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Random-Number Generation

2 Random Number = Uniform (0, 1)

0 Random Variate = Other distributions
= Function(Random number)
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A Sample Generator

Ln = f(ajn—l) Ln—25 .- )

0 For example,
Ly = 9%,—1+1 mod 16

Q Starting with x,=5:
r1 =505)+1 mod 16 =26 mod 16 = 10

0 Thefirst 32 numbers obtained by the above procedure 10, 3, O,
1,6,15,12,13,2,11,8,9,14,7,4,510, 3,0, 1, 6, 15, 12, 13,
2,11,8,9, 14,7, 4,5.

Q By dividing X's by 16:
0.6250, 0.1875, 0.0000, 0.0625, 0.3750, 0.9375, 0.7500,
0.8125, 0.1250, 0.6875, 0.5000, 0.5625, 0.8750, 0.4375,
0.2500, 0.3125, 0.6250, 0.1875, 0.0000, 0.0625, 0.3750,
0.9375, 0.7500, 0.8125, 0.1250, 0.6875, 0.5000, 0.5625,
0.8750, 0.4375, 0.2500, 0.3125.
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Terminology

a Seed =X,
a Pseudo-Random: Deterministic yet would pass randomness
tests

QO Fully Random: Not repeatable
Q Cyclelength, Tail, Period

Seed

Y

& 2 2 2 J o o o o o o o o o

-« Talil —r—}<— Cycle length >

- Period -
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Desired Properties of a Good Generator

2 It should be efficiently computable.
2 The period should be large.

2 The successive values should be independent and
uniformly distributed
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Types of Random-number Generators

2 Linear congruential generators
2 Tausworthe generators

0 Extended Fibonacci generators
2 Combined generators
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Linear-Congruential Generators

2 Discovered by D. H. Lehmer in 1951

0 Theresidues of successive powers of a number have good
randomness properties.

T, = a"' mod m

Equivaently,

Tp = AL,—1 mod m

a = multiplier
m = modulus
Washington University in St. Louis CSE574s ©2006 Ra| Jain
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L inear-Congruential Generators (Cont)

2 Lehmer'schoices; a=23 and m= 10%+1
2 Good for ENIAC, an 8-digit decimal machine.
0 Generalization:

Tn = AT,_1 + b mod m

0 Can be analyzed easily using the theory of
congruences
— Mixed Linear-Congruential Generators
or Linear-Congruential Generators (LCG)

2 Mixed = both multiplication by a and addition of b
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Selection of LCG Parameters

a a, b, and m affect the period and autocorrelation

2 The modulus m should be large.

2 The period can never be more than m.

2 For mod m computation to be efficient, m should be a power

of 2= Mod m can be obtained by truncation.
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Selection of LCG Parameters (Cont)

2 If bisnonzero, the maximum possible period mis
obtained if and only if:

> Integers mand b arerelatively prime, that is, have no common
factors other than 1.

» Every prime number that isafactor of misalso a factor of a-1.
> If integer misamultiple of 4, a-1 should be a multiple of 4.
> Noticethat all of these conditions are met if m=2X, a=4c + 1,

and b isodd. Here, ¢, b, and k are positive integers.
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Period vs. Autocorrelation

a A generator that has the maximum possible period is called a
full-period generator.

T, = (2°* 4+ Dx,_1 +1 mod 2%°

rn = (2% 4+ 1)z,—1 +1 mod 2%

a Lower autocorrel ations between successive numbers are
preferable.

0 Both generators have the same full period, but the first one has
acorrelation of 0.25 between x , and X, whereas the second
one has a negligible correlation of less than 2-18
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Multiplicative LCG

Q Multiplicative LCG: b=0

Tp = AL,—1 mod m

a Two types:
m= 2
m = 2%
Washington University in St. Louis CSE574s ©2006 Ra| Jain

26-13



Multiplicative LCG with m=2k

0 m=2k= trivia division
= Maximum possible period 2k-2
2 Period achieved if multiplier ais of the form 81+ 3,

and the initial seed Is an odd integer

2 One-fourth the maximum possible may not be too
small

2 Low order bits of random numbers obtained using
multiplicative LCG's with m= 2k have a cyclic pattern
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Example 26.1a

r, = bx,_1 mod 2°

a Using aseed of x,=1:
5, 25, 29, 17, 21, 9, 13, 1, 5,...
Period = 8 = 32/4
a With x, = 2, the sequenceis: 10, 18, 26, 2, 10,...
Here, the period isonly 4.
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Example 26.1b

