

2^kr Factorial Designs

\Box *r* replications of 2^k Experiments

 \Rightarrow 2^kr observations.

 \Rightarrow Allows estimation of experimental errors.

□ Model:

$$y = q_0 + q_A x_A + q_B x_B + q_{AB} x_A x_B + e$$

 \Box e = Experimental error

Computation of Effects

Simply use means of r measurements

Ι	А	В	A B	У	Mean \bar{y}
1	-1	-1	1	(15, 18, 12)	15
1	1	-1	-1	(45,48,51)	48
1	-1	1	-1	(25,28,19)	24
1	1	1	1	$(75,\ 75,\ 81)$	77
164	86	38	20		total
41	21.5	9.5	5		total/4

□ Effects: $q_0 = 41$, $q_A = 21.5$, $q_B = 9.5$, $q_{AB} = 5$.

Estimation of Experimental Errors

Estimated Response:

 $\hat{y}_i = q_0 + q_A x_{Ai} + q_B x_{Bi} + q_{AB} x_{Ai} x_{Bi}$

Experimental Error = Estimated - Measured

$$e_{ij} = y_{ij} - \hat{y}_i$$

= $y_{ij} - q_0 - q_A x_{Ai} - q_B x_{Bi} - q_{AB} x_{Ai} x_{Bi}$
 $\sum_{i,j} e_{ij} = 0$

Sum of Squared Errors: $SSE = \sum_{i=1}^{2} \sum_{j=1}^{i} e_{ij}^2$

Experimental Errors: Example

Estimated Response:

 $\hat{y}_1 = q_0 - q_A - q_B + q_{AB} = 41 - 21.5 - 9.5 + 5 = 15$

Experimental errors:

$$e_{11} = y_{11} - \hat{y}_1 = 15 - 15 = 0$$

	Effect			Estimated	Estimated Measured						
i	Ι	А	В	ΑB	Response	Re	spon	ses	E	Error	\mathbf{S}
	41	21.5	9.5	5	\hat{y}_i	y_{i1}	y_{i2}	y_{i3}	e_{i1}	e_{i2}	e_{i3}
1	1	-1	-1	1	15	15	18	12	0	3	-3
2	1	1	-1	-1	48	45	48	51	-3	0	3
3	1	-1	1	-1	24	25	28	19	1	4	-5
4	1	1	1	1	77	75	75	81	-2	-2	4
Washin	gton Un	iversity in S	t. Louis		CSE567M					©2011	Raj Jain
					18-6						

Allocation of Variation

□ Total variation or total sum of squares:

$$SST = \sum_{i,j} (y_{ij} - \bar{y}_{..})^2$$

 $y_{ij} = q_0 + q_A x_{Ai} + q_B x_{Bi} + q_{AB} x_{Ai} x_{Bi} + e_{ij}$

$$\sum_{i,j} (y_{ij} - \bar{y}_{..})^2 = 2^2 r q_A^2 + 2^2 r q_B^2 + 2^2 r q_{AB}^2 + \sum_{i,j} e_{ij}^2$$

SST = SSA + SSB + SSAB + SSE

Example 18.3: Memory-Cache Study SSY = $15^2 + 18^2 + 12^2 + 45^2 + \dots + 75^2 + 75^2 + 81^2$ = 27204SS0 = $2^2 r q_0^2 = 12 \times 41^2 = 20172$ SSA = $2^2 r q_A^2 = 12 \times (21.5)^2 = 5547$ SSB = $2^2 r q_R^2 = 12 \times (9.5)^2 = 1083$ SSAB = $2^2 r q_{AB}^2 = 12 \times 5^2 = 300$ SSE = $27204 - 2^2 \times 3(41^2 + 21.5^2 + 9.5^2 + 5^2)$ = 102SST = SSY - SS0= 27204 - 20172 = 7032Washington University in St. Louis ©2011 Rai Jain CSE567M

- SSA + SSB + SSAB + SSE
- = 5547 + 1083 + 300 + 102
- = 7032 = SST

Factor A explains 5547/7032 or 78.88%Factor B explains 15.40%Interaction AB explains 4.27%1.45% is unexplained and is attributed to errors.

