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Abstract

The Auto-Pipe system allows one to evaluate various resource mappings and topologies for streaming
applications. In this paper we use Auto-Pipe to gather timing information for individual blocks in a streaming
application to solve Laplace's equation. We then use the timing information to seed a queueing model to
predict the performance of various topologies and resource mappings. Finally, we use the Auto-Pipe system to
measure the performance of the topology to verify the model and rank the topologies and resource mappings
based on throughput.

Keywords: Auto-Pipe, Laplace's Equation, Performance Analysis, Queueing Theory, Monte-Carlo
Simulation, X-Language

e 1. Introduction
o 1.1 Auto-Pipe
o 1.2 Laplace's Equation
o 1.3 Methods for Solving Laplace's Equation
o 1.4 The Application
e 2. Performance Analysis Methodology
o 2.1 Metrics
o 2.2 Parameters
o 2.3 Factors
o 2.4 Experimental Design
e 3. Analytic Model
o 3.1 The Model
o 3.2 Block Timings
o 3.3 Mappings
e 4. Measurement
o 4.1 Results
o 4.2 Analysis
o 4.3 Interpretation
e 5. Conclusion
e References

e Acronyms

1. Introduction

We attempt to determine the best topology and resource mapping for an Auto-Pipe application to solve
Laplace's equation. Auto-Pipe allows one to experiment with various topologies of the application and obtain
timing information. We use the Monte-Carlo method for solving Laplace's equation since it represents a small,
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but useful application that fits nicely into the streaming framework.

1.1 Auto-Pipe

Auto-Pipe is a system for creating computing pipelines across heterogeneous compute platforms [Tyson06,
Franklin06, Chamberlain07]. A heterogeneous compute platform may contain a combination of CPUs, GPUs,
FPGAs, or other accelerator devices. Auto-Pipe provides the user with the ability to author compute blocks to
operate on a data stream. The user can then specify the topology and resource mapping of the application
using Auto-Pipe's X language. This X language description is fed to the Auto-Pipe X compiler to build the
application. The Auto-Pipe approach allows one to access timing information for individual blocks and to
easily modify the application topology and block-to-resource mapping of the application.

1.2 Laplace's Equation

The goal of the application is to solve Laplace's equation in two dimensions (shown in figure 1.1). Laplace's
equation is a second-order partial differential equation (PDE) [Strauss92]. This equation has several uses
including modeling stationary diffusion (such as heat) and Brownian motion. For heat, given the temperatures
at the boundaries of a two-dimensional object, solutions to Laplace's equation provide the interior
temperatures after the temperatures have stabilized. The ease of solving Laplace's equation depends on the
nature of the boundary conditions. An analytic solution exists for simple boundary conditions, however, for
many boundaries conditions, no analytic solution exists and numerical solutions must be sought [Farlow93].

9%u N T 0
dr? = oy?

Figure 1.1: Laplace's Equation in Two Dimensions

1.3 Methods for Solving Laplace's Equation

There are numerous ways to solve Laplace's equation. As previously stated, for certain simple boundary
conditions a straight-forward analytical solution exists. However, it is often the case that a numerical method
is required. One numerical approach is Gauss-Seidel iteration [Strauss92]. This method converges to the
correct solution quickly, but it requires that the complete grid be stored in memory. Another method is
Monte-Carlo simulation. This technique is provably correct [Reynolds65], but converges slowly.
Nevertheless, this method is useful if only a few interior points are needed. This is because the Monte-Carlo
method does not require storing the whole grid since the grid is implicit and only those points that are of
interest need be computed. Further, Monte-Carlo methods work well in a pipelined framework such as
Auto-Pipe [Singla08].

1.4 The Application

The Auto-Pipe application to solve Laplace's equation is made up of several compute blocks. We can
replicate some blocks to achieve better performance via parallelism by dividing the work across multiple
compute resources. All of the blocks considered here are implemented in C for a general purpose processor.
However, Auto-Pipe would allow any of these to be re-implemented for an FPGA. Table 1.1 lists the blocks
used in this application. Note that there are a few other blocks used to seed the random number generator and
to read the boundary conditions, but these blocks don't contribute much to the running time so we don't
consider them here.