2 Multiplier not of the form 8i + 3:
r, = Tx,_1 mod 2°
a Using aseed of x,= 1, we get the sequence:

7,17, 23, 1, 7,...
a Theperiodisonly 4
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Multiplicative LCG with m= 2X

2 Modulus m = prime number
With a proper multiplier a, period = m-1
Maximum possible period = m

A If and only if the multiplier aisa primitive root of the modulus

m

 aisaprimitiveroot of mif and only if a”> mod m=1for n= 1,

2, ..., 2.
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Example 26.2
Ty, = 3%,,—1 mod 31

a Starting with a seed of X,=1:
1, 3,9, 27, 19, 26, 16, 17, 20, 29, 25, 13, 8, 24, 10, 30, 28, 22,
4,12,5,15,14,11, 2,6, 18,23,7,21,1, ...
The period is 30
— 3isaprimitiveroot of 31
a Withamultiplierof a=5:1,5, 25, 1,...
The periodisonly 3 = 5isnot aprimitive root of 31

5% mod 31 = 125 mod 31 =1
a Primitiverootsof 31= 3, 11, 12, 13, 17, 21, 22, and 24.

©2006 Raj Jain
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Schrage's M ethod

0 PRN computation assumes:

> No round-off errors, integer arithmetic and no overflows
= Can'tdoitin BASIC

> Product ax, , > Largest integer = Overflow
a ldentity: axz mod m = g(x) + mh(z)
Where: g(z) = a(z mod ¢) — r(z div g)
And:  A(x) = (x div q) — (ax div m)
Here,g=mdiv ar=mmod a
"A div B'=dividing A by B and truncating the result.

Q For al x'sintherange 1, 2, ..., m-1, computing g(X) involves
numbers less than m-1.

a Ifr<q, h(x)iseither Oor 1, and it can be inferred from g(x);
h(x) is1if and only if g(x) is negative.

Washington University in St. Louis CSE574s ©2006 Ra| Jain
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Example 26.3

Tp = 7°2,_1 mod (2°! — 1)
QO 281-1 = 2147483647 = prime number

 7° = 16807 is one of its 534,600,000 primitive roots

d The product ax. , can be aslargeas 16807x 2147483647
~ 1.03x 2.

0 Need 46-bit integers
= 16807

= 2147483647
m div a = 2147483647 div 16807 = 12773
r = mmod a= 2147483647 mod 16807 = 2836

a For acorrect implementation, Xy= 1 = X;q000= 1,043,618,065.
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Generator Using I nteger Arithmetic

FUNCTION Random(VAR x:INTEGER) : REAL;

CONST
a = 16807; (x Multiplier *)
m = 2147483647; (* Modulus x*)
q = 127773; (x m div a *)
r = 2836; (* m mod a *)
VAR

x_div_q, x_mod_q, x_new: INTEGER;

BEGIN
x_div_q := x DIV q;
x_mod_q := x MOD q;

X_new := a*xx_mod_q - r*x_div_q;
IF x_new > O THEN x := x_new ELSE x := x_new + m;
Random := x/m;
END;
_Washington University in St. L ouis CSE574s ©2006 Raj Jain_
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Generator Using Real Arithmetic

FUNCTION Random(VAR x:DOUBLE) : DOUBLE;

CONST
a = 16807.0D0; (x Multiplier *)
m = 2147483647.0D0; (* Modulus *)
q = 127773.0D0; (x m div a *)
r = 2836.0D0; (* m mod a *)
VAR
x_div_q, x_mod_q, x_new: DOUBLE;
BEGIN
x_div_q := TRUNC(x/q);
x_mod_q := x-q*x_div_q;
X_new := axx_mod_q - r*x_div_q;
IF x_new > 0.0DO THEN x := x_new ELSE x
Random := x/m;
END;

CSE574s

:= X_new + m;
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Tausworthe Generators

2 Need long random numbers for cryptographic applications
QO Generate random sequence of binary digits (O or 1)
2 Divide the sequence into strings of desired length
0 Pronosed bv Tausworthe (1965)
bn = Cq—lbn—l D Cq_gbn_z D Cq_gbn_g b---D Cobn_q

Where ¢, and b, are binary variables with values of O or 1, and @

IS the exclusive-or (mod 2 addition) operation.
0 Usesthelast g bits of the sequence

= autoregressive sequence of order g or AR(Q).
2 An AR(Q) generator can have a maximum period of 29-1.

