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Simple Linear Regression Models

0 Regression Model: Predict aresponse for agiven set
of predictor variables.

0 Response Variable: Estimated variable

2 Predictor Variables: Variables used to predict the
response. predictors or factors

a Linear Regression M odels. Responseisalinear
function of predictors.

0 SimpleLinear Regression Models:
Only one predictor
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Definition of a Good M odel
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Good Model (Cont)

2 Regression models attempt to minimize the distance
measured vertically between the observation point
and the mode! line (or curve).

2 Thelength of the line segment is called residual,
modeling error, or simply error.

2 The negative and positive errors should cancel out
= Zero overall error
Many lineswill satisfy this criterion.
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Good Model (Cont)

2 Choose the line that minimizes the sum of squares of
the errors. .
y = by + brx

where, y isthe predicted response when the
predictor variableisx. The parameter b, and b, are
fixed regression parameters to be determined from the
data.

a Given n observation pairs{ (X;, Y1), ---» (X, Y.}, the
estimated response y; for theith observation is:

y; = bg + b17;
a Theerror s A
€, — Yi — Yi
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Good Model (Cont)

2 The best linear model minimizes the sum of sgquared
errors (SSE):

i1 € =2 g (yi — bo — b17i)”
subject to the constraint that the mean error Is zero:
Doici€i =1y —bo—bizx;) =0

a Thisisequivalent to minimizing the variance of errors
(see Exercise).
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Estimation of M odel Parameters

0 Regression parameters that give minimum error
variance are:

bl — and bo — g — bljf
Yx? — nr?
0 where, ~ -
1 1
T==) x  §=—) u
n n -
=1 1=1
n n
2 2
2y = g T 2xr° = E x;
=1 1=1
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Example 14.1

2 The number of disk 1/0O's and processor times of
seven programs were measured as: (14, 2), (16, 5),
(271 7)1 (421 9)1 (391 10)1 (501 13)1 (831 20)

a For thisdata: n=7, £ xy=3375, £ x=271, X x°=13,855,
> y=66, X y?=828, r=38.71, y=9.43. Therefore,

YTY — NTY 3375 — 7 x 38.71 x 9.43
! S22 —n(z)2 13,855 — 7 x (38.71)2

by = y—012 =943 —0.2438 x 38.71 = —0.0083

2 Thedesired linear moddl Is:;
CPU time = —0.0083 + 0.2438(Number of Disk 1/0’s)
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Example 14.1 (Cont)
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Example 14. (Cont)

2 Error Computation

Disk I/O’s CPU Time Estimate Error FError

X Vi  Ui=bo+b1 x; e;=y;-y; e
14 2 3.4043  -1.4043 1.9721
16 D 3.8913 1.1082 1.2281
27 7 6.5731 0.4269 0.1822
42 9 10.2295  -1.2295 1.5116
39 10 9.4982 0.5018 0.2518
o0 13 12.1795 0.8205 0.6732
83 20 20.2235  -0.2235 0.0500

> 271 66 66.0000 0.00 5.8690
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Derivation of Regression Parameters

a Theeror inthe ith observation Is:
e; = Yi — Ui = yi — (bo + b1x;)
2 For asample of n observations, the mean error Is.

e %Z@ €; = %ZZ {y; — (b + b1x;)}
i — by — by

1 Setting mean error to zero, we obtain:
bo =1y — b1
0 Substituting bO In the error expression, we get:
e =Y —Y+biZ —biz; = (s —¥) — bi(z; — T)
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Derivation of Regression Parameters (Cont)

2 The sum of sguared errors SSE is:

SSE = En:e?
i=1

= 3 {0 20 (= ) 0 )+ B (o - )7

1=1

- S w0 - - -
n_li:1 Yi 177/_1%.:1 7 )
LS (- 7
In—1 '

i=1
2 2 2.2
= s, — 2b1sy, +bis;
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Derivation (Cont)

a Differentiating this equation with respect to b, and

equating the result to zero:

d(SSE) 5 5
dbl — —28$y -+ 2b18$ =0
a That is,
b 82ﬂ _ Xxy — nxy
L s2 Y2 — n(x)?
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Allocation of Variation

