
26-1
©2011 Raj JainCSE574sWashington University in St. Louis

RandomRandom--Number Number
GenerationGeneration

Raj Jain
Washington University
Saint Louis, MO 63130

Jain@cse.wustl.edu
Audio/Video recordings of this lecture are available at:

http://www.cse.wustl.edu/~jain/cse567-11/

26-2
©2011 Raj JainCSE574sWashington University in St. Louis

OverviewOverview

 Desired properties of a good generator
 Linear-congruential generators
 Tausworthe generators
 Survey of random number generators
 Seed selection
 Myths about random number generation

26-3
©2011 Raj JainCSE574sWashington University in St. Louis

RandomRandom--Number GenerationNumber Generation

 Random Number = Uniform (0, 1)
 Random Variate = Other distributions

= Function(Random number)

26-4
©2011 Raj JainCSE574sWashington University in St. Louis

A Sample GeneratorA Sample Generator

 For example,

 Starting with x0=5:

 The first 32 numbers obtained by the above procedure 10, 3, 0,
1, 6, 15, 12, 13, 2, 11, 8, 9, 14, 7, 4, 5 10, 3, 0, 1, 6, 15, 12, 13,
2, 11, 8, 9, 14, 7, 4, 5.

 By dividing x's by 16:
0.6250, 0.1875, 0.0000, 0.0625, 0.3750, 0.9375, 0.7500,
0.8125, 0.1250, 0.6875, 0.5000, 0.5625, 0.8750, 0.4375,
0.2500, 0.3125, 0.6250, 0.1875, 0.0000, 0.0625, 0.3750,
0.9375, 0.7500, 0.8125, 0.1250, 0.6875, 0.5000, 0.5625,
0.8750, 0.4375, 0.2500, 0.3125.

26-5
©2011 Raj JainCSE574sWashington University in St. Louis

TerminologyTerminology
 Seed = x0

 Pseudo-Random: Deterministic yet would pass randomness
tests

 Fully Random: Not repeatable
 Cycle length, Tail, Period

26-6
©2011 Raj JainCSE574sWashington University in St. Louis

Desired Properties of a Good GeneratorDesired Properties of a Good Generator

 It should be efficiently computable.
 The period should be large.
 The successive values should be independent and

uniformly distributed

26-7
©2011 Raj JainCSE574sWashington University in St. Louis

Types of RandomTypes of Random--number Generatorsnumber Generators

 Linear congruential generators
 Tausworthe generators
 Extended Fibonacci generators
 Combined generators

26-8
©2011 Raj JainCSE574sWashington University in St. Louis

LinearLinear--Congruential GeneratorsCongruential Generators
 Discovered by D. H. Lehmer in 1951
 The residues of successive powers of a number have good

randomness properties.

Equivalently,

a = multiplier
m = modulus

26-9
©2011 Raj JainCSE574sWashington University in St. Louis

LinearLinear--Congruential Generators (Cont)Congruential Generators (Cont)
 Lehmer's choices: a = 23 and m = 108+1
 Good for ENIAC, an 8-digit decimal machine.
 Generalization:

 Can be analyzed easily using the theory of
congruences
 Mixed Linear-Congruential Generators
or Linear-Congruential Generators (LCG)

 Mixed = both multiplication by a and addition of b

26-10
©2011 Raj JainCSE574sWashington University in St. Louis

Selection of LCG ParametersSelection of LCG Parameters

 a, b, and m affect the period and autocorrelation

 The modulus m should be large.

 The period can never be more than m.

 For mod m computation to be efficient, m should be a power

of 2 Mod m can be obtained by truncation.

26-11
©2011 Raj JainCSE574sWashington University in St. Louis

Selection of LCG Parameters (Cont)Selection of LCG Parameters (Cont)

 If b is nonzero, the maximum possible period m is

obtained if and only if:

 Integers m and b are relatively prime, that is, have no common
factors other than 1.

 Every prime number that is a factor of m is also a factor of a-1.

 If integer m is a multiple of 4, a-1 should be a multiple of 4.