Table 1.1: Blocks
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‘Block ‘ Description

‘RNG ‘Random number generator.

‘Split ‘Block to distribute numbers equally among two outputs.

‘Walk ‘Block to perform random walks.

‘AVG ‘Block to take the average of two inputs.

‘Print ‘Block to output the result.

The application works by generating random numbers which are then fed to a block to perform a random
walk starting from the coordinates of interest. For this application we consider all grid coordinates. The
random numbers determine the direction for each stage of the random walk. The walk continues until a
boundary is crossed. Once the boundary is crossed, the temperature at the boundary point is forwarded to
either a print block, which saves the result to a file, or an average block, which averages the results of two
inputs. The application continues this process many times for each coordinate in a rectangular region. Note
that in a real use of this application one would probably only be interested in few locations, but for the
purpose of performance analysis, we consider the whole grid.

There are multiple ways to divide the random walks among compute resources. One method is to configure
the block used to generate random numbers to feed a block that splits the output among multiple walk blocks.
A second method is to replicate the random number generation blocks along with the walk blocks by using
different random number seeds for each random number generation block. In either case, we feed the results
from the random walk blocks to a block that averages them before we send the averages to a print block to be
recorded. Given a single compute node, the topology of this application is straight-forward. However, even
with only two processors, there are several possible block topologies and several resource mappings that may
make sense. Our goal is to determine the best topology and resource mapping.

2. Performance Analysis Methodology

As stated above, our goal is to determine the best block topology and resource mapping. To do this, we must
first define what it means to be the the best. Next, we determine what is to be measured and isolate the
parameters that may affect that measurement. Finally, we select a method for evaluating the performance.

2.1 Metrics

The first step in determining the best mapping is to define the metrics of interest. We assume no application
errors and that the service is always performed correctly. Given this, the performance metrics are response
time, throughput, and resource utilization [Jain91]. For this application, we will focus on throughput.
Throughput is defined by the number of jobs that can be completed per unit time. Here we define a job as a
point whose temperature is to be evaluated.

2.2 Parameters

System parameters affecting performance include:

e CPU Type
e Number of Cores
e System Memory

Workload parameters include:
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e Application Topology

e Resource Mapping

e Grid Size

¢ Boundary Conditions

e Number of Random Walks

The grid size was fixed to 100x100 and the boundary conditions were set to a square containing the grid. The
temperature at the boundary was set to 0 for three sides and 100 for the fourth side. One hundred random
walks were done at each grid coordinate. The output of the application gives a 100x100 grid of temperatures.
A plot of the output using colors to represent temperatures (blue being 0 and red being 100) yields an image
as seen in figure 2.1.

1080 100 Lo with 1060 W alks

Figure 2.1: Output

2.3 Factors

For all timings performed, the system parameters will remain fixed. The system used is a dual dual-core 2.2
GHz AMD Opteron system with 1 MB L2 cache and 8 GB of system memory. The grid size, boundary
conditions, and number of random walks will also remain fixed. The grid size is fixed to 100x100. The
boundary is fixed as the whole grid area with three corners set to 0 and the fourth set to 100. The number of
random walks is set to 100 for each coordinate. Only the application topology and resource mapping will be
varied.

2.4 Experimental Design

To determine the best resource mapping and application topology, we will explore several possibilities. Since
the topologies and resource mappings for differing numbers of compute resources vary, we will treat this as a
single factor experiment for each set of compute resources. We refer to this factor as a "mapping". To
uniquely identify a mapping, we prepend the number of processors to the name of the mapping. For example,
mapping 4A is a mapping on to four processors.

3. Analytic Model

In order to explore possible topology and resource mappings for the application, we use an analytic model.
We use results from queueing theory to model several possible topologies and resource mappings. [Dor10a]
and [Dor10b] have shown queueing theory to be a useful modeling tool for streaming applications.
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3.1 The Model

To model this application as an open queueing network, we define each processor as being an M/M/1 queue.
This allows us to use operational laws to reason about the network. If we can determine the demand for each
processor, the operational laws will allow us to determine other useful properties of the network, such as
processor utilization and throughput. Demand is defined by the service time multiplied by the number of
visits. Since it is often the case that several stages of the pipeline get assigned to the same processor, we
compute the demand for each processor by summing the demand for each block mapped to that processor
scaled by the size of the problem at that point. To get the demands for each block, we obtain timings for the
simple topology shown in figure 3.1.