Confidence Intervals For Effects

- □ Effects are random variables.
- □ Errors ~ N(0, σ_{e}) ⇒ y ~ N(\overline{y}_{\cdot} ; σ_{e}) $q_{0} = \frac{1}{2^{2}r} \sum_{i=i}^{n} y_{ij}$
- \square q₀ = Linear combination of normal variates
 - \Rightarrow q₀ is normal with variance $\sigma_e^2/(2^2r)$

Variance of errors:

$$s_e^2 = \frac{1}{2^2(r-1)} \sum_{ij} e_{ij}^2 = \frac{\text{SSE}}{2^2(r-1)} \Delta MSE$$

□ Denominator = $2^{2}(r-1) = #$ of independent terms in SSE

⇒ SSE has 2²(r-1) degrees of freedom. Estimated variance of q_0 : $s_{q_0}^2 = s_e^2/(2^2r)$

Confidence Intervals For Effects (Cont)

□ Similarly,

$$s_{q_A} = s_{q_B} = s_{q_{AB}} = \frac{s_e}{\sqrt{2^2 r}}$$

 □ Confidence intervals (CI) for the effects: q_i ∓ t_[1-α/2;2²(r-1)]s_{q_i}

 □ CI does not include a zero ⇒ significant

Example 18.4

□ For Memory-cache study: Standard deviation of errors:

$$s_e = \sqrt{\frac{\text{SSE}}{2^2(r-1)}} = \sqrt{\frac{102}{8}} = \sqrt{12.75} = 3.57$$

Stanuaru devration or effects.

$$s_{q_i} = s_e / \sqrt{(2^2 r)} = 3.57 / \sqrt{12} = 1.03$$

G For 90% Confidence: $t_{[0.95,8]} = 1.86$

■ Confidence intervals: $q_i \neq (1.86)(1.03) = q_i \neq 1.92$ $q_0 = (39.08, 42.91)$ $q_A = (19.58, 23.41)$ $q_B = (7.58, 11.41)$ $q_{AB} = (3.08, 6.91)$ ■ No zero crossing ⇒ All effects are significant. _{Washington University in St. Louis}

©2011 Raj Jain

Confidence Intervals for Contrasts

 \Box Contrast \triangle Linear combination with

- \sum coefficients = 0
- □ Variance of $\sum h_i q_i$ $s_{\sum h_i q_i}^2 = \frac{s_e^2 \sum h_i^2}{2^2 r}$
- □ For 100(1- α)% confidence interval, use t_[1- α /2; 2²(r-1)].

Example 18.5

Memory-cache study

 $u = q_A + q_B - 2q_{AB}$ Coefficients = 0, 1, 1, and $-2 \Rightarrow$ Contrast Mean $\bar{u} = 21.5 + 9.5 - 2 \times 5 = 11$ Variance $s_u^2 = \frac{s_e^2 \times 6}{2^2 \times 3} = 6.375$ Standard deviation $s_u = \sqrt{6.375} = 2.52$ $t_{[0.95:8]} = 1.86$ 90% Confidence interval for u: $\bar{u} \mp ts_u = 11 \mp 1.86 \times 2.52 = (6.31, 15.69)$

Conf. Interval For Predicted Responses

\Box Mean response \hat{y} :

$$\hat{y} = q_0 + q_A x_A + q_B x_B + q_{AB} x_A x_B$$

□ The standard deviation of the mean of m responses:

$$s_{\hat{y}_m} = s_e \left(\frac{1}{n_{\text{eff}}} + \frac{1}{m}\right)^{1/2}$$

$$n_{\text{eff}} = \text{Effective deg of freedom}$$

$$= \frac{\text{Total number of runs}}{1 + \text{Sum of DFs of params used in } \hat{y}}$$

$$= \frac{2^2 r}{5}$$
Washington University in St. Louis CSE567M ©2011 Raj Jain 18-15