Washington University in St. Louis CSE574s ©2006 Ra| Jain
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Tausworthe Generators (Cont)

0 D = delay operator such that Db(n) = b(n + 1)
Db(i — q) = cq_1 DT b(i — q) + cq_2DT?b(i — q) + -+ - + cob(i — ¢) mod 2

DY — cq_qu_l — cq_qu_Q — -+ —¢co =0 mod 2
DY + cq_qu_1 + cq_qu_z + .-+ cog =0 mod 2

Q Characteristic polynomial:
27+ ¢y 1297 +cgoxT + - + o
a Theperiod isthe smallest positive integer n for which x™-1is
divisible by the characteristic polynomial.

2 The maximum possible period with a polynomial of order g is
29-1. The polynomials that give this period are called primitive
polynomials.

Washington University in St. Louis CSE574s ©2006 Ra| Jain
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Example 26.4

X7+ x3+1
a Using D operator in place of X:

D'b(n) + D*b(n) + b(n) = 0 mod 2
Or:

bn+7—|—bn+3—|—bn20mod2 n:O,l,Q,...

Q Using the exclusive-or operator
bys7 B bpsa ®b, =0 n=0,1,2,...
O s = bpas @b, n=0,1,2 ..
Q Substituting n-7 for n:
b, =bp_4a®b,—7 Nn=7,8,9,...

Washington University in St. Louis CSE574s
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Example 26.4 (Cont)

0 Starting withby= b, = --- = b= 1:
by = b3®Bby=101=0
bs = basBb;=101=0
bg = bs;Dby=19H1=0
bio = bgPbs=191=0
b1 = b;dbs=081=1

a The compl ete sequenceis.

1111111 0000111 0111100 1011001 0010000 0010001

0011000 1011101 0110110 0000110 0110101 0011100
1111011 0100001 0101011 1110100 1010001 1011100
0111111 1000011 1000000.

a Period = 127 or 27-1 bits
= The polynomial x’+x3+1 is a primitive polynomial.

Washington University in St. Louis CSE574s ©2006 Ra| Jain
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Linear Feedback Shift Register

X+x3+1=>b=b @ b

Q Thiscan be easily impl em{gnted using shift registers:

L i J—»
b, F—{b., —1b Lb —{b., [—{b Output

n n-2 n-3 n-4 n-5

4 Ingeneral b, _Cq 10, 1@6(] 2y, — Q@Cq 3bn—3@"'@cobn—q

4 )
C Cn-q+1

—— QOutput

\ybn L n1 n-2 P — +b

n-q+1 n-q

AND gates are not required if ¢’ s are known
Washington University in St. Louis CSE574s ©2006 Ra| Jain
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Generating U(0,1)

2 Divide the sequence into successive groups of s bits and use the
first | bits of each group as a binary fraction:

Ln = O-bsnbsn—l—l bsn—|—2bsnt—|—3 T bsn—l—l—l

Or equivalently: T, = Z 2 bgnt i1
=1

Here, sisaconstant greater than or equal to | and is relatively
prime to 29-1.

s> | = x, and X; for n# | have no bits in common

O Relative prime-ness guarantees a full period 29-1 for x...

Washington University in St. Louis CSE574s ©2006 Ra| Jain
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a 1=8, s=8:

Washington University in St. Louis

Example 26.5

bn = bn-4EB bn-7
Q Theperiod 27-1=127

0.111111102 = 0.992194¢
0.000111015 = 0.11328¢
0.111001015 = 0.89453
0.100100102 = 0.296881¢
0.000001002 = 0.363281¢
0.010011002 = 0.4218819

CSE574s
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Properties of Tausworthe Generators

Thel-bit numbers have the following property:

1. Themean of the sequence is one-half:
1
Elx,] ~ 9

2. Thevariance of the sequence is one-twelfth:

1
Var|z,| =~ —
ar|r,] T
3. Theseria correlation is zero:
29 — 1 — [
Corr|z,,xp1s] =0 for 0 < |s| < ( l )
Washington University in St. Louis CSE574s ©2006 Ra| Jain
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Properties of Tausworthe Generators (Cont)

4. The sequenceis k-distributed for all kKsupto | g/l |.

= Every k-tuple of I-bit numbers appears 29 times over the full
period except the all-zero tuple, which appears one time less.

the bit sequence contains 291 ones and 29-1-1 zeros

If awindow of length g slides along the sequence, each of the
241 nonzero k-tuples appears exactly once in acomplete
period.

