
Measuring the Effectiveness of FPGA
Programming Languages

Stu Mesnier, csm1@seas.wustl.edu (A project report written under the
guidance of Prof. Raj Jain) Download

Abstract

Field-Programmable Gate Arrays (FPGA) offer dramatic processing speed ups versus general purpose
microprocessors for certain applications. Unfortunately, there are too few programmers to meet industry
demand. This paper proposes that commonly taught sequential languages, such as C and Java, can be adapted
to replace the ones, such as VHDL and Verilog, commonly used in this realm. The traditional FPGA
programming languages require dramatic shifts in programmer thinking toward specifying massively parallel
operation logic elements. Little empirical research has been reported comparing the two styles of
programming languages, so this paper describes a distributed experiment that can provide investigators with
data needed for analysis.

Keywords: FPGA, VHDL, Verilog, C, C++, Java, Handel-C, Impulse-C, programming, programming
language, programming efficiency, operational efficiency

Table of Contents
1. Introduction
1.1. Context
1.2. The Problem
1.3. Programming Languages
2.Performance Measurements
2.1 Language Acquisition
2.2. Programming Efficiency
2.3. Operational Efficiency
3. Performance Comparison Experiments
3.1 Factors and levels
3.1.1 Programmer Ability
3.1.2 Program Complexity
3.1.3 Programming Language
3.1.4 Application Category
3.1.5 Target Device
3.2 Workload
3.3 Example Case Study
4. Summary
References
Definitions

1. Introduction
The history of computing industry has been characterized more than any other by “faster, smaller, cheaper”.

Measuring the Effectiveness of FPGA Programming Languages

1 of 11

Intel co-founder Gordon Moore’s famous “Moore’s Law” not only uncannily describes transistor fabrication
advances, but also challenges and motivates us to continue along the trajectory it predicts.

1.1. Context

Numerous analogies put advances in computing into perspective with other technologies, for instance, Bill
Gates once remarked, “If GM had kept up with technology like the computer industry has, we would all be
driving $25.00 cars that got 1,000 miles to the gallon" [Gates07]. The same cannot be said about advances in
software, in fact, often just the opposite. Wirth’s Law states: “Software is getting slower faster that
hardware is getting faster” [Wirth95].

Nonetheless, there are significant computing realms where software and hardware intersect, and while
Moore’s Law continues to propel hardware development, competing software tools to exploit the hardware
violate Wirth’s Law. One such area is development of Field Programmable Gate Arrays (FPGA). These
remarkable devices operate at clock speeds on the order of 100MHz (or about 10 to 30 times) slower than
general purpose microprocessors, but can achieve throughputs hundreds of times faster because of their
massively parallel processing abilities [Storaasli08].

FPGAs provide digital circuit designers the ability to rapidly produce intricate digital logic circuits in a
fraction of the time and cost required for similar implementations using Application Specific Integrated
Circuits (ASIC). While ASIC implementations are almost always smaller and faster than equivalent FPGA
implementations, the latter are often tens of thousands of times less expensive to develop while usually only a
few percents slower in operation and higher in energy consumption [AMI06].

As attractive as FPGAs are for circuit development, they suffer from a simple problem: there aren’t enough
well-trained FPGA programmers [Pellerin08]. FPGAs are programmed by loading them with a special bit
map that sets the function of each “slice” or Configurable Logic Block (CLB) and another bit map that
specifies the interconnection between CLBs and the routing of signals and to the chip’s Input Output Blocks
(IOB). These bit maps are analogous to the machine code executed by General Purpose Microprocessors,
and are similarly difficult to produce manually. Naturally, this is not done in the real world. Instead,
programmers use High Level Languages (HLL) which are processed by appropriate compilers to generate the
necessary object code.

1.2. The Problem

The realm of FPGA programming, was originally dominated by a group of HLLs referred to as Hardware
Description Languages (HDL). VHDL and Verilog are examples. These allow programmers to describe the
logical elements of the circuit, particularly the logic gates, and how they interconnect. Standardized
languages naturally lead to competition among compiler developers and, especially in the case of FPGA chip
makers, to backend software that can be readily calibrated to generate the essential bitmaps for their specific
devices. Standardized languages also provide for relative efficiencies while educating programmers in their
use.

Most institutions of higher learning teach the majority of new programmers in commonly used commercial
and scientific HLLs, such as C, C++, and Java. The unfortunate consequence for industry is an unsatisfied
demand for FPGA programmers because few understand the kinds of problems that are attacked with FPGA
solutions. Computer Science programs do not emphasize hardware programming leading to a shortage of
trained programmers.