Conf. Interval for Predicted Responses (Cont)

 $100(1-\alpha)\%$ confidence interval:

 $\hat{y} \mp t_{[1-\alpha/2;2^2(r-1)]} s_{\hat{y}_m}$

• A single run (m=1): $s_{\hat{y}_1} = s_e \left(\frac{5}{2^2r} + 1\right)^{1/2}$

□ Population mean (m=∞):
$$s_{\hat{y}} = s_e \left(\frac{5}{2^2 r}\right)^{1/2}$$

Example 18.6: Memory-cache Study

• For $x_A = -1$ and $x_B = -1$:

□ A single confirmation experiment:

$$\hat{y}_1 = q_0 - q_A - q_B + q_{AB}$$

= $41 - 21.5 - 9.5 + 5 = 15$

□ Standard deviation of the prediction:

$$s_{\hat{y}_1} = s_e \left(\frac{5}{2^2r} + 1\right)^{1/2} = 3.57\sqrt{\frac{5}{12} + 1} = 4.25$$

Using $t_{[0.95;8]} = 1.86$, the 90% confidence interval is: $15 \mp 1.86 \times 4.25 = (8.09, 22.91)$

□ Mean response for 5 experiments in future:

$$s_{\hat{y}_1} = s_e \left(\frac{5}{2^2r} + \frac{1}{m}\right)^{1/2}$$
$$= 3.57\sqrt{\frac{5}{12} + \frac{1}{5}} = 2.20$$

□ The 90% confidence interval is:

$$15 \mp 1.86 \times 2.20 = (10.91, 19.09)$$

□ Mean response for a large number of experiments in future:

$$s_{\hat{y}} = s_e \left(\frac{5}{2^2 r}\right)^{1/2} = 3.57 \sqrt{\frac{5}{12}} = 2.30$$

□ The 90% confidence interval is: $15 \pm 1.86 \times 2.30 = (10.72, 19.28)$

□ Current mean response: Not for future. Use contrasts formula.

$$s_{\hat{y}} = \sqrt{\frac{s_e \sum h_i^2}{2^2 r}} = \sqrt{\frac{12.75 \times 4}{12}} = 2.06$$

□ 90% confidence interval:

$$15 \mp 1.86 \times 2.06 = (11.17, 18.83)$$

18-19

Homework 18A

Updated Exercise 18.1: The following table lists measured CPU times for two processors on two workloads. Each experiment was repeated three times. Determine the effects.

Table 1	$18.12 \ 2^2$	3 Experimenta	al Design Exerc	ise					
Workload		Processor							
	А		В						
Ι	(41.16,	39.02, 42.56)	(65.17, 69.25,	64.23)					
J	(53.50,	55.50, 50.50)	(50.08, 48.98,	47.10)					
Washington University in	St. Louis	CSE567M		©2011 Raj Jain					
		18-20							

Assumptions

- 1. Errors are statistically independent.
- 2. Errors are additive.
- 3. Errors are normally distributed.
- 4. Errors have a constant standard deviation σ_{e} .
- 5. Effects of factors are additive
 ⇒ observations are independent and normally distributed with constant variance.

Visual Tests

1. Independent Errors:

- \square Scatter plot of residuals versus the predicted response \hat{y}_i
- ❑ Magnitude of residuals < Magnitude of responses/10
 ⇒ Ignore trends
- □ Plot the residuals as a function of the experiment number

 $\Box \quad \text{Trend up or down} \Rightarrow \text{other factors or side effects}$

- 2. Normally distributed errors: Normal quantile-quantile plot of errors
- 3. Constant Standard Deviation of Errors: Scatter plot of y for various levels of the factor Spread at one level significantly different than that at other ⇒ Need transformation

Multiplicative Models

□ Additive model:

 $y_{ij} = q_0 + q_A x_A + q_B x_B + q_{AB} x_A x_B + e_{ij}$

- Not valid if effects do not add.
 E.g., execution time of workloads.
 *i*th processor speed= v_i instructions/second.
 *j*th workload Size= w_i instructions
- □ The two effects multiply. Logarithm ⇒ additive model: Execution Time $y_{ij} = v_i \times w_j$ $\log(y_{ij}) = \log(v_i) + \log(w_j)$
- □ Correct Model:

$$y'_{ij} = q_0 + q_A x_A + q_B x_B + q_{AB} x_A x_B + e_{ij}$$

Where, $y'_{ij} = \log(y_{ij})$

Multiplicative Model (Cont)

Taking an antilog of effects:

 $u_A = 10^{qA}$, $u_B = 10^{qB}$, and $u_{AB} = 10^{qAB}$

 \Box u_A = ratio of MIPS rating of the two processors

- \Box u_B = ratio of the size of the two workloads.
- □ Antilog of additive mean $q_0 \Rightarrow$ geometric mean

$$\dot{y} = 10^{q_0} = (y_1 y_2 \cdots y_n)^{1/n} \quad n = 2^2 r$$

18-25

Example 18.8: Execution Times

	А	nalysis U	sing an A	Additive Model	
Ι	А	В	AB	У	Mean \bar{y}
1	-1	-1	1	(85.10, 79.50, 147.90)	104.170
1	1	-1	-1	$(\ 0.891,\ 1.047,\ 1.072)$	1.003
1	-1	1	-1	$(\ 0.955, \ 0.933, \ 1.122)$	1.003
1	1	1	1	(0.0148, 0.0126, 0.0118)	0.013
106.19	-104.15	-104.15	102.17	total	
26.55	-26.04	-26.04	25.54	total/4	

Additive model is not valid because:

- ❑ Physical consideration ⇒ effects of workload and processors do not add. They multiply.
- □ Large range for y. $y_{max}/y_{min} = 147.90/0.0118$ or 12,534 ⇒ log transformation

□ Taking an arithmetic mean of 114.17 and 0.013 is inappropriate.

	Analysis Using Multiplicative Model								
	Data After Log Transformation								
	Ι	А	В	AB	У	Mean \bar{y}			
-	1	-1	-1	1	(1.93, 1.90, 2.17)	2.00			
	1	1	-1	-1	(-0.05, 0.02, 0.03)	0.00			
	1	-1	1	-1	(-0.02, -0.03, 0.05)	0.00			
	1	1	1	1	(-1.83, -1.90, -1.93)	-1.89			
-	0.11	-3.89	-3.89	0.11	total				
	0.03	-0.97	-0.97	0.03	total/4				
-									

Variation Explained by the Two Models

		Additiv	e Model	Ν	Iultiplicat	ive Model
Factor	Effect	% Var.	Conf. Interval	Effect	% Var.	Conf. Interval
Ι	26.55		(16.35, 36.74)	0.03		(-0.02, 0.07)†
А	-26.04	30.1%	(-36.23, -15.84)	-0.97	49.9%	(-1.02, -0.93)
В	-26.04	30.1%	(-36.23, -15.84)	-0.97	49.9%	(-1.02, -0.93)
AB	25.54	29.0%	(15.35, 35.74)	0.03	0.0%	$(-0.02, 0.07)^{+}$
e		10.8%			0.2%	
		+ =	\Rightarrow Not Significant			

□ With multiplicative model:

- > Interaction is almost zero.
- > Unexplained variation is only 0.2%

Interpretation of Results

 $\log(y) = q_0 + q_A x_A + q_B x_B + q_{AB} x_A x_B + e$

 $\Rightarrow y = 10^{q_0} 10^{q_A x_A} 10^{q_B x_B} 10^{q_{AB} x_A x_B} 10^e$

$$= 10^{0.03} 10^{-0.97x_A} 10^{-0.97x_B} 10^{0.03x_Ax_B} 10^e$$

 $= 1.07 \times 0.107^{x_A} \times 0.107^{x_B} \times 1.07^{x_A x_B} 10^e$

- □ The time for an average processor on an average benchmark is 1.07.
- The time on processor A₁ is nine times (0.107⁻¹) that on an average processor. The time on A₂ is one ninth (0.107¹) of that on an average processor.
- \square MIPS rate for A_2 is 81 times that of A_1 .
- **\square** Benchmark B_1 executes 81 times more instructions than B_2 .
- □ The interaction is negligible.