 Notice that all of these conditions are met if m=2k, a = 4c + 1,

and b is odd. Here, c, b, and k are positive integers.

26-12
©2011 Raj JainCSE574sWashington University in St. Louis

Period vs. AutocorrelationPeriod vs. Autocorrelation
 A generator that has the maximum possible period is called a

full-period generator.

 Lower autocorrelations between successive numbers are
preferable.

 Both generators have the same full period, but the first one has
a correlation of 0.25 between xn-1 and xn, whereas the second
one has a negligible correlation of less than 2-18

26-13
©2011 Raj JainCSE574sWashington University in St. Louis

Multiplicative LCGMultiplicative LCG
 Multiplicative LCG: b=0

 Two types:
m = 2k

m  2k

26-14
©2011 Raj JainCSE574sWashington University in St. Louis

Multiplicative LCG with m=2Multiplicative LCG with m=2kk

 m = 2k trivial division
Maximum possible period 2k-2

 Period achieved if multiplier a is of the form 8i± 3,
and the initial seed is an odd integer

 One-fourth the maximum possible may not be too
small

 Low order bits of random numbers obtained using
multiplicative LCG's with m=2k have a cyclic pattern

26-15
©2011 Raj JainCSE574sWashington University in St. Louis

Example 26.1aExample 26.1a

 Using a seed of x0=1:
5, 25, 29, 17, 21, 9, 13, 1, 5,…
Period = 8 = 32/4
 With x0 = 2, the sequence is: 10, 18, 26, 2, 10,…

Here, the period is only 4.

26-16
©2011 Raj JainCSE574sWashington University in St. Louis

Example 26.1bExample 26.1b

 Multiplier not of the form 8i  3:

 Using a seed of x0 = 1, we get the sequence:
7, 17, 23, 1, 7,…

 The period is only 4

26-17
©2011 Raj JainCSE574sWashington University in St. Louis

Multiplicative LCG with mMultiplicative LCG with m 22kk

 Modulus m = prime number

With a proper multiplier a, period = m-1

Maximum possible period = m

 If and only if the multiplier a is a primitive root of the modulus

m

 a is a primitive root of m if and only if an mod m 1 for n = 1,

2, …, m-2.

26-18
©2011 Raj JainCSE574sWashington University in St. Louis

Example 26.2Example 26.2

 Starting with a seed of x0=1:
1, 3, 9, 27, 19, 26, 16, 17, 20, 29, 25, 13, 8, 24, 10, 30, 28, 22,
4, 12, 5, 15, 14, 11, 2, 6, 18, 23, 7, 21, 1, …
The period is 30
3 is a primitive root of 31

 With a multiplier of a = 5: 1, 5, 25, 1,…
The period is only 3 5 is not a primitive root of 31

 Primitive roots of 31= 3, 11, 12, 13, 17, 21, 22, and 24.

26-19
©2011 Raj JainCSE574sWashington University in St. Louis

Schrage's MethodSchrage's Method
 PRN computation assumes:

 No round-off errors, integer arithmetic and no overflows
Can't do it in BASIC

 Product a xn-1 > Largest integer Overflow
 Identity:
Where:
And:
Here, q = m div a, r = m mod a

`A div B' = dividing A by B and truncating the result.
 For all x's in the range 1, 2, …, m-1, computing g(x) involves

numbers less than m-1.
 If r < q, h(x) is either 0 or 1, and it can be inferred from g(x);
h(x) is 1 if and only if g(x) is negative.

26-20
©2011 Raj JainCSE574sWashington University in St. Louis

Example 26.3Example 26.3

 231-1 = 2147483647 = prime number

 75 = 16807 is one of its 534,600,000 primitive roots

 The product a xn-1 can be as large as 16807× 2147483647
≈ 1.03× 245.

 Need 46-bit integers

 For a correct implementation, x0 = 1 x10000= 1,043,618,065.

