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OverviewOverview

1.
 

Heavy-Tailed Distributions (HTDs)
2.

 
How to Check for Heavy Tail?

3.
 

Self-Similar Processes
4.

 
Long Range Dependence (LRD)

5.
 

Generating LRD Sequences
6.

 
Self-Similarity vs. LRD

7.
 

Hurst Exponent Estimation
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HeavyHeavy--Tailed Distributions (HTDs)Tailed Distributions (HTDs)



 

CCDF decays slower than the exponential distribution



 

CCDF = Complementary cumulative distribution function 



 

For heavy tailed distributions, CCDF is slower by some power 
of x



 

Very large values possible 

1-F(x)
x

Exponential
Heavy-tailed

x

Exponential
Heavy-tailed
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Examples of HTD VariablesExamples of HTD Variables



 

Many real-world phenomenon have been found to follow heavy 
tailed distributions.


 

Distribution of wealth. 
One percent of the population owns 40% of wealth.



 

File sizes in computer systems


 

Connection durations


 

CPU times of jobs


 

Web pages sizes


 

Significant impact on buffer sizing in switches and routers.
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Example 38.1Example 38.1



 

Weibull distribution



 

Other examples of heavy tailed distributions are 
Cauchy, log-normal, and t-distributions.
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Power Tailed DistributionsPower Tailed Distributions



 

A subset of heavy tailed distributions



 

CCDF approaches a power function for large x 


 

For such distributions: 
all moments E[xl] for all values of l >

 
α are infinite.



 

If α
 

<
 

2, x
 

has infinite variance


 

If α
 

<
 

1, the variable has infinite mean


 

α

 
is called the tail index.
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Example 38.2Example 38.2


 

Pareto distribution:



 

pdf:



 

It's lth

 

moment is:



 

All moments for l>α are infinite.


 

For 2>α> 1 variance and higher moments are infinite.
 For 1>α

 
variance does not exist.



 

For 1>α> 0, even mean is infinite.

F(x)

1 x

α=1

α=3
α=2
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Effect of Heavy TailEffect of Heavy Tail


 

A random variable with HTD can have very large values with 
finite probabilities resulting in many outliers.



 

Sampling from such distributions results in mostly small values 
with a few very large valued samples.



 

Sample statistics (e.g., sample mean) may have a large variance 
 sample sizes required for a meaningful confidence are large.



 

Sample mean generally under-estimates the population mean.


 

Simulations with heavy-tailed input require very long time to 
reach steady state and even then the variance can be large. 

c is some constant.
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Effect of Heavy Tail (Cont)Effect of Heavy Tail (Cont)


 

The number of observations required to reach k-digit accuracy:



 

Assuming c=1, μ=1, 1011

 

observations are required for a single 
decimal digit accuracy (k=1) if α=1.1.



 

Central limit theorem applies only
 

to observations from 
distributions with finite variances.


 

For heavy-tailed distributions with infinite variance, the 
central limit theorem does not

 
apply.



 

The sample mean does not have a normal distribution even 
after a large number of samples.



 

Confidence interval formulas mentioned earlier can not be 
used.



38-10
©2013 Raj Jainhttp://www.cse.wustl.edu/~jain/cse567-13/k_38lrd.htmWashington University in St. Louis

Effect of Heavy Tail (Cont)Effect of Heavy Tail (Cont)


 

M/PT/1 queue: Poisson arrivals and power-tailed service time


 

pdf of queue length
 where c(ρ) is a function of the traffic intensity ρ.



 

If α<1, the mean service time is infinite and so are the 
traffic intensity and the mean queue length.



 

If α<2, the service time has infinite variance, and so does 
the queue length.



 

PT/M/1 queue:


 

Tail index α<1, the mean inter-arrival time is infinite.


 

For 1 <α<2, the variance of the inter-arrival time is infinite.


 

Heavy tailed-ness also implies
 

predictability:


 

If a heavy tailed task has run a long time, it is expected to 
run for an additional long time.
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

 

Make a Q-Q plot on a log-log graph assuming a Pareto 
distribution



 

F(x) = 1-x-α



 

x=(1-F)-1/α



 

On a log-log graph: ln x = (-1/α) ln (1-F)


 

Find α
 

from the slope of the best-fit line. α>1  Heavy Tailed

How to Check for Heavy Tail?How to Check for Heavy Tail?

