
15-1
©2005 Raj JainCSE473sWashington University in St. Louis

Routing in Routing in
Switched NetworksSwitched Networks

Raj Jain
Washington University
Saint Louis, MO 63131

Jain@cse.wustl.edu
These slides are available on-line at:

http://www.cse.wustl.edu/~jain/cse473-05/

15-2
©2005 Raj JainCSE473sWashington University in St. Louis

OverviewOverview

! Routing algorithms
! Dijkstra�s Algorithm
! Bellman-Ford Algorithm

! ARPAnet routing

15-3
©2005 Raj JainCSE473sWashington University in St. Louis

RoutingRouting

15-6
©2005 Raj JainCSE473sWashington University in St. Louis

Routing Techniques ElementsRouting Techniques Elements

! Performance criterion: Hops, Distance, Speed,
Delay, Cost

! Decision time: Packet, session
! Decision place: Distributed, centralized, Source
! Network information source: None, local, adjacent

nodes, nodes along route, all nodes
! Routing strategy: Fixed, adaptive, random, flooding
! Adaptive routing update time: Continuous, periodic,

topology change, major load change

15-7
©2005 Raj JainCSE473sWashington University in St. Louis

Random RoutingRandom Routing

! Node selects one outgoing path for retransmission of
incoming packet

! Selection can be random or round robin
! No network info needed
! Route is typically not least cost nor minimum hop

15-8
©2005 Raj JainCSE473sWashington University in St. Louis

Fixed Routing TablesFixed Routing Tables
From Node

To Node

Node 1 Node 2 Node 3

Node 4 Node 5 Node 6

15-9
©2005 Raj JainCSE473sWashington University in St. Louis

FloodingFlooding
! Packet sent by node to every neighbor
! Incoming packets retransmitted on every link except incoming

link
! Each packet is uniquely numbered so duplicates can be

discarded

15-10
©2005 Raj JainCSE473sWashington University in St. Louis

FloodingFlooding

! Uses all possible
paths

! Uses minimum hop
path Used for source
routing

15-11
©2005 Raj JainCSE473sWashington University in St. Louis

Adaptive: Distance Vector vs Link StateAdaptive: Distance Vector vs Link State

! Distance Vector: Each router sends a vector of
distances to its neighbors. The vector contains
distances to all nodes in the network.
Older method. Count to infinity problem.

! Link State: Each router sends a vector of distances to
all nodes. The vector contains only distances to
neighbors. Newer method. Used currently in internet.

15-12
©2005 Raj JainCSE473sWashington University in St. Louis

DijkstraDijkstra’’s Algorithms Algorithm
! Goal: Find the least cost paths from a given node to all other

nodes in the network
! Notation:

w(i,j) = Link cost from i to j if i and j are connected
L(n) = Total path cost from s to n
T = Set of nodes so far for which the least cost path is known

! Method:
! Initialize: T={s}, L(n) = w(s,n) for n ≠ s
! Find node x ∉ T, whose L(x) is minimum
! Update L(n) = min[L(n), L(x) + w(x,n)] for all n ∉ T

15-13
©2005 Raj JainCSE473sWashington University in St. Louis

Dijkstra Example (1)Dijkstra Example (1)

15-14
©2005 Raj JainCSE473sWashington University in St. Louis

Dijkstra Example (2)Dijkstra Example (2)

15-15
©2005 Raj JainCSE473sWashington University in St. Louis

Dijkstra Example (3)Dijkstra Example (3)

T L(2) Path L(3) Path L(4) Path L(5) Path L(6) Path
1 {1} 2 1-2 5 1-3 1 1-4 ∞ - ∞ -
2 {1,4} 2 1-2 4 1-4-3 1 1-4 2 1-4-5 ∞ -
3 {1,2,4} 2 1-2 4 1-4-3 1 1-4 2 1-4-5 ∞ -
4 {1,2,4,5} 2 1-2 3 1-4-5-3 1 1-4 2 1-4-5 4 1-4-5-6
5 {1,2,3,4,5} 2 1-2 3 1-4-5-3 1 1-4 2 1-4-5 4 1-4-5-6
6 {1,2,3,4,5,6}2 1-2 3 1-4-5-3 1 1-4 2 1-4-5 4 1-4-5-6

15-16
©2005 Raj JainCSE473sWashington University in St. Louis

BellmanBellman--Ford AlgorithmFord Algorithm
! Notation:

s = Source node
w(i,j) = link cost from i to j
h = Number of hops being considered
Lh(n) = Cost of h-hop path from s to n with < h hops