There is a completely different programming paradigm in play among these two classes of HLLs: the general

Measuring the Effectiveness of FPGA Programming Languages

2 of 11

purpose HLLs assume sequential processing with special constructions for loops and branches, while HDLs
assume parallel processing and offer limited sequential or conditional logic structure. This requires a radical
new way of thinking for programmers originally trained to use sequential logic.

A new class of HLLs are emerging to address these problems. Instead of retraining sequential-processing-
thinking programming about the intricacies of parallel programming for digital circuits, the approach is to
adapt common HLLs for the HDL task. Variations of C and Java, among others, are provisioned with special
functions to support chip IO, and also pragmas and functions programmers use to specify parallelism and
circuit choices, along with hidden optimizations that identify and exploit inherent parallelism. These language
variations do not require radical changes to thought processes. Instead, they simply require some additional
concepts and how to use them effectively.

The question is: Are some languages better for specifying FPGA circuits than others? And if the answer
appears to be “yes”, then can meaningful differences be measured with sufficient accuracy so that decisions
can be made regarding their selection and, when the time is right, abandon earlier choices for new ones? This
paper outlines an experiment to gather information to answer these questions.

1.3. Programming Languages

Two programming languages have traditionally accounted for most FPGA programming in the usual HDL
style: VHDL and Verilog. Verilog was designed in the mid 1980’s, and is somewhat more C-like than
VHDL. It is conceded by some to be easier to use than VHDL because of simpler syntax and fewer
constructs [Verilog08]. VHDL was originally created for the Department of Defense (DoD) to document the
behavior of ASICs that were created by supplier companies. Its syntax is similar to that of the Ada
programming language, also developed for the DoD. The first version designed to meet IEEE standards was
introduced in 1987 [VHDL08].

Both languages translate source code elements into a common transportable notation called Register Transfer
Level (RTL). Many software vendors produce specialized tools for producing RTL and also for using RTL to
drive simulators and circuit synthesizers. Another common feature is the ability to express logic through
either structural or behavioral constructs. Structural specification allows the programmer to describe the
circuit in terms of elements and connections, while behavioral specification ignores component descriptions
and simply defines output function in terms of the inputs and stored states.

Numerous adaptations have been made to C and Java programming languages to produce new HDLs; among
these are Impulse C, Handel C, SystemC, JHDL (based on Java), and MyHDL (based on Python). Mostly,
they provide only behavioral specification, and leave structural-like specification to disciplined programmers.
Their primary advantage over the original HDLs is they allow program development to begin using familiar
programming languages, including comfortable verification techniques, then apply a series of transformations
in order to adapt the program for parallel processing as a circuit simulation. Transformations include recoding
with special functions, specifying pragmas, and utilization of specialized classes or variables.

Verification techniques are substantially different between the original and adapted HDLs. Adapted HDLs
allow programmers to use ordinary print statements and data files for supplying input and capturing output.
Verilog offers limited provisions for I/O, but is not as robust as its C counterparts. Integrated Development
Environments generally provide for breakpoints and watchpoints, but these are sometimes awkward to use in
a parallel programming environment under test. Waveform analysis is another method of verification specific
to HDLs. As the circuit operation is simulated, all or selected subsets of signals are displayed as synchronized
logic waveforms in a separate window. This can be either indispensible or useless clutter, depending on the
experience of the programmer.

Measuring the Effectiveness of FPGA Programming Languages

3 of 11

Throughout the remainder of this paper, VHDL and Verilog are referred collectively as the Traditional HDLs
(THDLs). The newer class of HDLs, such as Handel-C, Impulse-C, JHDL, et. al., are referred collectively as
the Adapted Sequential HDL Programming Languages (ASPLs).

2. Performance Measurements
The broad question to answer is “Are any HDLs better than the others?” in particular, “Does the class of
ASPLs offer significant net advantages for hardware programming than the THDL class?” If so, can the
relative advantages and disadvantages be measured and quantified so that cost-related trade-offs can drive
decisions about their purchase and use? In order to begin to answer, suitable factors and metrics must be
identified. The various HDLs can be compared individually or collectively. Application types and
programmers’ level of experience may influence the observations. This paper focuses on the information
needed to make decisions and the design of an experimental framework to gather it, rather than attempting a
comprehensive comparison.

Change naturally imposes a learning requirement. Ideally, skilled programmers will learn a new language and
become proficient in a “short” or “reasonable” time period. Ease of learning seems important since, from a
business perspective, it indicates the time until “maximum”, or “sufficient”, productivity can be achieved.
Productivity can be measured, but may not be the best factor for comparing HLLs since many factors affect
it. Yet, presumably, productivity rises with competence. Competence can also be measured, but can also be
useful if self-reported.