Washington University in St. Louis CSE574s ©2006 Ra| Jain
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Primitive Trinomials

2 Trinomials: Only three non-zero terms

= Generation of each new bit requires just one
exclusive-or operation

bn — bn—q—l—r D bn—q

QO 2r < g= Successive g-bits can be generated using

snift and an exclusive-or sequence:
2 Theindividual bitsin aword are read from the right.

Washington University in St. Louis CSE574s ©2006 Ra| Jain
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Primitive Trinomials (Cont)

0 For example, the seed isb ; by, -+ by,
Start with ag-bit seed ;.

2. Right-snift Y; by r bits, filling with zeros on the left.
Call theresult Y.,

3. Exclusive-or Y; and Y,,. Call the result Y.
This compl etes the computation of the right g-r bits.

=

4. Left-shift Y; by g-r bits, filling with zeros on the right.
Call theresult Y,

5. Exclusive-or Y;and Y,. Theresult Y isthe new g-bit seed.

Washington University in St. Louis CSE574s ©2006 Ra| Jain
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Example 26.6

X +x3+1
Q r=3,0=7,and g-r =4
= Need a 3-bit right-shift and a 4-bit |eft-shift
0 Seed X=1111111:

Step 1:  Copy seed Y; =X =1111111

Step 2: Right-shift by 3 Y5 = 0001111

Step 3:  Exclusive-or Y=Y &Y, = 1110000

Step 4: Left-shift by 4 Y, = 0000000

Step 5:  Exclusive-or Ys: =YY, = 1110000
Washington University in St. Louis CSES574s ©2006 Ra| Jain
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Example 26.6 (Cont)

QO The next 7 bits (read from the right) are 0000111. The process
can then be repeated:

Step 1:  Copy seed Y; = X = 1110000

Step 2: Right-shift by 3 Y5 = 0001110

Step 3:  Exclusive-or Ys=Y1 Y, =1111110
Step 4:  Left-shift by 4 Y, = 1100000

Step 5:  Exclusive-or Ys =YY, =0011110

0 The next 7 bits (read from the right) are 0111100

Washington University in St. Louis CSE574s ©2006 Ra| Jain
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List of Primitive Trinomials.

> +x+1 3 +x+1 rt+x+1 ° + 2% + 1
2+ x+1 r+r+1 '+ a3+ 1 ¥+t + 1
e O+ +1 2V +22+1 2P+ +1 r1° + 2%+ 1
le15_1_337_|_1 51317—|—£133—|—1 21317—|—335—|—1 52317—|—.CIZ‘6—|—1
e 4+27+1 220 +23+1 42241 2+ +1
B b1 284941 2P 4341 225 4 27 41
e 4341 284941 22841341 2294 2241
Pl p3 41 23042641 231 42741 31 4 213 11
If x9 4+ 2" 4+ 1 is listed then 29 4+ 297" 4+ 1 is also primitive.

Washington University in St. Louis CSE574s ©2006 Ra| Jain
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Disadvantages of Tausworthe Generators

0 The sequence may produce good test results over the complete
cycle, it may not have satisfactory local behavior.

Q It performed negatively on the runs up and down test.

2 Although the first-order serial correlation isamost zero, it is
suspected that some primitive polynomials may give poor high-
order correlations.

2 Not all primitive polynomials are equally good.

Washington University in St. Louis CSE574s ©2006 Ra| Jain
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Generalized Feedback Shift Register (GFSR)

a |-bit sequence x, is generated as follows:
Ln — O~bnbn—|—sbn—|—23 T bn—|—(l—1)8

Here, sisa carefully selected delay."

O The sequence x,, can be generated very efficiently using word-
wide shift and exclusive-or instructions.