 \Rightarrow Results apply to all benchmarks and processors.

©2011 Raj Jain

Transformation Considerations

- □ y_{max}/y_{min} small \Rightarrow Multiplicative model results similar to additive model.
- □ Many other transformations possible.
- □ Box-Cox family of transformations:

$$w = \begin{cases} \frac{y^a - 1}{ag^{a-1}}, & a \neq 0\\ (\ln y)g, & a = 0 \end{cases}$$

- Where g is the geometric mean of the responses: $g = (y_1 y_2 \cdots y_n)^{1/n}$
- w has the same units as y.
- \Box *a* can have any real value, positive, negative, or zero.
- □ Plot SSE as a function of $a \Rightarrow$ optimal a
- Knowledge about the system behavior should always take precedence over statistical considerations.

Washington University in St. Louis

General 2^kr Factorial Design

□ Model:

 $y_{ij} = q_0 + q_A x_{Ai} + q_B x_{Bi} + q_{AB} x_{Ai} x_{Bi} + \dots + e_{ij}$

□ Parameter estimation:

 $q_j = \frac{1}{2^k} \sum_{i=1}^{2^k} S_{ij} \bar{y}_i$

 $S_{ij} = (i,j)$ th entry in the sign table.

□ Sum of squares:

$$SSY = \sum_{i=1}^{2^{k}} \sum_{j=1}^{r} y_{ij}^{2}$$

$$SS0 = 2^{k} r q_{0}^{2}$$

$$SST = SSY - SS0$$

$$SSj = 2^{k} r q_{j}^{2} j = 1, 2, \dots, 2^{k} - 1$$

$$SSE = SST - \sum_{j=1}^{2^{k} - 1} SSj$$

General 2^kr Factorial Design (Cont)

- □ Percentage of y's variation explained by *j*th effect = $(SSj/SST) \times 100\%$
- □ Standard deviation of errors:

$$s_e = \sqrt{\frac{\text{SSE}}{2^k(r-1)}}$$

□ Standard deviation of effects:

$$s_{q_0} = s_{q_A} = s_{q_B} = s_{q_{AB}} = s_e / \sqrt{2^k r}$$

□ Variance of contrast $\sum h_i q_i$, where $\sum h_i = 0$ is:

$$s_{\Sigma h_i q_i}^2 = (s_e^2 \sum h_i^2)/2^k r$$

General 2^kr Factorial Design (Cont)

□ Standard deviation of the mean of m future responses:

$$s_{\hat{y}_p} = s_e \left(\frac{1+2^k}{2^k r} + \frac{1}{m}\right)^{1/2}$$

Confidence intervals are calculated using t_[1-α/2;2^k(r-1)].
 Modeling assumptions:

- > Errors are IID normal variates with zero mean.
- Errors have the same variance for all values of the predictors.
- > Effects and errors are additive.

Visual Tests for 2^kr Designs

- The scatter plot of errors versus predicted responses should not have any trend.
- The normal quantile-quantile plot of errors should be linear.
- Spread of y values in all experiments should be comparable.