! Method: Find all nodes 1 hop away
Find all nodes 2 hops away
Find all nodes 3 hops away

! Initialize: L0(n) = ∞ for all n ≠ s; Lh(s) = 0 for all h
! Find jth node for which h+1 hops cost is minimum

Lh+1(n) = minj [Lh(j) +w(j,n)]

15-17
©2005 Raj JainCSE473sWashington University in St. Louis

BellmanBellman--Ford ExampleFord Example

15-18
©2005 Raj JainCSE473sWashington University in St. Louis

BellmanBellman--Ford Example (Cont)Ford Example (Cont)

h D(h2) Path D(h3) Path D(h4) Path D(h5)Path D(h6) Path

0 ∞ - ∞ - ∞ - ∞ - ∞ -

1 2 1-2 5 1-3 1 1-4 ∞ - ∞ -

2 2 1-2 4 1-4-3 1 1-4 2 1-4-5 10 1-3-6
3 2 1-2 3 1-4-5-3 1 1-4 2 1-4-5 4 1-4-5-6
4 2 1-2 3 1-4-5-3 1 1-4 2 1-4-5 4 1-4-5-6

15-19
©2005 Raj JainCSE473sWashington University in St. Louis

ARPAnet Routing (1969ARPAnet Routing (1969--78)78)

! Features: Cost=Queue length,
! Each node sends a vector of costs (to all nodes) to

neighbors. Distance vector
! Each node computes new cost vectors based on the

new info using Bellman-Ford algorithm

15-20
©2005 Raj JainCSE473sWashington University in St. Louis

ARPAnet Routing AlgorithmARPAnet Routing Algorithm

1

2

3

4

5

6

0

2

5

1

6

8

Ñ

2

3

4

3

3

1

2

3

4

5

6

0

2

3

1

2

4

Ñ

2

4

4

4

4

2

0

3

2

3

5

3

3

0

2

1

3

1

2

2

0

1

3

D1

Desti-
nation

S1 D2 D3 D4

Delay
Next
node

Desti-
nation Delay

Next
node

(a) Node 1ås
routing table
before update

(b) Delay vectors sent
t
neighbor nodes

(c) Node 1ås routing table
after update and link
c

11,2 = 2

11,3 = 5

11,4 = 1

15-21
©2005 Raj JainCSE473sWashington University in St. Louis

ARPAnet Routing (1979ARPAnet Routing (1979--86)86)
! Problem with earlier algorithm: Thrashing (packets

went to areas of low queue length rather than the
destination), Speed not considered

! Solution: Cost=Measured delay over 10 seconds
! Each node floods a vector of cost to neighbors.

Link-state. Converges faster after topology changes.
! Each node computes new cost vectors based on the

new info using Dijkstra�s algorithm

15-22
©2005 Raj JainCSE473sWashington University in St. Louis

ARPAnet Routing (1987+)ARPAnet Routing (1987+)
! Problem with 2nd Method: Correlation between

delays reported and those experienced later : High in
light loads, low during heavy loads
⇒ Oscillations under heavy loads
⇒ Unused capacity at some links, over-utilization of

others, More variance in delay more frequent updates
More overhead

15-23
©2005 Raj JainCSE473sWashington University in St. Louis

Routing AlgorithmRouting Algorithm
! Delay is averaged over 10 s
! Link utilization = ρ = 2(Ts-T)/(Ts-2T)

where T=measured delay,
Ts = service time per packet (600 bit times)

! Exponentially weighted average utilization
U(n+1) = α U(n)+(1-α)ρ(n+1)

=0.5 U(n)+0.5 ρ(n+1) with α = 0.5
! Link cost = fn(U)

15-24
©2005 Raj JainCSE473sWashington University in St. Louis

SummarySummary

! Distance Vector and Link State
! Routing: Least-cost, Flooding, Random, Fixed
! Dijkstra�s and Bellman-Ford algorithms
! ARPAnet

15-25
©2005 Raj JainCSE473sWashington University in St. Louis

Reading AssignmentReading Assignment

! Read Chapter 12 of Stallings� 7th edition and try to
answer all review questions.

15-26
©2005 Raj JainCSE473sWashington University in St. Louis

HomeworkHomework

Prepare the routing calculation table for node 1 in the
following network using (a) Dijkstra�s algorithm (b)
Bellman Ford Algorithm

54

32

1 6

1

4

3

1

1

2

4
1