2 Error variance without Regression = Variance of the response

Error = ¢; = Observed Response — Predicted Response
= Yi—Yy
and
1 T
Variance of Errors without regression = Z e?
n—1:4

1=1

1 T
12
— N — 1 Z(yz — )
i=1

= Variance of y
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Allocation of Variation (Cont)

a The sum of squared errors without regression would be:
n

_\ 2
Z(yi — Y)
i=1
QO Thisiscaled total sum of squaresor (SST). It isameasure of

y'svariability and is called variation of y. SST can be
computed as follows:

SST = Z(yz —7)° = <Z yf) —ng® =885Y — SS0

0 Where, SSY Isthe sum of squares of y (or X y?). S0 isthe sum
of squares of ¢jand is equal to ny?
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Allocation of Variation (Cont)

2 The difference between SST and SSE is the sum of squares
explained by the regression. It is called SSR:

SOR = SST — SSE
SS5T = SSR + SSE

QO The fraction of the variation that is explained determines the
goodness of the regression and is called the coefficient of
determination, R2:

o2 _ SSR _ SST —SSE
T SST ~ SST

or
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Allocation of Variation (Cont)

a The higher the value of R?, the better the regression.

R2=1 = Perfect fit R2=0 = No fit

2
Sa:y

Sy Sy

Sample Correlation(x,y) = Rzy =

a Coefficient of Determination = { Correlation Coefficient (x,y)}?
a Shortcut formulafor SSE:

SSE = Y¢? — byXy — b1 Zxy
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Example 14.2

a For the disk I/O-CPU time data of Example 14.1.
SSE

Yyl — boXy — b Xy
828 4 0.0083 x 66 — 0.2438 x 3375 = 5.87
SST = SSY —SS0 = Xy* — n(y)?
= 828 — 7 x (9.43)* = 205.71
SSR = SST — SSE = 205.71 — 5.87 = 199.84

~ SSR 199.84

R? = —— —
SST  205.71

= 0.9715

2 The regression explains 97% of CPU time's variation.

Washington University in St. Louis CSE567M
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Standard Deviation of Errors

Q Since errors are obtained after calculating two regression
parameters from the data, errors have n-2 degrees of freedom

\/SSE
Se =
n— 2

SSE/(n-2) is called mean squared errors or (MSE).
Standard deviation of errors = square root of M SE.

Q SSY has n degrees of freedom since it is obtained from n
Independent observations without estimating any parameters.

0 SSO hasjust one degree of freedom since it can be computed
smply from ¢

0 SST has n-1 degrees of freedom, since one parameter
must be calculated from the data before SST can be computed.
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Standard Deviation of Errors (Cont)

1 SSR, which is the difference between SST and SSE,
has the remaining one degree of freedom.

0 Overall,
SST = SSY — SSO = SSR +  SSE
n—-1 = =n - 1 = 1 4+ (n—-2)

2 Notice that the degrees of freedom add just the way
the sums of squares do.
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Example 14.3

2 For the disk I/0O-CPU data of Example 14.1, the
degrees of freedom of the sums are:

SO SST = SSY — SS0 =SSR + SSE
205.71 = 828 — 62229 = 199.84 4 5.87
DF : 6 = 7 - 1 — 1 + 5
2 The mean squared error Is.
SOE 5.87
MSE = = — =1.17
DF for Errors 5

0 The standard deviation of errorsis:
se = VMSE = v1.17 = 1.08
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Confidence Intervalsfor Regression Params

0 Regression coefficients b, and b, are estimates from asingle
sample of size n = Random
= Using another sample, the estimates may be different. If 3,
and [3, are true parameters of the population. That is,

y = Po+ Gz
0 Computed coefficients b, and b, are estimates of 3, and 3,
respectively.

_ 1/2
1 | $2 /
Sb — Se | _
0 n  2x?— nr?
Se
Sbq —
_o11/2
Yx? — nx?| /
Washington University in St. Louis CSE56/M ©2006 Raj Jain

14-23



Confidence Intervals (Cont)

a The 100(1-o)% confidence intervals for b, and b, can be be
computed using t;;_yo. n.o --- the 1-o/2 quantile of at variate
with n-2 degrees of freedom. The confidence intervals are:

b() + tSbO
And
bl + tSbl
2 If aconfidence interval includes zero, then the regression
parameter cannot be considered different from zero at the at
100(1-c1)% confidence level.
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Example 14.4

a For thedisk I/0 and CPU data of Example 14.1, we have n=7,
T =38.71, Y.1°=13,855, and 5,=1.0834.