Of greater interest, however, are the programming and operational efficiencies that can be achieved after
programmers reach stable levels of competence. While the experiment proposed here captures and evaluates
data in all three areas, learning, programming, and operating, the most useful business decision-making
information regarding productivity and efficiency come from the latter two. The important business questions
are “How productive are programmers using ASPLs vs. THDLs” and “How efficient are operating FPGA
implementations produced by ASPLs vs. THDLs?”

Table 1 organizes the metrics used to address these questions in the three aforementioned categories. A
detailed discussion of each follows.

Table 1. Categorization of Study Metrics.

Category Metrics

Language Acquisition Time required until competence is achieved

Number of programs written until competence is achieved

Number of Lines of Code written until competence is achieved

Programming Efficiency Time required to produce verified operational code

Time required to code

Measuring the Effectiveness of FPGA Programming Languages

4 of 11

Time required to test and debug

Time required to optimize

Operational Efficiency CLB usage, pre-optimization

CLB usage, post-optimization

Operating Frequency, pre-optimization

Operating Frequency, post-optimization

Throughput, pre-optimization

Throughput, post-optimization

2.1 Language Acquisition

Language acquisition is measured as either time or experience until competence is achieved. Ascertaining
when “competence is achieved” is mostly subjective. Until a standard tool for demonstrating competence can
be developed and proven, only the programmer himself or peers can evaluate a level of competence.
Assessing programmer competence fairly, accurately, and economically is notoriously difficult.
[McNamara02]

Presumably, programmer competence improves with each program written, though many factors can
influence mastery and the false appearance of mastery. For instance a programmer may code 50 programs
over the course of a year, yet 45 of them might be variations of the other five. Has competence been
achieved? Perhaps, but possibly his experience encompasses a mere 25% of the HLL constructs, and thus is
generally incompetent with the other 75%.

Often, programmers become specialized in one application area and thus remain naïve regarding data
structures and techniques useful in other applications. This should not be regarded as an obstacle to
competence, since such a specialist is perfectly competent and achieving high productivity in his specialty.
Thus, subjective classification of one’s own level of competence into Low, Medium, or High competence is
satisfactory.

2.2. Programming Efficiency

Programming efficiency refers to the time (or times) required for a programmer to reach production
milestones. Overall, the important quantization is the time required to produce verified operational code. The
measurement should be in terms of hours, though a useful hourly estimate can usually be derived from weeks
or months consumed. This experiment proposes allocating the overall hours into three distinct categories to
illuminate the extra value an HDL IDE offers to programmers. Thus programmers are asked to allocate hours

Measuring the Effectiveness of FPGA Programming Languages

5 of 11

to the subtasks of coding, verification (test and debug), and optimization.

2.3. Operational Efficiency

Operating efficiency empirically characterizes the results of a programming effort. Three metrics of greatest
use are the number of Configurable Logic Blocks (CLB) used, the theoretical operating frequency (i.e. the
inverse of the time of the critical combinational logic path), and achievable throughput. These are both
subdivided into pre- and post-optimizaition metrics because a common approach to FPGA programming is to
first produce a design that works, and then to refine it to take advantage of parallelism and special device
provision, such as Block Random Access Memory (RAM), multipliers, and Digital Signal Processing (DSP)
circuits, etc.

The first pair measures chip resources employed to satisfy a design and affects the selection of FPGA chip for
an application. Chips with larger CLB counts cost more. Programs that generate smaller CLB requirements
allow for either smaller and less expensive (and potentially cooler) FPGAs or for increased functionality on
the same chip. The critical time is the maximum amount of time required for all combinational logic to
stabilize, and thus establishes the minimum clock period and maximum clock rate. All metrics can be
improved substantially through optimization features offered by the HDL and by the skill and inventiveness
of the programmer.

The first two metrics, CLB usage and operating frequency, are easy to capture from the place and route
output produced during circuit synthesis. Throughput is determined by simple analysis or by testing after
implementation.

3. Performance Comparison Experiments
Experimentation is chosen because suitable programming languages exist at reasonable cost and are currently
used to produce commercial quality applications by a significant pool of programmers at various experience
levels. In order to capture metrics from a large pool of programmers and application areas, a novel scheme is
designed. FPGA programmers from all industries are invited to participate. To encourage standardization,
programmers are registered and expected to read a description of experimental goals and guidelines, and
particularly the self-assessed ranking of programming competency.

