Network Security Part I: Concepts

Raj Jain
Washington University
Saint Louis, MO 63131
Jain@cse.wustl.edu

These slides are available on-line at:

http://www.cse.wustl.edu/~jain/cse473-05/

Washington University in St. Louis

CSE473s

- Security Statistics, Attacks, Requirements
- Secret Key and Public Key Encryption
- Hash Functions
- Message Authentication Code (MAC)
- Digital Signature and Digital Certificates
- □ RSA Public Key Encryption

Washington University in St. Louis

CSE473s

Security Threat Statistics

- □ DoD networks were attacked 250000 times in 1995 (well before Internet popularity)
- □ Of 38,000 friendly attacks, 65% succeeded
- □ Only 4% of successful attacks were noticed by network administrators
- □ Only a small fraction of those noticed were reported to authorities
- □ FBI reports 163 organizations lost \$123M in 1999
- □ Ref: M. Markow, "VPN for Dummies," IDG Books, 1999.

Washington University in St. Louis

CSE473s

Security Attacks

□ Passive:

- □ Release of message contents: Eavesdropping
- □ Traffic analysis: monitoring frequency and length of messages, even encrypted nature of communication may be guessed
- □ Difficult to detect

□ Active:

- □ Masquerade: Pretend to be some one else
- □ Replay: Capture and reuse for unauthorized effect
- □ Modification of message
- □ Denial of Service

Washington University in St. Louis

CSE473s

Security Requirements

- □ **Integrity**: Received = sent?
- Availability: Legal users should be able to use.
 Ping continuously ⇒ No useful work gets done.
- □ Confidentiality and Privacy:
 No snooping or wiretapping
- Authentication: You are who you say you are.

 A student at Dartmouth posing as a professor canceled the exam.
- □ Authorization = Access Control
 Only authorized users get to the data

Washington University in St. Louis

CSE473s

Link vs End-to-End Encryption

Link ⇒All traffic secure. Vulnerable inside switches

Washington University in St. Louis

CSE473s

Secret Key Encryption

- □ Also known as symmetric encryption
- □ Encrypted_Message = Encrypt(Key, Message)
- Message = Decrypt(Key, Encrypted_Message)
- Example: Encrypt = division
- \square 433 = 48 R 1 (using divisor of 9)

Public Key Encryption

- Invented in 1975 by Diffie and Hellman
- □ Encrypted_Message = Encrypt(Key1, Message)
- Message = Decrypt(Key2, Encrypted_Message)

Public Key Encryption

- □ RSA: Encrypted_Message = m³ mod 187
- □ Message = Encrypted_Message¹⁰⁷ mod 187
- \square Key1 = <3,187>, Key2 = <107,187>
- \square Message = 5
- \square Encrypted Message = $5^3 = 125$
- \square Message = 125^{107} mod 187 = 5
 - $= 125^{(64+32+8+2+1)} \bmod 187$
 - $= \{(125^{64} \bmod 187)(125^{32} \bmod 187)...$

 $(125^2 \mod 187)(125 \mod 187)$ } mod 187

Washington University in St. Louis

CSE473s

Modular Arithmetic

- \square xy mod $m = (x \mod m) (y \mod m)$
- $x^4 \bmod m = (x^2 \bmod m)(x^2 \bmod m)$
- □ 125 mod 187 = 125
- \square 125² mod 187 = 15625 mod 187 = 104
- $125^4 \mod 187 = (125^2 \mod 187)^2 \mod 187$ $= 104^2 \mod 187 = 10816 \mod 187 = 157$
- \square 1288 mod 187 = 1572 mod 187 = 152
- \square 128¹⁶ mod 187 = 152² mod 187 = 103
- \square 128³² mod 187 = 103² mod 187 = 137
- \square 128⁶⁴ mod 187 = 137² mod 187 = 69
- \square 128⁶⁴⁺³²⁺⁸⁺²⁺¹ mod 187 = 69×137×152×104×125 mod 187
 - $= 18679128000 \mod 187 = 5$

Washington University in St. Louis

CSE473s

Public Key (Cont)

- One key is private and the other is public
- Message = Decrypt(Public_Key, Encrypt(Private_Key, Message))
- Message = Decrypt(Private_Key, Encrypt(Public Key, Message))