26-21
©2011 Raj JainCSE574sWashington University in St. Louis

Generator Using Integer ArithmeticGenerator Using Integer Arithmetic

26-22
©2011 Raj JainCSE574sWashington University in St. Louis

Generator Using Real ArithmeticGenerator Using Real Arithmetic

26-23
©2011 Raj JainCSE574sWashington University in St. Louis

Example 26.3 (Cont)Example 26.3 (Cont)
a 16807

m 2147483647
q 127773
r 2836
i x

0 1
10 2007237709
20 143542612
30 1505795335
40 784558821
50 937186357
60 130060903
70 158374933
80 1654001669
90 1908194298

100 892053144
10000 1043618065
20000 673160914

26-24
©2011 Raj JainCSE574sWashington University in St. Louis

Homework 26Homework 26

 Exercise 26.5 Updated:
Implement the following LCG using Schrage's method
to avoid overflow:

Using a seed of x0=1, determine x1, x10, x100, x1000, x10000,
x20000.

26-25
©2011 Raj JainCSE574sWashington University in St. Louis

Tausworthe GeneratorsTausworthe Generators
 Need long random numbers for cryptographic applications
 Generate random sequence of binary digits (0 or 1)
 Divide the sequence into strings of desired length
 Proposed by Tausworthe (1965)

Where ci and bi are binary variables with values of 0 or 1, and 
is the exclusive-or (mod 2 addition) operation.

 Uses the last q bits of the sequence
 autoregressive sequence of order q or AR(q).

 An AR(q) generator can have a maximum period of 2q-1.

26-26
©2011 Raj JainCSE574sWashington University in St. Louis

Tausworthe Generators (Cont)Tausworthe Generators (Cont)
 D = delay operator such that

 Characteristic polynomial:

 The period is the smallest positive integer n for which xn-1 is
divisible by the characteristic polynomial.

 The maximum possible period with a polynomial of order q is
2q-1. The polynomials that give this period are called primitive
polynomials.

26-27
©2011 Raj JainCSE574sWashington University in St. Louis

Example 26.4Example 26.4
x7+x3+1

 Using D operator in place of x:

Or:

 Using the exclusive-or operator

Or:

 Substituting n-7 for n:

26-28
©2011 Raj JainCSE574sWashington University in St. Louis

Example 26.4 (Cont)Example 26.4 (Cont)
 Starting with b0 = b1 = = b6 = 1:

 The complete sequence is:
1111111 0000111 0111100 1011001 0010000 0010001
0011000 1011101 0110110 0000110 0110101 0011100
1111011 0100001 0101011 1110100 1010001 1011100
0111111 1000011 1000000.

 Period = 127 or 27-1 bits
The polynomial x7+x3+1 is a primitive polynomial.

26-29
©2011 Raj JainCSE574sWashington University in St. Louis

Linear Feedback Shift RegisterLinear Feedback Shift Register
x5+x3+1 bn= bn-2⊕ bn-5

 This can be easily implemented using shift registers:

 In general:

AND gates are not required if ci’s are known

Outputbn bn-1 bn-2 bn-3 bn-4 bn-5

Outputbn bn-1 bn-2 bn-qbn-q +1

cn-2cn-1

AND

cn-q + 1

26-30
©2011 Raj JainCSE574sWashington University in St. Louis

Generating U(0,1)Generating U(0,1)
 Divide the sequence into successive groups of s bits and use the
first l bits of each group as a binary fraction:

Or equivalently:

Here, s is a constant greater than or equal to l and is relatively
prime to 2q-1.

s≥ l xn and xj for n j have no bits in common

 Relative prime-ness guarantees a full period 2q-1 for xn.

26-31
©2011 Raj JainCSE574sWashington University in St. Louis

Example 26.5Example 26.5

bn = bn-4⊕ bn-7
 The period 27-1=127
 l=8, s=8:

26-32
©2011 Raj JainCSE574sWashington University in St. Louis

Disadvantages of Tausworthe GeneratorsDisadvantages of Tausworthe Generators
 The sequence may produce good test results over the complete

cycle, it may not have satisfactory local behavior.
 It performed negatively on the runs up and down test.
 Although the first-order serial correlation is almost zero, it is

suspected that some primitive polynomials may give poor high-
order correlations.

