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OverviewOverview

! Computation of Effects
! Estimating Experimental Errors
! Allocation of Variation
! ANOVA Table
! Visual Tests
! Confidence Intervals For Effects
! Multiplicative Models
! Missing Observations
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Two Factors Full Factorial DesignTwo Factors Full Factorial Design
! Used when there are two parameters that are carefully 

controlled
! Examples:

" To compare several processors using several workloads.
" To determining two configuration parameters, such as cache 

and  memory sizes
! Assumes that the factors are categorical. For quantitative 

factors, use a regression model.
! A full factorial design with two factors A and B having a and b

levels requires ab experiments.
! First consider the case where each experiment is conducted 

only once.
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ModelModel
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Computation of EffectsComputation of Effects
! Averaging the jth column produces:

! Since the last two terms are zero, we have:

! Similarly, averaging along rows produces:

! Averaging all observations produces

! Model parameters estimates are:

! Easily computed using a tabular arrangement. 
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Example 21.1: Cache ComparisonExample 21.1: Cache Comparison
!
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Example 21.1: Computation of EffectsExample 21.1: Computation of Effects

! An average workload on an average processor requires 72.2 ms 
of processor time.

! The time with two caches is 21.2 ms lower than that on an 
average processor

! The time with one cache is 20.2 ms lower than that on an 
average processor.

! The time without a cache is 41.4 ms higher than the average 
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Example 21.1 (Cont)Example 21.1 (Cont)
! Two-cache - One-cache = 1 ms.
! One-cache - No-cache = 41.4-20.2 or 21.2 ms.
! The workloads also affect the processor time required. 
! The ASM workload takes  0.5 ms less than the average.
! TECO takes 8.8 ms higher than the average.
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Estimating Experimental ErrorsEstimating Experimental Errors
! Estimated response:

! Experimental error:

! Sum of squared errors (SSE):

! Example: The estimated processor time is:

! Error = Measured-Estimated = 54-50.5 = 3.5
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Example 21.2: Error ComputationExample 21.2: Error Computation

The sum of squared errors is:
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Example 21.2: Allocation of VariationExample 21.2: Allocation of Variation

! Squaring the model equation:

! High percent variation explained 
⇒ Cache choice important in processor design.
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Analysis of VarianceAnalysis of Variance
! Degrees of freedoms:

! Mean squares:

! Computed ratio > F[1- α;a-1,(a-1)(b-1)] ⇒A is significant at level α.
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ANOVA TableANOVA Table
!
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Example 21.3: Cache ComparisonExample 21.3: Cache Comparison

! Cache choice significant.
! Workloads insignificant
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Example 21.4: Visual TestsExample 21.4: Visual Tests
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Confidence Intervals For EffectsConfidence Intervals For Effects

! For confidence intervals use t values at (a-1)(b-1) degrees of 
freedom 
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Example 21.5: Cache ComparisonExample 21.5: Cache Comparison
! Standard deviation of errors:

! Standard deviation of the grand mean:

! Standard deviation of αj's:

! Standard deviation of βi's:
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Example 21.5 (Cont)Example 21.5 (Cont)
! Degrees of freedom for the errors are (a-1)(b-1)=8.

For 90% confidence interval, t[0.95;8]= 1.86.
! Confidence interval for the grand mean:

! All three cache alternatives are significantly different from the 
average.
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Example 21.5 (Cont)Example 21.5 (Cont)

! All workloads, except TECO,  are similar to the average and 
hence to each other.
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Example 21.5: CI for DifferencesExample 21.5: CI for Differences

! Two-cache and one-cache  alternatives are both significantly 
better than a no cache alternative.  

! There is no significant difference between two-cache and one-
cache alternatives.
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Case Study 21.1: Cache Design AlternativesCase Study 21.1: Cache Design Alternatives

! Multiprocess environment: Five jobs in parallel.
ALL = ASM, TECO, SIEVE, DHRYSTONE, and SORT in 
parallel.

! Processor Time:
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Case Study 21.1 on Cache Design (Cont)Case Study 21.1 on Cache Design (Cont)
Confidence Intervals for Differences:

Conclusion: The two caches do not produce statistically  better 
performance.
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Multiplicative ModelsMultiplicative Models
! Additive model:

! If factors multiply ⇒ Use multiplicative model
! Example: processors and workloads

" Log of response follows an additive model
! If the spread in the residuals increases with the mean response

⇒ Use transformation 
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Case Study 21.2: RISC architecturesCase Study 21.2: RISC architectures
! Parallelism in time vs parallelism in space
! Pipelining vs several units in parallel
! Spectrum = HP9000/840 at 125 and 62.5 ns cycle
! Scheme86 = Designed at MIT
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Cache Study 21.2: Simulation ResultsCache Study 21.2: Simulation Results

! Additive model: ⇒ No significant difference
! Easy to see that: Scheme86 = 2 or 3 × Spectrum125
! Spectrum62.5 = 2 × Spectrum125
! Execution Time = Processor Speed × Workload Size
⇒ Multiplicative model.