2 Need to store an array of numbers and carefully initialize the

array
Washington University in St. Louis CSE574s ©2006 Ra| Jain
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Extended Fibonacci Generators

QO Fibonacci sequence: X, = X, ;X5
a Random numbers: X=X, ;+X., mod m
= High seria correlation
= Not good randomness properties
2 Combine the fifth and seventeenth most recent val ues:
Xy = Xy + Xo.q7 MOA2
This generator passes most statistical tests.
2 It can be implemented as follows using 17 storage locations
L[1],...,L[17]

2 Initialization: fill the locations with 17 integers, not all even,
and set two pointersi and j to 17 and 5, respectively.

Washington University in St. Louis CSE574s ©2006 Ra| Jain
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Extended Fibonacci Generators (Cont)

2 On each successive call:
x = L[i| + L[j];
L[] := x;
i:=1¢—1; IF i =0 THEN ¢ := 17;
jgi=7—11F 3=0 THEN 5 :=17;
Return x;
0 The add operation in thefirst lineis automatically modulo 2% in
k-bit machines with 2's complement arithmetic.
0 The period of the generator is 2(217-1).
1 For k=8, 16, and 32, this period is 1.6 x107, 4.3 x10°, and
2.8x10%, respectively.

0 The period is considerably longer than that possible with
LCGs.

Washington University in St. Louis CSE574s ©2006 Ra| Jain
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Combined Generators

1. Adding random numbers obtained by two or more generators.
W, =(X,tY,) mod m
For example, L'Ecuyer (1986):

x, = 40014x,,_1 mod 2147483563
yn, = 40692y,,_1 mod 2147483399

Thiswould produce;
wy, = (x, — yn) mod 2147483562

Period = 2.3x 10%®

Washington University in St. Louis CSE574s ©2006 Ra| Jain
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Combined Generators (Cont)

Another Example: For 16-bit computers:
w, = 157w,,_1 mod 32363

r, = 146x,,_1 mod 31727
Yn = 142y,,—1 mod 31657

Use:

vn = (W, — Ty + Ypn) mod 32362

This generator has a period of 8.1 x 102,

Washington University in St. Louis CSE574s ©2006 Ra| Jain
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Combined Generators (Cont)

2. Exclusive-or random numbers obtained by two or more
generators.

3. Shuffle. Use one sequence as an index to decide which of
several numbers generated by the second sequence should be

returned.
Washington University in St. Louis CSE574s ©2006 Ra| Jain
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Combined Generators (Cont)

a Algorithm M:

a) Fill an array of size, say, 100.

b) Generate anew y, (between O and m-1)

c) Index i=1+100y/m

d) ith element of the array Is returned as the next random number
e) A new value of x, is generated and stored in the ith location

Washington University in St. Louis CSE574s ©2006 Ra| Jain
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Survey of Random-Number Generators

a A currently popular multiplicative LCG is:
T, = 7°x,_ 1 mod (231 —1)
> Used In:
a SIMPL/I system (IBM 1972),
o APL system from IBM (Katzan 1971),

o PRIMOS operating system from Prime Computer
(1984), and

o Scientific library from IMSL (1980)

> 281-1isaprime number and 7° is aprimitive root of it
= Full period of 231-2.

» This generator has been extensively analyzed and shown to be
good.

> Itslow-order bits are uniformly distributed.

Washington University in St. Louis CSE574s ©2006 Ra| Jain
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Survey of RNG’s (Cont)

2 Fishman and Moore (1986)'s exhaustive search of

m=231-1:

T, = 48271z, _1 mod (2°! — 1)

T, = 69621z, _, mod (2°! — 1)

a SIMSCRIPT 11.5 and in DEC-20 FORTRAN:

z, = 630360016x,,_; mod (2°* — 1)

Washington University in St. Louis CSE574s
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Survey of RNG’s (Cont)

2 RANDU" (IBM 1968): Very popular in the 1960s:
z, = (2'° 4+ 3)x,,_1 mod 2°*

> Modulus and the multiplier were selected primarily to
facilitate easy computation.

> Multiplication by 216+3=65539 can be easily accomplished
by afew shift and add instructions.

> Does not have afull period and has been shown to be
flawed in many respects.

» Does not have good randomness properties (Knuth, p 173).