QO Standard deviations of b, and b, are:

1 72 t/2
o T e [ﬁ T na:2]

1 (38.71)° 2
= 1.0834 | - ' = 0.8311
7 i 13,855 — 7 x 38.71 X 38.71}
Se
Sbq =
(Y2 — n:EQ]l/Q
1.0834
= i 0.0187
(13,855 — 7 x 38.71 x 38.71]
Washington University in St. Louis CSE56/M ©2006 Raj Jain
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Example 14.4 (Cont)

a From Appendix Table A.4, the 0.95-quantile of at-variate with
5 degrees of freedom is 2.015.
— 90% confidence interval for b, Is:

—0.0083 F (2.015)(0.8311) = —0.0083 = 1.6747

= (—1.6830, 1.6663)

Q Since, the confidence interval includes zero, the hypothesis that
this parameter is zero cannot be rejected at 0.10 significance
level. = b, Is essentidly zero.

0 90% Confidence Interval for b, is:
0.2438 F (2.015)(0.0187) = 0.2438 F 0.0376

— (0.2061, 0.2814)

2 Sincethe confidence interval does not include zero, the slope
b, issignificantly different from zero at this confidence level.
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Case Study 14.1: Remote Procedure Call

Washington University in St. Louis

UNIX ARGUS
Data | Time | Data | Time
Bytes Bytes
64 26.4 92 32.8
64 26.4 92 34.2
64 26.4 92 32.4
64 26.2 92 34.4
234 33.8 348 41.4
590 41.6 604 51.2
846 50.0 860 76.0
1060 48.4 1074 80.8
1082 49.0 1074 79.8
1088 42.0 1088 58.6
1088 41.8 1088 57.6
1088 41.8 1088 59.8
1088 42.0 1088 57.4

CSE567M
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a UNIX:

Washington University in St. Louis

Case Study 14.1 (Cont)

Elapsed rime in milllizeconds
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Case Study 14.1 (Cont)
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Case Study 14.1 (Cont)

0 Best linear models are:

Time on UNIX
Time on ARGUS

0.030 (Data size in bytes) + 24
0.034 (Data size in bytes) + 30

2 The regressions explain 81% and 75% of the
variation, respectively.
Does ARGUS takes larger time per byte aswell asa
larger set up time per call than UNIX?

Washington University in St. Louis CSE567M ©2006 Ra| Jain
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Case Study 14.1 (Cont)

UNIX:
Para- Std. Confidence
meter Mecan  Dev. Interval

bo 26.898 2.005 ( 23.2968, 30.4988)
b1 0.017 0.003 (10.0128, 0.0219)

ARGUS:
Para- Std. Confidence
meter Mean  Dev. Interval

bo 31.068 4.711 ( 22.6076, 39.5278)
by 0.034 0.006  (0.0231, 0.0443)

2 Intervalsfor intercepts overlap while those of the slopes do not.
= Set up times are not significantly different in the two
systems while the per byte times (slopes) are different.
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Confidence Intervalsfor Predictions

Yp = bo + b1xy
2 Thisisonly the mean value of the predicted response. Standard
deviation of the mean of afuture sample of m observationsis:

1 1 (z,—7) }1/2

Sgmp — e | | 2 2
m n T4 — nx

0 m =1 = Standard deviation of a single future observation:

_ 1/2
1 (x, —7T)* /
Sg.. = Se |1+ — + =—
J1p n  Xr?—nI?
Washington University in St. Louis CSE56/M ©2006 Raj Jain
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Cl for Predictions (Cont)

0 m = oo = Standard deviation of the mean of alarge
number of future observations at x,:

1 (p— 1) T”

S — Se | —
I {n Yx? — nx?

