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OverviewOverview



 

What is a time series?


 

Autoregressive Models


 

Moving Average Models


 

Integrated Models


 

ARMA, ARIMA, SARIMA, FARIMA models
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What is a Time SeriesWhat is a Time Series



 

Time series = Stochastic Process 


 

A sequence of observations over time.


 

Examples:


 

Price of a stock over successive days


 

Sizes of video frames


 

Sizes of packets over network


 

Sizes of queries to a database system


 

Number of active virtual machines in a cloud 


 

Goal: Develop models of such series for resource 
allocation and improving user experience.

Time t

xt
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Autoregressive ModelsAutoregressive Models



 

Predict the variable as a linear regression of the 
immediate past value:



 

Here,       is the best estimate of xt

 

given the past history



 

Even though we know the complete past history, we 
assume that xt

 

can be predicted based on just xt-1

 

.


 

Auto-Regressive = Regression on Self


 

Error:


 

Model:


 

Best a0

 

and a1

 

 minimize the sum of square of errors
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Example 36.1Example 36.1


 

The number of disk access for 50 database queries were measured to be: 73, 
67, 83, 53, 78, 88, 57, 1, 29, 14, 80, 77, 19, 14, 41, 55, 74, 98, 84, 88, 78, 
15, 66, 99, 80, 75, 124, 103, 57, 49, 70, 112, 107, 123, 79, 92,

 

89, 116, 71, 
68, 59, 84, 39, 33, 71, 83, 77, 37, 27, 30.



 

For this data:
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Example 36.1 (Cont)Example 36.1 (Cont)



 

SSE = 32995.57



36-7
©2013 Raj Jainhttp://www.cse.wustl.edu/~jain/cse567-13/Washington University in St. Louis

Stationary ProcessStationary Process


 

Each realization of a random process will be different:



 

x
 

is function of the realization i
 

(space) and time t: x(i, t)


 

We can study the distribution of xt

 

in space.


 

Each xt

 

has a distribution, e.g., Normal


 

If this same distribution (normal) with the same parameters μ, 
σ

 
applies to xt+1

 

, xt+2

 

, …, we say xt

 

is stationary.

xt

t
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Stationary Process (Cont)Stationary Process (Cont)



 

Stationary = Standing in time 
 Distribution does not change with time.



 

Similarly, the joint distribution of xt

 

and xt-k

 

depends only on k
 not on t.



 

The joint distribution of xt

 

, xt-1

 

, …, xt-k

 

depends only on k
 

not 
on t.



36-9
©2013 Raj Jainhttp://www.cse.wustl.edu/~jain/cse567-13/Washington University in St. Louis

AssumptionsAssumptions



 

Linear relationship between successive values


 

Normal Independent identically distributed errors:


 

Normal errors


 

Independent errors


 

Additive errors


 

xt

 

is a Stationary process
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Visual TestsVisual Tests
1.

 

xt

 

vs. xt-1

 

for linearity
2.

 

Errors et

 

vs. predicted values      for additivity
3.

 

Q-Q Plot of errors for Normality
4.

 

Errors et

 

vs. t
 

for Stationarity
5.

 

Correlations for Independence
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Visual Tests (Cont)Visual Tests (Cont)
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AR(p) ModelAR(p) Model



 

xt

 

is a function of the last p values:



 

AR(2):



 

AR(3):
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

 

Similarly,


 

Or



 

Using this notation, AR(p) model is:



 

Here, φp
 

is a polynomial of degree p.

Backward Shift OperatorBackward Shift Operator
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AR(p) Parameter EstimationAR(p) Parameter Estimation



 

The coefficients ai

 

's can be estimated by minimizing SSE using 
Multiple Linear Regression.



 

Optimal a0

 

, a1

 

, and a2

 


 

Minimize SSE 
Set the first differential to zero:
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AR(p) Parameter Estimation (Cont)AR(p) Parameter Estimation (Cont)



 

The equations can be written as:
 

Note: All sums are for t=3 to n. n-2
 

terms.


 

Multiplying by the inverse of the first matrix, we get:
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Example 36.2Example 36.2



 

Consider the data of Example 36.1 and fit an AR(2) 
model:



 

SSE= 31969.99 
(3% lower than 32995.57 for AR(1) model)
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Assumptions and Tests for AR(p)Assumptions and Tests for AR(p)



 

Assumptions:


 

Linear relationship between xt

 

and {xt-1

 

, ..., xt-p

 

}


 

Normal Independent identically distributed errors:


 

Normal errors


 

Independent errors


 

Additive errors


 

xt

 

is stationary


 

Visual Tests: Similar to AR(1).
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AutocorrelationAutocorrelation


 

Covariance of xt

 

and xt-k

 

= Auto-covariance at lag k



 

For a stationary series, the statistical characteristics do not 
depend upon time t.



 

Therefore, the autocovariance depends only on lag k
 

and not on 
time t.



 

Similarly,
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Autocorrelation (Cont)Autocorrelation (Cont)


 

Autocorrelation is dimensionless and is easier to interpret than
 autocovariance.



 

It can be shown that autocorrelations are normally distributed 
with mean:

 
and variance:



 

Therefore, their 95% confidence interval is
 This is generally approximated as
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White NoiseWhite Noise


 

Errors et

 

are normal independent and identically distributed 
(IID) with zero mean and variance σ2



 

Such IID sequences are called “white noise”
 

sequences.


 

Properties:

k0
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White Noise (Cont)White Noise (Cont)


 

The autocorrelation function of a white noise sequence is a 
spike (δ

 
function) at k=0.