> Tripletslie on atotal of 15 planes
= Unsatisfactory three-distributivity

> Likeal LCGswith m=2X, the lower order bits of this
generator have a small period. RANDU isno longer used

Washington University in St. Louis CSE574s ©2006 Ra| Jain
26-47




Survey of RNG’s (Cont)

2 Analog of RANDU for 16-bit microprocessors:
z, = (2% 4+ 3)x,_1 mod (2%°)
» This generator shares all known problems of RANDU

> Period = only a few thousand numbers
—> not suitable for any serious simulation study

2 University of Sheffield Pascal system for Prime Computers:
r, = 16807x,,_1 mod 2°!

» 16807 # 8i+ 3 = Does not have the maximum possible

period of 231-2.

» Used with a shuffle technique in the subroutine UNIFORM
of the SAS statistical package

Washington University in St. Louis CSE574s ©2006 Ra| Jain
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Survey of RNG’s (cont)

2 SIMULA on UNIVAC usesthe following generator:

z, = 5%z, 1 mod 2°°

> Has maximum possible period of 233, Park and Miller
(1988) claim that it does not have good randomness
properties.
a The UNIX operating system:
z, = (11035152452, _1 + 12345) mod 2°*

> Like all LCGswith m=2X, the binary representation of x's
has acyclic bit pattern

Washington University in St. Louis CSE574s ©2006 Ra| Jain
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Seed Selection

O Multi-stream ssmulations; Need more than one random
stream

» Single queue = Two streams
= Random arrival and random servicetimes

1. Do not use zero. Finefor mixed LCGs.
But multiplicative LCG or a Tausworthe LCG will stick at
Z€exo.

2. Avoid even values. For multiplicative LCG with modulus
m~=2X, the seed should be odd. Better to avoid generators that
have too many conditions on seed values or whose
performance (period and randomness) depends upon the seed
value.

3. Do not subdivide one stream.

Washington University in St. Louis CSE574s ©2006 Ra| Jain
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Seed Selection (Cont)

4. Do not generate successive seeds. u, to generate inter-arrival
times, u, to generate service time = Strong correlation

5. Use non-overlapping streams.
Overlap = Corréelation, e.g., Same seed = same stream

6. Reuse seedsin successive replications.

7. Do not use random seeds: Such as the time of day.
Can't reproduce. Can't guaranteed non-overlap.

8. Sdlect {U07U100,000,U200,000,---}

mn
n C(CL o 1)
T, =a To+ mod m
a—1
Washington University in St. Louis CSE574s ©2006 Ra| Jain
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Table of Seeds

T, = 7°x,_1 mod (23! —1)

2£100000i £100000(i41) £100000(i+2) £100000(i+3)

1 46,831,604 1,841.581,359 1,193,163,244

727,633,608 933,588,178 804,159,733  1,671,059,989
1,061,288,424 1,961,692,154 1,227.283.347 1,171,034,773
276,090,261 1,066,728,069 209,208,115 554,590,007
721,958,466 1,371,272,478 675,466,456 1,095,462.486
1,808,217,256  2,095,021,727 1,769,349.045 904,914,315
373,135,028 717,419,739 881,155,353 1,489,529.863
1,521,138,112 298,370,230 1,140,279,430 1,335,826,707
706,178,559 110,356,601  884,434.366 962,338,209
1,341,315,363 709,314,158 591,449,447 431,918,286
851,767,375 606,179,079  1,500,869,201 1,434.868,289
263,032,577 753,643,799 202,794,285 715,851,524

Washington University in St. Louis
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Myths About Random-Number
Generation

1. A complex set of operationsleadsto randomresults. Itis
better to use simple operations that can be analytically
evaluated for randomness.

2. Asingletest, such as the chi-sguare test, is sufficient to test
the goodness of a random-number generator. The sequence

0,1,2,....m1 will pass the chi-square test with a perfect score,
but will fail the run test = Use as many tests as possible.

3. Random numbers are unpredictable. Easy to compute the

parameters, a, ¢, and mfrom afew numbers= LCGs are
unsuitable for cryptographic applications
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Myths (Cont)

4. Some seeds are better than others. May be true for some.

Tn = (98062,_1 + 1) mod (2'7 — 1)

Works correctly for all seeds except x,= 37911
Stuck at x,= 37911 forever
Such generators should be avoided.

Any nonzero seed in the valid range should produce an
equally good sequence.

For some, the seed should be odd.

Generators whose period or randomness depends upon the
seed should not be used, since an unsuspecting user may
not remember to follow all the guidelines.

YV V VY V
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Myths (Cont)

5. Accurate implementation is not important.

» RNGs must be implemented without any overflow or
truncation For example,
r, = 1103515245z, 1 + 12345 mod 2°!