Participants are asked to attempt from one to three programs from common application areas common to
FPGA endeavors, such as cryptography, DSP, genomics, and data compression, by following predefined
program requirements. Programmers can either submit multiple programs using a single HDL or the same
application accomplished once with a THDL and once again with an ASPL. The programming workload is
meant to be moderately challenging, and without causing stress. In addition to providing examples from a
selected suite, programmers are invited to submit measurements from any additional HDL endeavors.

Data is collected through a web-based application and reviewed by at least one other registrant (the Peer
Reviewer). The observations and statistics are posted.

3.1 Factors and levels

Five factors are likely to affect the efficiencies of applications programmed using an ASPL vs a THDL:
programmer ability, program complexity, programming language, application category and target device.

3.1.1 Programmer Ability

Measuring the Effectiveness of FPGA Programming Languages

6 of 11

Programmer ability or competence is difficult to measure, and will be self assessed with confirmation by the
Peer Reviewer. Programmer’s rank their competence with each submitted program because it is likely to
vary among the language and application choices. This factor may illuminate some valuable information
regarding the speed at which programmers can become competent or proficient using an HDL. Low,
Medium, and High levels are provided.

3.1.2 Program Complexity

Program complexity is another difficult factor to assess empirically. Participants can categorize their attempts
into levels of Easy, Moderate, and Challenging. After a sufficiently large number of responses are received,
then a cluster analysis can help identify appropriate breakpoints between categories to confirm if three levels
is appropriate and whether independent programmers agree about application complexity.

3.1.3 Programming Language

Programming Language (and its accompanying integrated development environment) comprise the single
most important factor under study. Submitted results are easily tagged with the specific category.
Observations can be pooled at different levels, for instance, VHDL and Verilog results can be combined to
create the THDL group; Impulse-C and Handel-C can be combined into the C subgroup and combined with
JHDL and MyHDL in the larger ASPL group.

3.1.4 Application Category

Application category is controlled because different applications are likely to require different techniques and
may illuminate particular strengths and weaknesses among HDLs. Carefully coding this predictor is important
because it, is likely to be pooled with other applications as analyses prove the metric similarities between
certain application categories.

3.1.5 Target Device

Target device is readily coded and lends itself to grouping, especially with similar devices offered by the same
manufacturer. Different devices have different sizes, interconnection fabrics, clock and switching speeds,
and special circuitry provisions. These can effect the Operating Metrics. Allocating results and forming
conclusions on these differences is outside the scope of this proposed study, however, it may be advantageous
to control variability among devices by normalizing chip usage and speed measurements as a percentage of
device capacities.

3.2 Workload

The workload consists of a small group of specific programs from a standard collection of four programs from
different application areas, and are expected to be of medium complexity; challenging, but not extraordinarily
demanding. The collection is small and well defined to minimize effects from different functionality.
However, metrics for any program can be submitted and the Programmer and Peer Reviewer can collaborate
to assign an Application Category.

The period of study is expected initially to be about one year. Registrants can submit metrics for work
completed before joining the study, and work, if desired, on additional programs chosen from the standard
collection. A web page advertises the study, collects registrations and metrics, and displays results as they are
compiled.

Measuring the Effectiveness of FPGA Programming Languages

7 of 11

3.3 Example Case Study

A brief paper hints at the operational efficiency that can be achieved using Handel-C when compared with a
similar programming attempt using VHDL [Mylonas02]. The paper examines several implementations of the
Data Encryption Standard (DES) algorithm employing differing sophistication in pipelining and
implementation of Look-Up Tables (LUTs).

They present a table of the operating efficiency metrics, reproduced here in Table 2. It indicates that the best
Handel-C implementation requires about 20% more chip resources than the VHDL implementation but is
about 30% faster.

Table 2. Operating Efficiency of a DES Implementation using VHDL vs. Handel-C.

Circuit No. of CLB Slices Maximum Clock

Pipelined DES VHDL 2,524 68.999MHz

Pipelined DES Handel-C

Static Array LUTs

10,327 40.548MHz

Pipelined DES Handel-C

Static ROM LUTs

3,813 74.145MHz

Pipelined DES Handel-C

Celoxica Implementation

3,025 101MHz

The authors do not offer any guidance about their investment of time to produce their results. They conclude,
“Handel-C is not as mature as VHDL. Great care has to be taken when describing circuits. Although working
circuits can be produced from different descriptions, circuit size and speed can vary greatly.”