0

α=1
α=2

Exponential
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Example 38.3Example 38.3


 

Check if this set of 50 observations has a heavy tail: 2.426, 1.953, 
1.418, 1.080, 3.735, 2.307, 1.876, 1.110, 3.131, 1.134, 1.171, 1.141, 2.181, 
1.007, 1.076, 1.131, 1.156, 2.264, 2.535, 1.001, 1.099, 1.149, 1.225, 1.099, 
1.279, 1.052, 1.051, 9.421, 1.346, 1.532, 1.000, 1.106, 1.126, 1.293, 1.130, 
1.043, 1.254, 1.118, 1.027, 1.383, 1.288, 1.988, 1.561, 1.106, 1.256, 1.187, 
1.084, 1.968, 1.045, 1.155

α

 
= 1/slope = 1/0.427 = 2.34

xi Rank   RiQi=(Ri-0.5)/nLn(xi) -ln(1-Qi)
2.426 46 0.910 0.886 2.408
1.953 40 0.790 0.669 1.561
1.418 36 0.710 0.349 1.238
1.080 10 0.190 0.077 0.211

… … … … …
1.084 11 0.210 0.081 0.236
1.968 41 0.810 0.677 1.661
1.045 6 0.110 0.044 0.117
1.155 24 0.470 0.144 0.635

80.204 17.308 49.654 Sum
207.810 14.781 95.774Sum of Sq

1.604 0.346 0.993 Average
 

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
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SelfSelf--SimilaritySimilarity



 

When zoomed, the sub objects have the same shape as the 
original object



 

Also called Fractals


 

Latin “fractus”
 

= “fractional”
 

or “broken”
 Traditional Euclidean geometry can not be used to analyze 

these objects because their perimeter is infinite.
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SelfSelf--Similar ProcessesSimilar Processes


 

Scaling in time = scaling in magnitude



 

Statistical similarity  Similar distributions with similar mean 
and variance



 

Similar variance  Self-similar in the second order


 

Similar higher order moments  Self-similarity of higher 
orders



 

All moments similar  strictly self-similar.
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Example 38.4Example 38.4


 

Consider the white noise process et

 

with zero mean and unit 
variance:

 Here z
 

is the unit normal variate.


 

Consider the process xt

 

:


 

For this process:



 

Therefore, xt

 

is a self-similar process.


 

H = Hurst exponent
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Short Range Dependence (SRD)Short Range Dependence (SRD)



 

Sum of Autocorrelation function is finite.


 

Example: AR(1)  with zero mean:



 

For this process, the autocorrelation function decreases 
exponentially:



 

Sum of autocorrelations is finite (provided                 ):

rk

k



38-17
©2013 Raj Jainhttp://www.cse.wustl.edu/~jain/cse567-13/k_38lrd.htmWashington University in St. Louis

Long Range Dependence (LRD)Long Range Dependence (LRD)



 

Sum of Autocorrelation function is infinite
Alternative Definition:


 

Limiting tail behavior of the autocorrelation:

Here, L(x) is a slowly varying function
 

of x.
L(ax)/L(x)

 
tends to 1 as x

 
approaches infinity.

Constants and logarithms are examples of slowly varying 
functions.

rk

k
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Examples of Processes with LRDExamples of Processes with LRD


 

Aggregation of a large number on-off processes with heavy-
 tailed on-times or heavy-tailed off times results in long-range 

dependence.


 

File sizes have a long-tailed distribution 
 Internet traffic has a long range dependence.



 

Connection durations have also been found to have a heavy-
 tailed distribution  traffic has a long range dependence



 

UNIX processes have been found to have a heavy-tailed 
distribution  resource demands have LRD



 

Congestion and feedback control mechanisms such as those 
used in Transmission Control Protocol (TCP) increase the 
range of dependence in the traffic.
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Effect of Long Range DependenceEffect of Long Range Dependence



 

Long-range dependence invalidates all results for 
queueing theory obtained using Poisson processes, 
e.g., Buffer sizes required to avoid overflow may be 
off by thousands times.
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SelfSelf--Similarity vs. LRDSimilarity vs. LRD


 

Self-similarity ≠
 

Long-range dependence


 

Self-similar process can be short-range dependent or long-
 range dependent



 

Self-similar processes with ½
 

< H < 1 have long range 
dependence. 



 

Self-similar processes with 0< H <
 

½
 

have short range 
dependence. 



 

ARIMA(p, d, q) with integer valued d are SRD.


 

FARIMA(p, d+δ, q) with -
 

½<δ<½
 

and δ≠0 have long-range 
dependence.
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FARIMA Models and LRDFARIMA Models and LRD


 

Fractional Auto-regressive Integrated Moving Average 
(FARIMA) processes exhibit LRD for certain values of d.



 

Consider FARIMA(0, 0.25, 0): 

The coefficient of et-k

 

is 
Here, Γ() is the Gamma function: Γ(p+1)=pΓ(p).
It is a generalization of factorial. For integer p,
For example, 
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

 

Consider FARIMA(0, δ, 0) with -1/2 < δ
 

<1/2 and δ≠0.