! Observations skewed. ymax/ymin > 1000
⇒ Adding not appropriate
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Case Study 21.2: Multiplicative ModelCase Study 21.2: Multiplicative Model
! Log Transformation:

! Effect of the processors is significant. 
! The model  explains 99.9% of variation as compared to 88% in 

the additive model.
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Case Study 21.2: Confidence IntervalsCase Study 21.2: Confidence Intervals

! Scheme86 and Spectrum62.5 are of comparable speed.
! Spectrum125 is significantly slower than the other two 

processors.
! Scheme86's time is 0.4584 to 0.6115 times that of Spectrum125 

and 0.7886 to 1.0520 times that of Spectrum62.5.
! The time on Spectrum125 is 1.4894 to 1.9868 times that on 

Spectrum62.5.
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Cache Study 21.2: Visual TestsCache Study 21.2: Visual Tests
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Case Study 21.2: ANOVACase Study 21.2: ANOVA

! Processors account for only 1% of the variation
! Differences in the workloads account for 99%.
⇒ Workloads widely different
⇒ Use more workloads or cover a smaller range.
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Case Study 21.3: ProcessorsCase Study 21.3: Processors
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Case Study 21.3: Additive ModelCase Study 21.3: Additive Model

! Workloads explain 1.4% of the variation.
! Only 6.7% of the variation is unexplained.
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Case Study 21.3: Multiplicative ModelCase Study 21.3: Multiplicative Model

! Both models pass the visual tests equally well.  
! It is more appropriate to say that processor B takes twice as 

much time as processor A, than to say that processor B takes 
50.7 ms more than processor A.
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Case Study 21.3: IntelCase Study 21.3: Intel iAPXiAPX 432432
!
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Case Study 21.3: ANOVA with LogCase Study 21.3: ANOVA with Log

! Only 0.8% of variation is unexplained.
Workloads explain a much larger percentage of variation than 
the systems
⇒ the workload selection is poor. 
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Case Study 21.3: Confidence intervalsCase Study 21.3: Confidence intervals
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Missing ObservationsMissing Observations
! Recommended Method:

" Divide the sums by respective number of observations 
" Adjust the degrees of freedoms of sums of squares
" Adjust formulas for standard  deviations of effects 

! Other Alternatives:
" Replace the missing value  by such that the residual  for 

the missing experiment is zero.
" Use y such that SSE is minimum.
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Case Study 21.4: RISCCase Study 21.4: RISC--I Execution TimesI Execution Times

!
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Case Study 21.5: Using Multiplicative ModelCase Study 21.5: Using Multiplicative Model

!
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Case Study 21.5: Experimental ErrorsCase Study 21.5: Experimental Errors
!
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Case Study 21.5: Experimental Errors (Cont)Case Study 21.5: Experimental Errors (Cont)

! 16 independent parameters (μ, αj, and βi) have been computed 
⇒ Errors have 60-1-5-10 or 44 degrees of freedom.

! The standard deviation of errors is:

! The standard deviation of αj:

! cj = number of observations in column cj.
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Case Study 21.5 (Cont)Case Study 21.5 (Cont)
! The standard deviation of the row effects:

ri=number of observations in the ith row. 
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Case Study 21.5: Case Study 21.5: CIsCIs for Processor Effectsfor Processor Effects
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Case Study 21.5: Visual TestsCase Study 21.5: Visual Tests
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Case Study 21.5: Analysis without 68000Case Study 21.5: Analysis without 68000
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Case Study 21.5: RISCCase Study 21.5: RISC--I Code SizeI Code Size
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Case Study 21.5: Confidence IntervalsCase Study 21.5: Confidence Intervals
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SummarySummary

Two Factor Designs Without Replications
! Model:

! Effects are computed so that:

! Effects:
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Summary (Cont)Summary (Cont)
! Allocation of variation: SSE can be calculated after computing 

other terms below

! Mean squares:

! Analysis of variance:
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Summary (Cont)Summary (Cont)
! Standard deviation of effects:

! Contrasts:

! All confidence intervals are calculated using t[1-α/2;(a-1)(b-1)].
! Model assumptions:

" Errors are IID normal variates with zero mean.
" Errors have the same variance for all factor levels.
" The effects of various factors and errors are additive.

! Visual tests:
" No trend in scatter plot of errors versus predicted responses
" The normal quantile-quantile plot of errors should be linear.
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Exercise 21.1Exercise 21.1
Analyze the data of Case study 21.2 using an  additive model.
! Plot residuals as a function of predicted response.
! Also, plot a normal quantile-quantile plot for the residuals.
! Determine 90% confidence intervals for the paired differences. 
! Are the processors significantly different?
! Discuss what indicators in the data, analysis, or plot would 

suggest that this is  not a good model.
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Exercise 21.2Exercise 21.2
Analyze the data of Table 21.18 using a multiplicative model and

verify your analysis with the results presented in Table 21.19.
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Exercise 21.3Exercise 21.3
Analyze the code size data of Table 21.23. Ignore the second 

column corresponding to 68000 for this exercise.
Answer the following:
a. What percentage of variation is explained by the 

processor?
b. What percentage of variation can be attributed to the 

workload?
c. Is there a significant (at 90% confidence) difference  

between any two processors?
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Exercise 21.4Exercise 21.4
Repeat Exercise 21.3 with the 68000 column included.
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HomeworkHomework
! Submit answer to Exercise 21.1