 Not all primitive polynomials are equally good.

26-33
©2011 Raj JainCSE574sWashington University in St. Louis

Combined GeneratorsCombined Generators
1. Adding random numbers obtained by two or more generators.

wn=(xn+yn) mod m
For example, L'Ecuyer (1986):

This would produce:

Period = 2.3× 1018

26-34
©2011 Raj JainCSE574sWashington University in St. Louis

Combined Generators (Cont)Combined Generators (Cont)
Another Example: For 16-bit computers:

Use:

This generator has a period of 8.1 × 1012.

26-35
©2011 Raj JainCSE574sWashington University in St. Louis

Combined Generators (Cont)Combined Generators (Cont)
2. Exclusive-or random numbers obtained by two or more

generators.

3. Shuffle. Use one sequence as an index to decide which of
several numbers generated by the second sequence should be
returned.

26-36
©2011 Raj JainCSE574sWashington University in St. Louis

Combined Generators (Cont)Combined Generators (Cont)
 Algorithm M:

a) Fill an array of size, say, 100.
b) Generate a new yn (between 0 and m-1)
c) Index i=1+100 yn/m
d) ith element of the array is returned as the next random number
e) A new value of xn is generated and stored in the ith location

26-37
©2011 Raj JainCSE574sWashington University in St. Louis

Survey of RandomSurvey of Random--Number GeneratorsNumber Generators
 A currently popular multiplicative LCG is:

 Used in:
 SIMPL/I system (IBM 1972),
 APL system from IBM (Katzan 1971),
 PRIMOS operating system from Prime Computer

(1984), and
 Scientific library from IMSL (1980)

 231-1 is a prime number and 75 is a primitive root of it
 Full period of 231-2.

 This generator has been extensively analyzed and shown to be
good.

 Its low-order bits are uniformly distributed.

26-38
©2011 Raj JainCSE574sWashington University in St. Louis

Survey of RNGSurvey of RNG’’s (Cont)s (Cont)

 Fishman and Moore (1986)'s exhaustive search of
m=231-1:

 SIMSCRIPT II.5 and in DEC-20 FORTRAN:

26-39
©2011 Raj JainCSE574sWashington University in St. Louis

Survey of RNGSurvey of RNG’’s (Cont)s (Cont)

 ``RANDU'' (IBM 1968): Very popular in the 1960s:

 Modulus and the multiplier were selected primarily to
facilitate easy computation.

 Multiplication by 216+3=65539 can be easily accomplished
by a few shift and add instructions.

 Does not have a full period and has been shown to be
flawed in many respects.

 Does not have good randomness properties (Knuth, p 173).
 Triplets lie on a total of 15 planes
 Unsatisfactory three-distributivity

 Like all LCGs with m=2k, the lower order bits of this
generator have a small period. RANDU is no longer used

26-40
©2011 Raj JainCSE574sWashington University in St. Louis

Survey of RNGSurvey of RNG’’s (Cont)s (Cont)
 Analog of RANDU for 16-bit microprocessors:

 This generator shares all known problems of RANDU
 Period = only a few thousand numbers
 not suitable for any serious simulation study

 University of Sheffield Pascal system for Prime Computers:

 16807  8i± 3 Does not have the maximum possible
period of 231-2.

 Used with a shuffle technique in the subroutine UNIFORM
of the SAS statistical package

26-41
©2011 Raj JainCSE574sWashington University in St. Louis

Survey of RNGSurvey of RNG’’s (cont)s (cont)
 SIMULA on UNIVAC uses the following generator:

 Has maximum possible period of 233, Park and Miller
(1988) claim that it does not have good randomness
properties.

 The UNIX operating system:

 Like all LCGs with m=2k, the binary representation of xn's
has a cyclic bit pattern

26-42
©2011 Raj JainCSE574sWashington University in St. Louis

Seed SelectionSeed Selection
 Multi-stream simulations: Need more than one random

stream
 Single queue  Two streams

= Random arrival and random service times
1. Do not use zero. Fine for mixed LCGs.