2 100(1-0)% confidence interval for the mean can be
constructed using at quantile read at n-2 degrees of
freedom.
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Cl for Predictions (Cont)

2 Goodness of the prediction decreases as we move
away from the center.

F 1
Uppai
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¥
-
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Example 14.5

2 Using the disk 1/O and CPU time data of Example
14.1, let us estimate the CPU time for a program with
100 disk I/O's.

CPU time = —0.0083 + 0.2438(Number of disk 1/O’s)

2 For aprogram with 100 disk |/O's,
the mean CPU timeis.

CPU time = —0.0083 + 0.2438(100) = 24.3674

Standard deviation of errors s, = 1.0834

Washington University in St. Louis CSE567M ©2006 Ra| Jain
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Example 14.5 (Cont)

0 The standard deviation of the predicted mean of alarge number
of observationsis:
1 (100 —38.71)2 17

- =1.0834 | = 1 — 1.2159
"0 7 713,855 — 7(38.71)?2

2 From Table A .4, the 0.95-quantile of the t-variate with 5
degrees of freedom is 2.015.
= 90% CI for the predicted mean

= 24.3674 F (2.015)(1.2159)
= (21.9174, 26.8174)
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Example 14.5 (Cont)

2 CPU time of asingle future program with 100 disk
1/O's:
1/2

100 — 38.71)%
( ) = 1.6286

13,855 — 7(38.71)?

55, = 1.0834 |1

1

2 90% CI for asingle prediction:
= 24.3674 F (2.015)(1.6286)

= (21.0858, 27.6489)

CSES67M ©2006 Raj Jain
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Visual Testsfor Regression Assumptions

Regression assumptions:
1. Thetrue relationship between the response variable y
and the predictor variable x is linear.

2. The predictor variable x Is hon-stochastic and it IS
measured without any error.

3. The model errors are statistically independent.

4. Theerrorsare normally distributed with zero mean
and a constant standard deviation.

Washington University in St. Louis CSE567M ©2006 Ra| Jain
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1. Linear Relationship: Visual Test

O Scatter plot of y versus X = Linear or nonlinear relationship
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2. Independent Errors: Visual Test

1. Scatter plot of € versus the predicted response y;

Rrsidunl

{u] ho trend

A

{b} " Tweanc]

Fizvdirted respome

I"redicted resgeae:

0O All tests for independence ssimply try to find dependence.
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| ndependent Errors (Cont)

2. Plot the residuals as a function of the experiment number
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3. Normally Distributed Errors: Test

Q Prepare anormal quantile-quantile plot of errors.
Linear = the assumption is satisfied.
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4. Constant Standard Deviation of Errors

2 Also known as homoscedasticity

Reskinal
f
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Frediered response

Q Trend = Try curvilinear regression or transformation
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Example 14.6

For the disk 1/0 and CPU time data of Example 14.1

(D)
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Number of disk I/Os Predicted Response Normal Quantile

1. Relationship islinear
2. No trend in residuals = Seem independent

3. Linear normal quantile-quantile plot = Larger deviations at
lower values but all values are small
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Example 14.7: RPC Performance

o
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Predicted Response Normal Quantile
1. Larger errors at larger responses
2. Normality of errorsis questionable
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2 Terminology: Simple Linear Regression model, Sums of
Squares, Mean Sguares, degrees of freedom, percent of

variation explained, Coefficient of determination, correlation
coefficient

0 Regression parameters as well as the predicted responses have
confidence intervals

Q It isimportant to verify assumptions of linearity, error
Independence, error normality = Visual tests

Washington University in St. Louis CSE567M ©2006 Ra| Jain
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Exercise 14.7

0 Thetimeto encrypt ak byte record using an encryption
technique is shown in the following table. Fit alinear
regression model to this data. Use visual tests to verify the
regression assumptions.

Record Observations

Size 1 2 3
128 386 375 393
256 850 805 824
384 1544 1644 1553
512 3035 3123 3235
640 6650 6839 6768
768 13,887 14,567 13,456
896 28,059 27,439 27,659
1024 50,916 52,129 51,360
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Exercise 2.1

2 From published literature, select an article or areport
that presents results of a performance evaluation
study. Make alist of good and bad points of the study.
What would you do different, if you were asked to
repeat the study?
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Homewor k

2 Read Chapter 14
2 Submit answersto exercise 14.7
a Submit answer to exercise 2.1
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