]	Exa	mpl	e 1 8	3.9:	A 2 ³	³ 3 De	esign	
I	A	В	C	AB	A C	BC	ABC	у	Mean $\bar{\mathbf{y}}$
1	-1	-1	-1	1	1	1	-1	(14, 16, 12)	14
1	1	-1	-1	-1	-1	1	1	(22, 18, 20)	20
1	-1	1	-1	-1	1	-1	1	(11, 15, 19)	15
1	1	1	-1	1	-1	-1	-1	(34, 30, 35)	33
1	-1	-1	1	1	-1	-1	1	(46, 42, 44)	44
1	1	-1	1	-1	1	-1	-1	(58, 62, 60)	60
1	-1	1	1	-1	-1	1	-1	(50, 55, 54)	53
1	1	1	1	1	1	1	1	(86, 80, 74)	80
319	67	43	155	23	19	15	-1	total	
39.87	8.375	5.375	19.37	2.875	2.375	1.875	-0.125	total/8	

u Sum of Squares:

	Compo-	Sum of	Percent	
	nent	Squares	Variation	
-	у	4.9E4		
	$ar{y}$	$3.8\mathrm{E4}$		
	y- $ar{y}$	$1.1\mathrm{E4}$	100.00%	
	A	1683.0	14.06%	
	В	693.3	5.79%	
	\mathbf{C}	9009.0	75.27%	
	AB	198.3	1.66%	
	\mathbf{AC}	135.4	1.13%	
	BC	84.4	0.70%	
	ABC	0.4	0.00%	
	Errors	164.0	1.37%	
Washington University in St. Lou	is	CSE567M		©2011 Raj Jain
		18-39		

The errors have 2³(3-1) or 16 degrees of freedom. Standard deviation of errors:

$$s_e = \sqrt{\frac{\text{SSE}}{2^k(r-1)}} = \sqrt{\frac{164}{16}} = 3.20$$

□ Standard deviation of effects:

$$s_{q_i} = s_e / \sqrt{(2^3 3)} = 3.20 / \sqrt{24} = 0.654$$

□ % Variation:

-	Compo-	Sum of	Percent	-
	nent	Squares	Variation	
-	У	$4.9\mathrm{E}4$		-
	$ar{y}$	$3.8\mathrm{E4}$		
	y- $ar{y}$	$1.1\mathrm{E4}$	100.00%	
	А	1683.0	14.06%	
	В	693.3	5.79%	
	\mathbf{C}	9009.0	75.27%	
	AB	198.3	1.66%	
	AC	135.4	1.13%	
	BC	84.4	0.70%	
	ABC	0.4	0.00%	
	Errors	164.0	1.37%	
Washington University in St. Loui	S	CSE567M		©2011 Raj Jain
		10 / 1		

 \Box t_[0.95,16]=1.337 \square 90% confidence intervals for parameters: $q_i \mp (1.337)(0.654)$ $= q_i \mp 0.874$ $q_0 = (39.00, 40.74)$ $q_A = (7.50, 9.25)$ $q_B = (4.50, 6.25)$ $q_C = (18.50, 20.24)$ $q_{AB} = (2.00, 3.75)$ $q_{AC} = (1.50, 3.25)$ $q_{BC} = (1.00, 2.75)$ $q_{ABC} = (-1.00, 0.75)$ All effects except q_{ABC} are significant. Washington University in St. Louis CSE567M ©2011 Raj Jain

□ For a single confirmation experiment (m = 1)
 With A = B = C = -1:

$$\hat{y} = 14$$

$$s_{\hat{y}} = s_e \left(\frac{5}{2^k r} + \frac{1}{m}\right)^{1/2}$$

$$= 3.2 \left(\frac{5}{24} + 1\right)^{1/2}$$

$$= 3.52$$

□ 90% confidence interval:

$$14 \mp 1.337 \times 3.52 = 14 \mp 4.70 = (9.30, 18.70)$$

Case Study 18.1: Garbage collection

Factors and Levels							
Variable	Factor	-1	1				
Α	Workload	Single Task	Several parallel tasks				
В	Compiler	Simple	Deallocating				
C	Limbo List	Enabled	Disabled				
D	Chunk Size	4K bytes	16K bytes				

Case Study 18.1 (Cont)