But multiplicative LCG or a Tausworthe LCG will stick at
zero.

2. Avoid even values. For multiplicative LCG with modulus
m=2k, the seed should be odd. Better to avoid generators that
have too many conditions on seed values or whose
performance (period and randomness) depends upon the seed
value.

3. Do not subdivide one stream.

26-43
©2011 Raj JainCSE574sWashington University in St. Louis

Seed Selection (Cont)Seed Selection (Cont)
4. Do not generate successive seeds: u1 to generate inter-arrival

times, u2 to generate service time Strong correlation
5. Use non-overlapping streams.

Overlap Correlation, e.g., Same seed same stream
6. Reuse seeds in successive replications.
7. Do not use random seeds: Such as the time of day.

Can't reproduce. Can't guaranteed non-overlap.
8. Select

26-44
©2011 Raj JainCSE574sWashington University in St. Louis

Table of SeedsTable of Seeds

26-45
©2011 Raj JainCSE574sWashington University in St. Louis

Myths About RandomMyths About Random--Number Number
GenerationGeneration

1. A complex set of operations leads to random results. It is
better to use simple operations that can be analytically
evaluated for randomness.

2. A single test, such as the chi-square test, is sufficient to test
the goodness of a random-number generator. The sequence
0,1,2,...,m-1 will pass the chi-square test with a perfect score,
but will fail the run test Use as many tests as possible.

3. Random numbers are unpredictable. Easy to compute the
parameters, a, c, and m from a few numbers LCGs are
unsuitable for cryptographic applications

26-46
©2011 Raj JainCSE574sWashington University in St. Louis

Myths (Cont)Myths (Cont)
4. Some seeds are better than others. May be true for some.

 Works correctly for all seeds except x0 = 37911
 Stuck at xn= 37911 forever
 Such generators should be avoided.
 Any nonzero seed in the valid range should produce an

equally good sequence.
 For some, the seed should be odd.
 Generators whose period or randomness depends upon the

seed should not be used, since an unsuspecting user may
not remember to follow all the guidelines.

26-47
©2011 Raj JainCSE574sWashington University in St. Louis

Myths (Cont)Myths (Cont)
5. Accurate implementation is not important.

 RNGs must be implemented without any overflow or
truncation For example,

 In FORTRAN:

 The AND operation is used to clear the sign bit
 Straightforward multiplication above will produce overflow.

6. Bits of successive words generated by a random-number
generator are equally randomly distributed.
 If an algorithm produces l-bit wide random numbers, the

randomness is guaranteed only when all l bits are used to
form successive random numbers.

26-48
©2011 Raj JainCSE574sWashington University in St. Louis

Example 26.7Example 26.7

Notice that:
a) Bit 1 (the least

significant bit) is always
1.

b) Bit 2 is always 0.
c) Bit 3 alternates between

1 and 0, thus, it has a
cycle of length 2.

d) Bit 4 follows a cycle
(0110) of length 4.

e) Bit 5 follows a cycle
(11010010) of length 8.

26-49
©2011 Raj JainCSE574sWashington University in St. Louis

Example 26.7 (Cont)Example 26.7 (Cont)
 The least significant bit is either always 0 or always 1.
 The lth bit has a period at most 2l. (l=1 is the least significant

bit)
 For all mixed LCGs with m=2k:

 The lth bit has a period at most 2l.
 In general, the high-order bits are more randomly

distributed than the low-order bits.
Better to take the high-order l bits than the low-order l
bits.

26-50
©2011 Raj JainCSE574sWashington University in St. Louis

SummarySummary

 Pseudo-random numbers are used in simulation for
repeatability, non-overlapping sequences, long cycle

 It is important to implement PRNGs in integer arithmetic
without overflow => Schrage’s method

 For multi-stream simulations, it is important to select seeds that
result in non-overlapping sequences

 Two or more generators can be combined for longer cycles
 Bits of random numbers may not be random