Where:

Since et

 

is Gaussian, xt

 

is also Gaussian.
et

 

is Gaussian Noise, xt

 

is fractional Gaussian Noise (fGn)

FARIMA Models and LRDFARIMA Models and LRD
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FARIMA and LRD (Cont)FARIMA and LRD (Cont)


 

The autocovariance of the FARIMA(0,δ,0) sequence is:



 

Autocorrelation at lag k:



 

Stirling’s

 

approximation:



 

For large k, rk

 

tends to ck2δ-1

 

where



 

Recall that for LRD:
 2H-2=2δ-1, that is, H=δ+1/2.
 A FARIMA(0,δ,0) sequence has LRD if 0<δ<1/2.
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Generating LRD SequencesGenerating LRD Sequences


 

Generate the FARIMA(p, d+δ, q) LRD sequence


 

FARIMA(p, d+δ, q) = ARIMA(p, d, q) with et

 

replaced by 
fractional Gaussian noise generated by FARIMA(0, δ, 0)



 

ARIMA(p,d,q) is given by



 

It can be generated by one of the following two methods:
1.

 

Using previous values of xt

 

:
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Generating LRD Sequences (Cont)Generating LRD Sequences (Cont)
2.

 

Converting the model to a moving average model using a 
Taylor series expansion:

Here ci

 

are coefficients of the Taylor series expansion and m
 is selected large enough so that ci

 

for i > m
 

are negligible.


 

Generate a white noise sequence ei∼
 

N(0, 1)


 

Generate a FARIMA(0, δ, 0) sequence yi

 

using a moving 
average of a large number m

 
of ei

 

:
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Generating LRD Sequences (Cont)Generating LRD Sequences (Cont)


 

Generate a FARIMA(p, d+δ, q) sequence xi

 

by generating a 
usual ARIMA(p, d, q) as in Step 1 above with the white noise 
ei

 

replaced by yi



 

m=100 or m=1000 has been found to provide good results.
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Example 38.5Example 38.5


 

Generate a FARIMA(0,0.25,0) Sequence



 

Generate 60
 

N(0,1) random numbers for e-9

 

thru e50



 

Use the above equation to get x1

 

through x50



 

The numbers are: -2.16, -0.77, -2.23, 0.61, -0.93, -1.85, -1.68, -
 1.15, -0.96, -0.27, 0.33, -0.18, 0.32, -0.23, -1.90, 0.54, 0.27, -

 0.02, 0.04, 1.58, 0.23, -0.43, -0.48, 0.19, 1.16, 0.60, 1.61, -0.23, 
1.08, 0.22, 1.63, -0.48, 0.51, -0.51, 0.74, -1.53, -0.63, -0.10, 
0.01, -0.19, -1.35, -1.19, -1.36, -0.29, 0.87, 1.70, 0.97, 1.70, 
1.18, 0.20
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Hurst Exponent EstimationHurst Exponent Estimation
Variance-time plot

 
(Similar to the method of independent runs)

1.

 

Start with m=1
2.

 

Divide the sample of size n
 

in to non-overlapping 
subsequences of length m. There will be                      such 
subsequences.

3.

 

Take the sample mean of each subset

4.

 

Compute the overall mean:
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Hurst Parameter Estimation (Cont)Hurst Parameter Estimation (Cont)
5.

 

Compute the variance of the sample means

6.

 

Repeat steps 2 through 5 for m=1, 2, 3, …
7.

 

Plot variance sm2

 

as a function of the subsequence size m
 

on a 
log-log graph

8.

 

Fit a simple linear regression to log(var) vs. log (m).
9.

 

The slope of the regression line is 2H-2.
10.

 

That is, the Hurst exponent is 1+a1

 

/2, where a1

 

is the slope of 
the regression line.

Note: 1. H estimate using this variance time plot method is biased
2. If a process is non-stationary, it may not be self-similar or have 

LRD, but may result in Hurst exponent between 0.5 and 1
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Example 38.6Example 38.6


 

Determine the Hurst exponent for the data of Example 38.5
m 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

Mean -0.21-0.19-0.18-0.13-0.11-0.05-0.07-0.05-0.04 0.07
Variance 0.99 0.52 0.62 0.44 0.34 0.36 0.35 0.16 0.36 0.11

ln(m) 0.00 0.69 1.10 1.39 1.61 1.79 1.95 2.08 2.20 2.30
ln(Variance) -0.01-0.65-0.48-0.82-1.06-1.03-1.04-1.82-1.03 -2.25
 

Slope = -0.73
H = 1 -0.73/2 = 0.635

 ARIMA(0,0.25,0)  H=0.75

-2.5

-2

-1.5

-1

-0.5

0

0.5

0 1 2 3
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SummarySummary

1.
 

Heavy tailed distributions: CCDF tail higher than exponential 
distribution

2.
 

Self-Similar Process:
3.

 
Long Range Dependence:

4.
 

ARIMA(p,d+δ,q) with 0<δ<0.5 can be used to generate LRD 
sequences

5.
 

Hurst parameter can be estimated with variance-time plots. 
For LRD 0.5<H<1.
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