4. Summary
A survey of literature reveals little evidence providing empirical justification for the selection of one language
for HDL applications over another. In the author’s experience, this choice is often made by the emotional
case made by the most senior, vocal, or impassioned Lead Programmer or committee. Non-technical
business reasons, such as cost and alignment with industry competitors, suppliers, and customers often exert
greater influence regarding the selection once the barest case for technical suitability is made. the and , but
even more important are qualities such as the ability to express and manage complex designs efficiently, and
for the code to operate efficiently as well.

Little research is available comparing the value of ASPLs and THDLs in either commercial or academic
settings. This may be the result of marketing decisions informally adopted by language developers to conceal

Measuring the Effectiveness of FPGA Programming Languages

8 of 11

their deficiencies, or it may be that there is difficulty in capturing quantitative data for meaningful analysis.
The small bits of information found are either of single programming endeavors or of anecdotal quality.

This paper describes the impetus and an experiment for studying the relative efficiencies between ASPLs and
THDLs so that decision makers can more effectively address their genuine and long term productivity
concerns. Tools are evolving to assist the hardware programming industry overcome productivity
bottlenecks. It is time to employ performance engineering methods to discover and present quality
information.

Measuring the Effectiveness of FPGA Programming Languages

9 of 11

References
[AMI06] Active Motif, Inc., “The Promise of FPGA Programming”, 2006. http://www.timelogic.com
/technology_fpga.html]

 [Gates07] Gates, W. Presenting at COMDEX, 2007. http://silversunshine285.blogspot.com/2007/02/if-gm-
had-advanced-at-same-rate-as.html

[McNamara02] McNamara, R. “Concept mapping for Introductory Programming”, November 2002.
http://www.csse.monash.edu.au/hons/projects/2002/Robyn.Mcnamara/index.html

[Mylonas02] Mylonas, M; Holding, D.J.; Blow, K.J.. “DES Developed in Handel-C.” Aston University.
http://www.ee.ucl.ac.uk/lcs/papers2002/LCS057.pdf

[Pellerin08] Pellerin, D. Blog: “Programmable Arrays are more than Reconfigurable HDL Executers.” June
12, 2008. http://fpgacomputing.blogspot.com/2008/06/programmable-arrays-are-more-than.html

[Storaasli08] Storaasli, O., Strenski, D. “Accelerating Genome Sequencing 100 – 1000x with FPGAs,
Published after May 2007. http://private.ecit.qub.ac.uk/MSRC/Wednesday_Abstracts
/Storaasli_OakRidge.pdf

[Verilog08] Verilog. http://en.wikipedia.org/wiki/Verilog

[VHDL08] VHDL. http://en.wikipedia.org/wiki/VHDL

[Wirth95] Wirth, N. “A plea for leaner software”, Computer, Volume 28, Issue 2, February, 1995, pages
64-68.]

Definitions
ASPL - Adapted Sequential Programming Language. A variation of a common language such as C or Java
enabling it to meet the needs of FPGA programmers.

ASIC - Application Specific Integrated Circuit. A special electronic circuit implemented on a single chip to
perform a specific, though arbitrarily complex, operation. Generally, an ASIC cannot be reconfigured to
perform a different operation.

CLB - Configurable Logic Block. The smallest programmable element in an FPGA that performs a logical
function. Interconnections among CLBs are also programmable, but simply route signals and do not perform
any logic operations.

FPGA - Field Programmable Gate Array. A special electronic circuit implemented on a single chip designed
so that it can be configured or reconfigured to perform digital logic operations of vastly different kinds by
programmers who are unrelated to the manufacturer.

HDL - Hardware Design Language. A group of HLLs used to specify the operation of an ASIC or FPGA,
among which are found VHDL and Verilog.

Measuring the Effectiveness of FPGA Programming Languages

10 of 11

HLL - High Level Language. A computer programming language that is effective for allowing human
programmers to describe computer operations using abstract rather than detailed instructions.

IOB - Input Output Block. Specialized circuit elements on FPGA chips that enable interfaces with external
devices.

THDL - Traditional HDL. A collective reference to Verilog and VHDL.

VHDL - VLSI HDL. A widely used HDL developed for the DoD, and based on the Ada programming
language.

VLSI - Very Large Scale Integrated Circuit. A single integrated circuit with populations of more than 5000
transistors and other components (though this number is inadequately small for describing modern FPGA
chips).

Last modified on November 24, 2008
This and other papers on latest advances in performance analysis are available on line at
http://www.cse.wustl.edu/~jain/cse567-08/index.html

 Back to Raj Jain's Home Page

Measuring the Effectiveness of FPGA Programming Languages

11 of 11