 

The Laplace transform of a δ
 

function is a constant. So in 
frequency domain white noise has a flat frequency spectrum.



 

It was incorrectly assumed that white light has no color and, 
therefore, has a flat frequency spectrum and so random noise 
with flat frequency spectrum was called white noise.



 

Ref: http://en.wikipedia.org/wiki/Colors_of_noise

t0 f0

http://en.wikipedia.org/wiki/Colors_of_noise
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

 

Consider the data of Example 36.1. The AR(0) model is:



 

SSE = 43702.08

Example 36.3Example 36.3
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Moving Average (MA) ModelsMoving Average (MA) Models



 

Moving Average of order 1: MA(1)



 

Moving Average of order 2: MA(2)



 

Moving Average of order q: MA(q)



 

Moving Average of order 0: MA(0) (Note: This is also AR(0))
 xt

 

-a0

 

is a white noise. a0

 

is the mean of the time series.

t
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MA Models (Cont)MA Models (Cont)



 

Using the backward shift operator B, MA(q):



 

Here, ψq
 

is a polynomial of order q.
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Determining MA ParametersDetermining MA Parameters



 

Consider MA(1):



 

The parameters a0

 

and b1

 

cannot be estimated using 
standard regression formulas since we do not know 
errors. The errors depend on the parameters.



 

So the only way to find optimal a0

 

and b1

 

is by 
iteration. 
 Start with some suitable values and change a0

 

and 
b1

 

until SSE is minimized and average of errors is 
zero.
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Example 36.4Example 36.4


 

Consider the data of Example 36.1.



 

For this data:



 

We start with a0

 

= 67.72, b1

 

=0.4, 
Assuming e0

 

=0, compute all the errors and SSE.
 

and SSE = 33542.65



 

We then adjust a0

 

and b1

 

until SSE is minimized and mean 
error is close to zero. 
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Example 36.4 (Cont)Example 36.4 (Cont)


 

The steps are: Starting with              and b1

 

=0.4, 0.5, 0.6
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Autocorrelations for MA(1)Autocorrelations for MA(1)


 

For this series, the mean is:



 

The variance is:



 

The autocovariance at lag 1 is:
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Autocorrelations for MA(1) (Cont)Autocorrelations for MA(1) (Cont)


 

The autocovariance at lag 2 is:



 

For MA(1), the autocovariance at all higher lags (k>1) is 0.


 

The autocorrelation is:



 

The autocorrelation of MA(q) series is non-zero only 
for lags k<

 
q and is zero for all higher lags.
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Determining the Order MA(q)Determining the Order MA(q)



 

The order of the last significant rk

 

determines the 
order of the MA(q) model.

Lag k

Autocorrelation rk

0

q=8
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Determining the Order AR(p)Determining the Order AR(p)


 

ACF of AR(1) is an exponentially decreasing fn of k


 

Fit AR(p) models of order p=0, 1, 2, …


 

Compute the confidence intervals of ap

 

:


 

After some p, the last coefficients ap

 

will not be significant for 
all higher order models.



 

This highest p
 

is the order of the AR(p) model for the series.


 

This sequence of last coefficients is also called "Partial 
Autocorrelation Function

 
(PACF)"

Lag k

PACF(k)

0

p=8

rk

k
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NonNon--Stationarity: Integrated ModelsStationarity: Integrated Models


 

In the white noise model AR(0):


 

The mean a0

 

is independent of time.


 

If it appears that the time series in increasing approximately 
linearly with time, the first difference of the series can be 
modeled as white noise:



 

Or using the B operator: (1-B)xt

 

= xt

 

-xt-1



 

This is called an "integrated" model of order 1 or I(1). Since the 
errors are integrated to obtain x.



 

Note that xt

 

is not stationary but (1-B)xt

 

is stationary.

t

xt

t

(1-B)xt
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Integrated Models (Cont)Integrated Models (Cont)


 

If the time series is parabolic, the second difference can be 
modeled as white noise:



 

Or
 This is an I(2) model.

t

xt
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ARMA and ARIMA ModelsARMA and ARIMA Models



 

It is possible to combine AR, MA, and I models


 

ARMA(p, q) Model:



 

ARIMA(p,d,q) Model:
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NonNon--Stationarity due to SeasonalityStationarity due to Seasonality


 

The mean temperature in December is always lower than that 
in November and in May it always higher than that in March 
Temperature has a yearly season.



 

One possible model could be I(12):



 

or
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Seasonal ARIMA (SARIMA) ModelsSeasonal ARIMA (SARIMA) Models



 

SARIMA                           Model:



 

Fractional ARIMA (FARIMA) Models 
ARIMA(p, d+δ, q)  -0.5<δ<0.5

 Fractional Integration allowed.
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

 

Observation: Every 15th

 

frame is a large (I) frame.

I Frames

Case Study: Mobile VideoCase Study: Mobile Video
I = Independent
P = Predicted
B = Bi-Directional Predicted
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

 

A closer look at the ACF graph shows a strong continual 
correlation every  15 lag   GOP size

Traffic Modeling Traffic Modeling ––
 

All FramesAll Frames

Result: SARIMA (1, 0, 1)x(1,1,1)s

 

Model, s=group size =15
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SummarySummary



 

AR(1) Model:



 

MA(1) Model:



 

ARIMA(1,1,1) Model:



 

Seasonal ARIMA (1,0,1)x(0,1,0)12

 

model:
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