Walk

Print

w

Split AVG

-»

RNG
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Figure 3.1: Simple Topology

The resource mapping does not matter for determining the demand since we only care about the individual
block timings. This is because the amount of processor time spent executing each block is the same if the
block is run in parallel with other blocks or serially. Also note that because the walk block is replicated in
simple topology, we use the sum of the demands for the total walk demand. Given the per-block demand for
the simple topology, one can use operational laws to determine the bottleneck and demand for more complex
topologies and resource mappings. Consider the four-queue system in figure 3.2.
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Figure 3.2: Mapping 4A

In this example, there are four queues (processors), each of which has multiple blocks assigned to it. Half of
the RNG and Split jobs from the simple topology and a quarter of the Walk jobs will get processed on the first
processor. We apply similar reasoning to the other processors to obtain the following results for the demand of
each processor:
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Now we can compute the bottleneck, which is the processor with the highest demand. Given the bottleneck
processor, we can compute the maximum throughput using the following equation:

1 N
X < mi :
= { D-.lnurr; D+ Z }

Here N is the number of jobs, Dmax is the demand of the bottleneck processor, D is the total demand of the
system, and Z is the think time, which is zero for this system. Since N is large in this application, the
throughput will be the inverse of the bottleneck processor. To get the execution time we can multiply the
demand by the number of jobs. The processor utilization is also easy to compute by multiplying the processor
demand by the throughput of the complete system. This gives a simple way to estimate the throughput,
execution time and processor utilization for an arbitrary topology and resource mapping based only on the
timings of the individual blocks.

3.2 Block Timings

To use our model, we must have the demand for the various blocks for the topology in figure 3.1. We can use
the total running time of each block and divide by the number of jobs to determine the demand for each
block. Note that there are 10000 jobs (width * height). We obtained the timings directly from Auto-Pipe,
which provides a summary of the execution times for each block in the system. Auto-Pipe also provides a
means to obtain traces [Gayen07], but this level of detail is not needed here.

Using Auto-Pipe, the simple topology in figure 3.1 was run on a single processor five times and the average
block time was recorded. Table 3.1 shows the results. We compute the demand for each block by dividing the
time by the number of jobs.

Table 3.1: Block Timings

‘Block‘Run Time (seconds) ‘Standard Deviation‘ 90% Confidence Interval
IRNG [3.92004126 0.150262 (3.77677, 4.06331)

Split [0.14195219 10.00487290 (0.137306, 0.146598)

Walk 252997121 0.00738346 (25.2927, 25.3068)

IAVG (0.0007355 |1.54890E-5 (0.000707320, 0.000750268)
[Print [0.004684558 13.29668E-5 (0.00465313, 0.00471599)

The fact that the confidence intervals do not overlap indicates that all of the block timings are distinct with a
90% confidence. This means that it is not possible to directly substitute one block for another.
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3.3 Mappings

We analyze several mappings. These mappings are not exhaustive and may not be optimal, but they represent
what we consider to be reasonable selections for dividing the work evenly. First we consider two-processor
mappings and then four-processor mappings.

Figure 3.3 shows the first two-processor mapping (mapping 2A):

ai

RMNG * Walk

Qz w
RMNG Walk B AVG ¥ Print

w

Figure 3.3: Mapping 2A

From the model, we see that the demand for processor 1 is 0.00146099 and the demand for processor 2 is
0.00146153. Thus, processor 2 is the bottleneck and the throughput is 684.215 jobs/second. Processor 1 has a
99.9629% utilization and processor 2 has a 100.0000% utilization. Combining the throughput with the number
of jobs gives us 14.6153 seconds for the execution time. Figure 3.4 shows the second two-processor mapping
(2B):

a1
RNG ™ Split " Walk
m k. b
Walk ¥ AVG ¥ Print

Figure 3.4: Mapping 2B

From the model, we can determine the demand of processor 1 to be 0.00167118 and the demand of processor
2 to be 0.00126553. Thus, processor 1 is the bottleneck. The throughput is 598.378 jobs/second with
processor 1 at 100.000% utilization and processor 2 at 75.7264% utilization. The execution time is 16.7118
seconds. Therefore, the model predicts that mapping 2A is better.

