightarrow Transient
- Scope: 1 Node-local, 2 Link-local, 5 Site-local,8 Organization-local, E Global
- q Predefined: $1 \Rightarrow \text{All nodes}, 2 \Rightarrow \text{Routers}, 1:0 \Rightarrow \text{DHCP servers}$

Washington University in St. Louis

CSE473s

Multicast Addresses (Cont)

- q Example: $43 \Rightarrow$ Network Time Protocol Servers
 - q FF01::43 \Rightarrow All NTP servers on this node
 - q FF02::43 \Rightarrow All NTP servers on this link
 - q FF05::43 \Rightarrow All NTP servers in this site
 - q FF08::43 \Rightarrow All NTP servers in this organization
 - q FF0E::43 \Rightarrow All NTP servers in the Internet

Washington University in St. Louis

CSE473s

Header

q IPv6:

Ver Traffic Class	Flow La	abel		
Payload Length	Next Header	Hop Limit		
Source Address				
Destination Address				

□ IPv4:

Version IHL	Type of Serv	ice	Total Length		
Identif	ication	Flags	Fragment Offset		
Time to Live	Protocol	H	eader Checksum		
Source Address					
Destination Address					
<u>Options</u>			Padding		

Washington University in St. Louis

CSE473s

IP v6 Header

- q Version: 6
- q Traffic Class: Classes or priorities of packet
- q Flow Label: Used by hosts requesting special handling
- q Payload length: Includes all extension headers + data
- q Next Header: Extension header or next layer up
- Source Address
- q Destination address

Washington University in St. Louis

CSE473s

Protocol and Header Types

Decima	Keyword	Header Type	
	HBH	Hop-by-hop (IPv6)	
1	ICMP	Internet Control Message (IPv4)	
2	IGMP	Internet Group Management (IPv-	4)
2	ICMP	Internet Control Message (IPv6)	
3	GGP	Gateway-to-Gateway	
4	IP	IP in IP (IPv4 Encaptulation)	
5	ST	Stream	
6	TCP		
17	UDP		
29	ISO-TP4		
43	RH	Routing Header (IPv6)	
44	FS	Fragmentation Header (IPv6)	
45	IDRP	Interdomain Routing	
51	AH	Authentication header (IPv6)	
52	ESP	Encrypted Security Payload	
59	Null	No next header	
60	ISO-IP	CLNP	
88	IGRP		
89	OSPF	Open Shortest Path First	
Washington University in St. Louis		CSE473s	©2005 Raj J

IPv6 vs IPv4

- q 1995 vs 1975
- q IPv6 only twice the size of IPv4 header
- q Only version number has the same position and meaning as in IPv4
- q Removed: header length, type of service, identification, flags, fragment offset, header checksum
- q Datagram length replaced by payload length
- q Protocol type replaced by next header
- q Time to live replaced by hop limit
- q Added: Priority and flow label
- q All fixed size fields.

Washington University in St. Louis

CSE473s

IPv6 vs IPv4 (Cont)

- q No optional fields. Replaced by extension headers.
- q 8-bit hop limit = 255 hops max (Limits looping)
- q Next Header = 6 (TCP), 17 (UDP),

Washington University in St. Louis

CSE473s

Extension Headers

Base	Extension	Extension	Doto
Header	Header 1	Header <i>n</i>	Data

Most extension headers are examined only at destination

- 1. Hop-by-Hop Options
- Fragmentation: All IPv6 routers can carry 536 Byte payload
- 3. Routing: Loose or tight source routing
- 4. Destination Options

Washington University in St. Louis

CSE473s

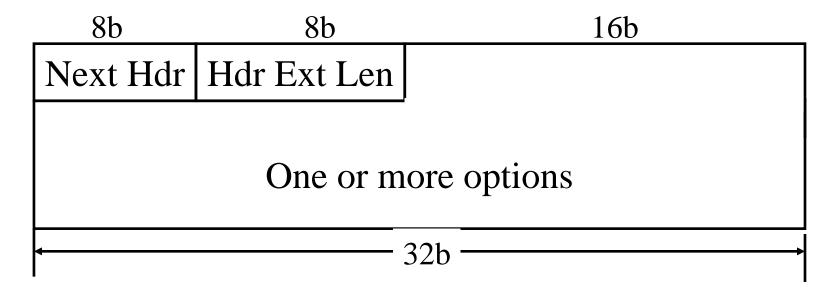
Extension Header (Cont)

o Only Base Header:

Base Header TCP
Next = TCP Segment

o Only Base Header and One Extension Header:

Base Header Route Header TCP
Next = Routing Next = TCP Segment

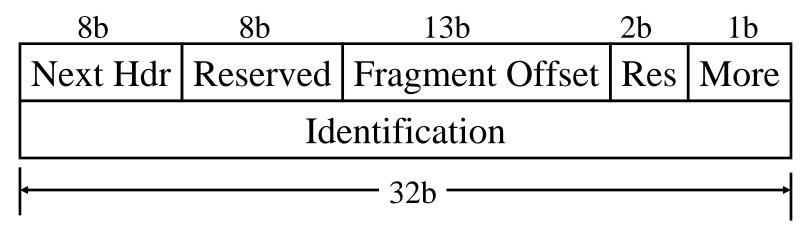

o Only Base Header and Two Extension Headers:

Base HeaderHop HeaderRouting HeaderTCPNext = HopNext = RoutingNext = TCPSegment

Washington University in St. Louis

CSE473s

Hop-by-hop Options Header



- q Jumbo payload: Over $2^{16} = 65,535$ octets
- q Router alert
 - q Contents of packet is of interest to router
 - q Provides support for RSVP

Washington University in St. Louis

CSE473s

Fragmentation Header

- q Fragmentation only allowed at source
- q No fragmentation at intermediate routers
- q Node must perform path discovery to find smallest MTU of intermediate networks
- q Source fragments to match MTU
- q Otherwise limit to 1280 octets

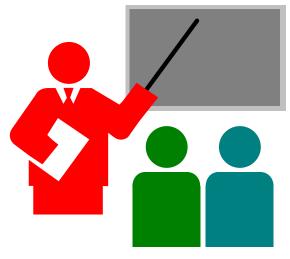
Washington University in St. Louis

CSE473s

Routing Header

Next Header	Hdr Ext Len	Routing T	ype	Segments	s Left
	Res	erved			
-	Add	ress 1			- - -
-	Add	ress 2			- - -
	Add	ress n			

- q Strict ⇒ Discard if Address[Next-Address] ≠ neighbor
- q Type = $0 \Rightarrow$ Loose source routing
- q IPv6 Destination Address = Next Address
- q Segments Left: Number of route segments remaining
- q IPv6 Dest Adr and Segments left are updated as each address specified in the list is reached


Washington University in St. Louis

CSE473s

Destination Options

q Same format as Hop-by-Hop options header

Summary

- 1. IPv6 uses 128-bit addresses
- 2. Allows site-local, link-local, multicast, anycast addresses
- 3. Fixed header size. Extension headers instead of options
- Hop-by-hop options, fragmentation, routing, destination options headers

Washington University in St. Louis

CSE473s

Reading Assignment

q Read Section 18.5 of Stallings's 7th edition

Washington University in St. Louis

CSE473s