Ι	A	В	С	D	у	Mean \bar{y}
1	-1	-1	-1	-1	(97, 97, 97)	97.00
1	1	-1	-1	-1	(31, 31, 32)	31.33
1	-1	1	-1	-1	(97, 97, 97)	97.00
1	1	1	-1	-1	(31, 32, 31)	31.33
1	-1	-1	1	-1	(97, 97, 97)	97.00
1	1	-1	1	-1	(32, 32, 31)	31.67
1	-1	1	1	-1	(97, 97, 97)	97.00
1	1	1	1	-1	(32, 32, 32)	32.00
1	-1	-1	-1	1	(407, 407, 407)	407.00
1	1	-1	-1	1	(135, 136, 135)	135.33
1	-1	1	-1	1	(409, 409, 409)	409.00
1	1	1	-1	1	(135, 135, 136)	135.33
1	-1	-1	1	1	(407, 407, 407)	407.00
1	1	-1	1	1	(139, 140, 139)	139.33
1	-1	1	1	1	(409, 409, 409)	409.00
1	1	1	1	1	(139, 139, 140)	139.33
2695.67	-1344.33	4.33	9.00	1667.00		total
168.48	-84.02	0.27	0.56	104.19		total/8
Washington University in St.	Louis		CS	E567M		©2011 Raj

	Case	Study 1	8.1 (Cont)	
Factor	r Effect	% Variation	Conf. Interval	
Ī	168.48	138.1%	(168.386, 168.573)	
А	-84.02	34.4%	(-84.114, -83.927)	
В	0.27	0.0%	(0.177, 0.364)	
\mathbf{C}	0.56	0.0%	(0.469, 0.656)	
D	104.19	52.8%	(104.094, 104.281)	
AB	-0.23	0.0%	(-0.323, -0.136)	
AC	0.56	0.0%	(0.469, 0.656)	
AD	-51.31	12.8%	(-51.406, -51.219)	
BC	0.02	0.0%	$(-0.073, 0.114)^{\dagger}$	
BD	0.23	0.0%	(0.136, 0.323)	
CD	0.44	0.0%	(0.344, 0.531)	
ABC	0.02	0.0%	$(-0.073, 0.114)^{\dagger}$	
ABD	-0.27	0.0%	(-0.364, -0.177)	
ACD	0.44	0.0%	(0.344, 0.531)	
BCD	-0.02	0.0%	$(-0.114, 0.073)\dagger$	
ABCI) -0.02	0.0%	$(-0.114, 0.073)^{+}$	
	Ť	$r \Rightarrow Not Signifi$	cant	
ashington University in St	. Louis	CSE567	М	©2011 Raj J
		18-40	6	

Case Study 18.1: Conclusions

- Most of the variation is explained by factors A (Workload), D (Chunk size), and the interaction A D between the two.
- □ The variation due to experimental error is small
 - \Rightarrow Several effects that explain less than 0.05% of variation (listed as 0.0%) are statistically significant.
- Only effects A, D, and AD are both practically significant and statistically significant.

- Replications allow estimation of measurement errors
 ⇒ Confidence Intervals of parameters
 - \Rightarrow Confidence Intervals of predicted responses
- □ Allocation of variation is proportional to square of effects
- □ Multiplicative models are appropriate if the factors multiply
- □ Visual tests for independence normal errors

Exercise 18.1

Table 18.11 lists measured CPU times for two processors on two workloads. Each experiment was repeated three times. Analyze the design.

Table 18.11 2^2 3 Experimental Design Exercise

Workload	Processor			
	А		В	
Ι	(41.16,	39.02, 42.56)	(63.17, 59.25,	64.23)
J	(51.50,	52.50, 50.50)	(48.08, 48.98,	47.10)
Washington University in St. Louis		CSE567M		©2011 Raj Jain
		10.40		

Homework 18B

Updated Exercise 18.1: For the data of Homework 18A, determine percentage of variation explained, find confidence intervals of the effects, and conduct visual tests.