Now we consider four-processor mappings. Figure 3.2 (above) shows the first four-processor mapping (4A).

The model predicts the throughput of mapping 4A to be 1196.76 jobs/second and the running time to be
8.35592 seconds. Figure 3.5 shows a second four-processor mapping (4B):

a1 |
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Figure 3.5: Mapping 4B

The model predicts the expected throughput of mapping 4B to be 1367.85 jobs/second and the running time
to be 7.31073 seconds. Thus, we expect mapping 4B to be better than mapping 4A. Finally, figure 3.6 shows a
third four-processor mapping (4C):
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Figure 3.6: Mapping 4C

Using the model again, we predict the expected throughput of mapping 4C to be 1369.40 jobs/second and the
running time to be 7.30247 seconds. This gives mapping 4C a slight edge over mapping 4B. Table 3.2 shows a
summary of the model predictions:

Table 3.2: Summary

‘Mapping ‘Run Time (seconds) ‘Throughput (jobs/second)
2A 14.6153 684.215
2B 16.7118 598.378
4A 18.35592 1196.76
4B 7.31073 1367.85
l4C 17.30567 11369.40

4. Measurement

To verify the analytic model, we measured the execution times of the mappings above. We then converted the
execution times to throughputs by dividing the number of jobs by the execution time. Finally, we tested these
results for statistical significance and compared with the results predicted using the analytic model.

4.1 Results
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Using Auto-Pipe, we compiled the mappings presented in section 3.3 and ran each five times. As previously
described, we used the average execution time to compute the throughput. Table 4.1 shows the results:

Table 4.1: Measurements

‘Mapping ‘Run Time (seconds) ‘Throughput (jobs/second)
2A 14.5703 686.327
2B 117.4584 572.791
4A 18.62328 1159.65
4B 7.31052 1367.89
l4C 17.30247 11369.40

An analysis of variance (ANOVA) for the two-processor mappings reveals that the mapping accounts for
99.8452% of the variation and errors account for 0.154784% of the variation. For the four-processor
mappings, the mapping accounts for 99.8101% of the variation and and errors account for 0.189821% of the
variation. An F-Test shows that the mapping is significant at a 90% confidence level for both the two- and
four-processor mappings.

4.2 Analysis

We compute r? to determine if the predictions from the queueing model and the measurements are

significantly different. The result is 1% = 0.999935. Thus, not only does the model accurately predict which
mapping is better, it also does a good job at estimating the throughput. Despite this, it should be noted that the
model has limitations and we have only shown the model to be good for certain parameters.

4.3 Interpretation

The results above allow us to evaluate the best resource mapping of those considered for both the 2-processor
and 4-processor cases. Both the model and the measurements agree that mapping 2A is the best 2-processor
mapping and mapping 4C is the best 4-processor mapping. We emphasize that not all possible mappings are
considered and if additional resources are utilized, additional work would be needed to ascertain the best
mapping. Nevertheless, the model allows us to evaluate the performance of a topology and resource mapping
without actually running the application. The experimental results suggest that the queueing model works well
for this problem.

As previously stated, the model is good for the problem as shown here, however, it has several limitations.
First, the model does not take communication delays or other overhead into account. Further, the model was
only used for a single problem size. It is unknown if the model would correctly rate topologies for a different
problem size.

5. Conclusion

Our goal was to determine the best resource mapping and block topology for an application to solve Laplace's
equation. To do this, we defined a way to rank the topologies and devised a simple model based on queueing
theory. We used timing information gathered from Auto-Pipe to seed the model. Next, we compared various
topologies to determine the best two-processor and four-processor topology. Finally, we compared the
predicted responses with empirical results to validate the model.

Future work could be done to expand the model to take the problem size and communication costs into
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account. Also not considered here is whether the model would work for comparing blocks implemented on
different types of computing resources, such as FPGAs or GPUs.
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