Hash Functions

Example: CRC can be used as a hash (not recommended for security applications)

Requirements:

- 1. Applicable to any size message
- 2. Fixed length output
- 3. Easy to compute
- 4. Difficult to Invert \Rightarrow Can't find x given $H(x) \Rightarrow$ One-way
- 5. Difficult to find y, such that $H(x) = H(y) \Rightarrow$ Can't change msg
- 6. Difficult to find any pair (x, y) such that H(x) = H(y) \Rightarrow Strong hash

Washington University in St. Louis

CSE473s

Digital Signature

- Message Digest = Hash(Message)
- Signature = Encrypt(Private_Key, Hash)
- □ Hash(Message) = Decrypt(Public_Key, Signature)⇒ Authentic
- □ Also known as Message *authentication* code (MAC)

Washington University in St. Louis

CSE473s

Message Authentication Code (MAC)

- Authentic Message = Contents unchanged + Source Verified
- May also want to ensure that the time of the message is correct
- □ Encrypt({Message, CRC, Time Stamp}, Source's secret key)
- Message + Encrypt(Hash, Source's secret key)
- Message + Encrypt(Hash, Source's private key)

17-14

MAC: Using One Way Hash

©2005 Raj Jain

Washington University in St. Louis

Digital Certificates

- □ Like driver license or passport
- □ Digitally signed by Certificate authority (CA) a trusted organization

- □ CA uses its public key to sign the certificate

 ⇒ Hierarchy of trusted outborities
 - ⇒ Hierarchy of trusted authorities
- X.509 Certificate includes: Name, organization, effective date, expiration date, public key, issuer's CA name, Issuer's CA signature

Key Distribution

- 1. Application requests connection
- 2. Security service asks **KDC** for session Key
- 3. KDC distributes *session key* to both hosts
- 4. Buffered packet transmitted

Key distribution center

Center

Key
Distribution
Center

KDC shares a secret key with each Host.

Washington University in St. Louis

CSE473s

Confidentiality

- □ User 1 to User 2:
- Encrypted_Message
 - = Encrypt(Public_Key2, Encrypt(Private_Key1, Message))

⇒ Authentic and Private

Your Public Key My Private Key

Message

Washington University in St. Louis

CSE473s

©2005 Raj Jain

CONFIDENTIAL

RSA Public Key Encryption

- □ Ron Rivest, Adi Shamir, and Len Adleman at MIT 1978
- Both plain text M and cipher text C are integers between 0 and n-1.
- □ Key $1 = \{e, n\},\$ Key $2 = \{d, n\}$
- $C = M^e \mod n$ $M = C^d \mod m$
- ☐ How to construct keys:
 - \square Select two large primes: p, q, p \neq q
 - \square N = p×q
 - \Box Calculate $\Phi = (p-1)(q-1)$

Washington Species with Security with that $lcd(\Phi)$ is e < s

2005 Raj Jain

RSA Algorithm: Example

- Select two large primes: p, q, p \neq q p = 17, q = 11
- $N = p \times q = 17 \times 11 = 187$
- \Box Calculate $\Phi = (p-1)(q-1) = 16x10 = 160$
- Select e, such that lcd(Φ, e) = 1; 0 < e < s say, e = 7
- \Box Calculate d such that de mod $\Phi = 1$
 - \square 160k+1 = 161, 321, 481, 641
 - □ Check which of these is divisible by 7
 - \square 161 is divisible by 7 giving d = 161/7 = 23
- \square Key 1 = {7, 187}, Key 2 = {23, 187}

Washington University in St. Louis

CSE473s

Summary

- Passive and active attacks
- Secret Key and Public Key Encryption
- Secure Hash Functions
- Message Authentication Code (MAC)
- Digital Signature and Digital Certificates
- □ RSA Public Key Encryption based on exponentiation

Washington University in St. Louis

CSE473s

Reading Assignment

□ Read Sections 21.1 through 21.4 of 7th edition of Stallings. You can skip AES, SHA-1 during this part.

Homework

□ Submit answer to Exercise 21.6 in Stallings' 7th edition

Washington University in St. Louis

CSE473s