> In FORTRAN:

z,, = (1103515245x,,_1 + 12345).AND . X'TFFFFFFF'
> The AND operation is used to clear the sign bit

» Straightforward multiplication above will produce overflow.

6. Bits of successive words generated by a random-number
generator are equally randomly distributed.

> |If an agorithm produces I-bit wide random numbers, the
randomness is guaranteed only when all | bits are used to
form successive random numbers.
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Example 26.7

T, = (251732, _1 + 13849) mod 2'°

Ln

Decimal

Binary

Notice that: "
a) Bit1 (theleast 1
significant bit) is aways 2

1. 3

b) Bit2isawaysO. g
c) Bit 3 alternates between 6
1 and O, thus, it has a -
cycle of length 2. 8

d) Bit4followsacycle 9
(0110) of length 4. 10

. 11

e) Bit5followsacycle 19

(11010010) of length 8. 13

Washington University in St. Louis

25.173
12,345
54,509
27.825
55,493
25.449
13,277
53,857
64,565

1945

6093
24,849
48,293

01100010 01010101
00110000 00111001
11010100 11101101
01101100 10110001
11011000 11000101
01100011 01101001
00110011 11011101
11010010 01100001
11111100 00110101
00000111 10011001
00010111 11001101
01100001 00010001
10111100 10100101
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Example 26.7 (Cont)

QO Theleast significant bit is either always O or always 1.
0 Thelth bit hasaperiod at most 2. (I=1 isthe least significant
bit)
0 For al mixed LCGs with m=2k:
> Thelth bit hasaperiod at most 2.

> In genera, the high-order bits are more randomly
distributed than the low-order bits.

= Belter to take the high-order | bits than the low-order |

bits.
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2 Pseudo-random numbers are used in ssmulation for

repeatability, non-overlapping sequences, long cycle

a It isimportant to implement PRNGs in integer arithmetic
without overflow => Schrage’ s method

a For multi-stream simulations, it isimportant to select seeds that
result in non-overlapping sequences

2 Two or more generators can be combined for longer cycles
2 Bits of random numbers may not be random
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Homewor k

0 Submit answer to Exercise 26.5. Submit code and

report Xo0 000
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Exercise 26.1

What is the maximum period obtainable from the following
generator:

T, = ax,_1 mod 2%

What should be the value of a?
Wheat restrictions are required on the seed?
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Exercise 26.2

Determine 24" mod 31 forn=1,...,30.
Find the smallest n for which the mod operation's result is 1.
|s 24 isaprimitive root of 317?
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Exercise 26.3

Determine all primitive roots of 11.
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2 Compute the period of the following generator:

Exercise 26.4

x, = 13x,_1 mod 2311
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Exercise 26.5

|mplement the following LCG using Schrage's method

to avoid overflow:
x, = 400142, _1 mod 2147483563

Using a seed of x,=1, determine X;gu00-
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Exercise 26.6

|mplement the following LCG with and without the
Schrage's method:

r, = 1lx,,_1 mod 31

Are the sequences generated the same? If not, explain what isthe
problem.
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Exercise 26.7

2 Can you implement the following LCG using Schrage's
method?

x, = 24x,_1 mod 31

Write programs to implement the generator with and without the
Schrage's method and justify your answer.
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Determine which of the following polynomialsisa primitive

polynomial:
1. X2+x+1
2. X3+x4+1
3. xXH4x4+1
4. xX+xe+1

Washington University in St. Louis
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Exercise 26.9

Determine the period of the Tausworthe sequence generated using
each of the following characteristic polynomials:

1. x>+x+1

2. Xo+x3+1

3. X8+x+1

4. x30+x5+1
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Exercise 26.10

Generate five 6-bit numbers using the Tausworthe method for the
following characteristic polynomial starting with a seed of
X,—=0.111111.,:

| |
r +x+1
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What is wrong with the parameters of the following two

generators?

z, = (40z,_1 + 3641) mod 729

xr, = (61x,_1 + 2323) mod 500

Washington University in St. Louis
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Exercise 26.12

Generate 48 random numbers using a seed of X,=1In
the following mixed LCG:

z, = 132z, _1 + 11 mod 2'°

Find the period of Ith bit from theright for 1I=1,2...,5.
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