

Why Build ONL?

- Hands-on experience with real hardware
 - » Make education more concrete → reinforce concepts
 - » Achieve through virtualization
 - Need to protect user from actions of other users
 - Need to mimic propagation delay and link capacity
- Support experiment/observation approach
 - » Extensive monitoring facility
 - » Observe effects of config. changes on network traffic
 - → insights and greater understanding through observations
 - » Easy-to-use Remote Laboratory Interface (RLI)
- Access to advanced router features
 - » Gbps links, filters, packet scheduling
 - » Plugins: Program insertion along packet data path

Properties of ONL Accounts

- Same password for Web login and host login
- Host account restrictions
 - » Can only SSH to onl. arl. wustl. edu from remote host
 - Actually end up on <u>onlusr</u>, the ONL user host
 - » Firewall blocks all connections from within ONL
 - Can't push from ONL host to remote host
 - Can't pull to ONL host from remote host
 - But can push to ONL host from remote host (e.g., scp)
 - But can pull from ONL host from remote host
 - No email
 - »Can only access <u>onlusr</u> host and hosts assigned to your experiment
- Password-free SSH between ONL hosts
 - » See "NPR Tutorial→Summary Information→Password-Free SSH"

6 - Ken Wong- 10/14/2009

Getting Started

- See sidebar at www.onl.wustl.edu
- Follow instructions in "Getting Started" link
- Read NPR Tutorial
 - » Packet Processing
 - » The Remote Laboratory Interface
 - » Filters, Queues and Bandwidth
- Other useful tutorial sections
 - » Examples → The Remote Laboratory Interface
 - » Examples → Filters, Queues and Bandwidth

7 - Ken Wong- 10/14/2009

Washington University in St.Louis

SSH Tunnel Configuration

- Build before each experimental session
 - » Allows your RLI to communicate with ONL daemon
 - » Needed to make reservation or run experiment
- Cookbook for 3 approaches
 - » <u>Unix or Unix-like</u> (e.g., cygwin)
 - •ssh -L 7070:onlsrv:7070 onl.arl.wustl.edu
 - I use this (defined as an alias) from Linux
 - » MS Windows PuTTY (GUI-based)
 - I use this from my Microsoft XP laptop
 - > And also the SSH agent *pageant* (optional)
 - See Tutorial for URL (free software)
 - » Microsoft Windows SSH client tool from SSH Corp
- Follow instructions on ONL web pages
 - » Don't agonize over it → See TA after 2-3 tries
 - » If problems, send email to your grader/consultant

8 - Ken Wong- 10/14/2009

Configuring a Virtual IP Network

Topology

- » NPRs, hosts, links
- » Used for resource reservation

Route Tables

- » per port
- » Initially empty at all ports
- » default RT: 1 port or all ports
- » IP pkt forwarding
 - get pkt 1 hop closer to destination
- » uses Longest Prefix Match

Filter Tables

- » per port
- » forward to port/queue
- » forward to plugin, port/queue

Queue Tables

- » per port
- » port rate
- » datagram queues
 - QIDs 0-63
- » reserved queues
 - QIDs 64-8,191
- » queue parameters
 - threshhold: queue size
 - quantum: scheduling weight

Plugin Tables

- » per NPR
- » standard plugins
 - e.g., delay
- » user-defined plugins

11 - Ken Wong- 10/14/2009

Washington University in St.Louis

The NPR Data Path

12 - Ken Wong- 10/14/2009

NPR Packet Processing (3)

- Rx: Receive Pkt
 - » Put pkt in DRAM; Send meta-packet
- Mux: Multiplex traffic (inputs, CP, plugins)
- PLC: Parse, Lookup and Copy
 - » Implements Route Table and Filter Table lookup
 - »Uses TCAM (Ternary Content-Addressable Memory)
- QM: Queue Manager
 - » Pkt scheduler for each of 5 output ports
 - Implements port rate concept using token bucket
 - Implements <u>bandwidth sharing concept</u> using <u>Weighted</u> <u>Deficit Round Robin</u> (WDRR) algorithm
- Hdr Format
 - » Create ethernet frame
- Tx: Transmit Ethernet Frame

16 - Ken Wong- 10/14/2009

Experiment 1

17 - Ken Wong– 10/14/2009

Washington University in St.Louis

Topics

- 2 NPRs, 4 hosts, 2 links between NPRs
- Experiment files
 - »473-1-f09.exp
 - »473-1-filters-f09.exp (filters at ports 1.0 and 1.4)
- Unix commands
 - »/sbin/ifconfig network interface properties
 - »/bin/netstat network interface statistics
 - »/bin/ping ICMP echo/reply
 - »/usr/local/bin/iperf UDP/TCP traffic generator
- Route tables and port rate (capacity)

18 - Ken Wong– 10/14/2009

Steps in Running an Experiment

- Define <u>maximal</u> network resources using RLI
 - » Required: Add NPR routers, Hosts, Links
- Save configuration
 - » File → Save as
- Build SSH tunnel to onl.wustl.edu
- Make a reservation
 - » File → Make reservation
 - » Can be an advanced reservation
- When reservation time arrives:
 - » Build SSH tunnel to onl.wustl.edu
 - » Run RLI and open configuration file
 - » Ask for network to be built: File → Commit
 - » Define more network parameters (Commit) and monitoring
 - » Wait for commit to finish
- Log into onl.wustl.edu using ssh
 - » Prompt will show you have logged into onlust
 - » You can only access your ONL nodes from onlusr host
 - » Use Linux commands to run traffic generators

RLI Menus

- Menu File → ...
 - » <u>Open</u>, <u>Commit</u> (binds virtual network to actual network components)
- Port → Route Table → Edit
 - » Add/Delete Route, Generate Local Default Routes
- Port → Queue Table
 - » Port Rate, Edit → Add/Delete Queue, Threshold, Quantum
- Port → Filter Table → Edit
 - » Add/Edit/Delete Filter
- <u>Menu Monitoring</u> → <u>Add Monitoring Display</u>

21 - Ken Wong- 10/14/2009

Delaying Packets National Packets 37 - Ken Wong- 10/14/2009 ■ Washington University in St.Louis

