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Overview

a What 1s a time series?

a Autoregressive Models
a Moving Average Models
Q Integrated Models

a ARMA, ARIMA, SARIMA, FARIMA models

O Note: These slides are based on R. Jain, “The Art of Computer
Systems Performance Analysis,” 2" Edition (in preparation).

Washington University in St. Louis ©2015 Raj Jain
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Stochastic Processes

3 Ordered sequence of random observations
2 Example:
> Number of virtual machines in a server
> Number of page faults
> Number of queries over time
a Analysis Technique: Time Series Analysis

a Long-range dependence and self-similarity in such
processes can invalidate many previous results

Washington University in St. Louis ©2015 Raj Jain
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Stochastic Processes: Key Questions

1. What is a time series?

2. What are different types of time series models?

3. How to fit a model to a series of measured data?

4. What 1s a stationary time series?

5. Is 1t possible to model a series that 1s not stationary?

6. How to model a series that has a periodic or seasonal
behavior as 1s common 1n video streaming?

Washingion University in St. Louis 02015 Raj Jain
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Stochastic Processes : Key Questions (Cont)

What are heavy-tailed distributions and why they are
important?

How to check if a sample of observations has a
heavy tail?

What are self-similar processes?

What are short-range and long-range dependent
processes?

Why long-range dependence invalidates many
conclusions based on previous statistical methods?

How to check 1f a sample has a long-range
dependence?

ashington University in St. Louis ©2015 Raj Jain
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What is a Time Series

a Time series = Stochastic Process
a A sequence of observations over time.
O Examples: X

> Price of a stock over successive days

> Sizes of video frames

. Time t
> Si1zes of packets over network

> Si1zes of queries to a database system
» Number of active virtual machines 1n a cloud

a Goal: Develop models of such series for resource
allocation and 1improving user experience.

Washington University in St. Louis ©2015 Raj Jain
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Autoregressive Models

a Predict the variable as a linear regression of the
immediate past value: Ty = ag + a1T¢_1

Q Here, Z; is the best estimate of x, given the past history,
{xo,x1,...,T¢_1}

a Even though we know the complete past history, we
assume that x, can be predicted based on just x,_;.

a Auto-Regressive = Regression on Self
0 Error: et = T4 — Ty = Tt — Qg — G1T+—1
Q Model: ¢ = ag + Q1T¢—1 + €4

a Best a, and a; = minimize the sum of square of errors

Washington University in St. Louis ©2015 Raj Jain
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Example 37.1

Q The number of disk access for 50 database queries were measured to be: 73,
67, 83,53, 78, 88,57, 1,29, 14, 80, 77, 19, 14, 41, 55, 74, 98, 84, 88, 78,
15, 66, 99, 80, 75, 124, 103, 57, 49, 70, 112, 107, 123, 79, 92, 89, 116, 71,
68, 59, 84, 39, 33, 715,083, 77,37, 27, 530()

3 For this data: th — 3313 th_l — 3356
t=2

50 50

> mpwey =248147 Y aj | =272102 n =49
t=2 t=2

DT Y TE g — D Ty—1 ) TeT—1

agp — 5 5
ny wi_q — (2o T-1)
3313 x 272102 — 3356 x 248147
- - - ~ 33.181
49 x 272102 — 33562
Washington University in St. Louis ©2015 Raj Jain
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Example 37.1 (Cont)

N TiTi—1 — ), Tt ) Tp—1

ny, 5’7%—1 — (2 C’775—1)2

49 x 248147 — 3313 x 3356 0.503
B 49 x 272102 — 33562

a The AR(1) model for the series 1is:
Tt — 33.181 —+ 0.503$t_1 + €4

Q The predicted value of x, given x; 1s:
To = ag+ ajx; = 33.181 + 0.503 x 73 = 69.880

a The actual observed value of 1s 67. Therefore, the prediction
error 1s: )
€o = Lo — Lo = 67 — 09.880 = —2.880

Q Sum of squared errors SSE = 32995.57

Washington University in St. Louis ©2015 Raj Jain
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Exercise 37.1

a Fit an AR(1) model to the following sample of 50
observations: 83, 86, 46, 34, 130, 109, 100, 81, &4,
148, 93, 76, 69, 40, 50, 56, 63, 104, 35, 55, 124, 52,
55,81, 33,76, 83, 90, 94, 37, -2, 33, 105, 133, 78, 50,
115, 149, 98, 110, 25, 82, 59, 80, 43, 58, 88, 78, 53,
68. Find a,, a; and the minimum SSE.

©2015 Raj Jain
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Stationary Process

a Each realization of a random process will be different:

4
A

3 x 1s function of the realization i (space) and time #: x(i, ?)

O We can study the distribution of x, in space.

1 — (2 —p)?
(& 202

a Each x, has a distribution, e.g., Normal f(z:) = >
o 7

a If this same distribution (normal) with the same parameters g,
o applies to x,.;, x,, 5, ..., W€ say x, 1s stationary.

Washington University in St. Louis ©2015 Raj Jain
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Stationary Process (Cont)

Q Stationary = Standing in time
= Distribution does not change with time.

Q Similarly, the joint distribution of x, and x,, depends only on &k
not on 7.

a The joint distribution of x,, x, , ..., x,, depends only on k not
on ¢.

A
AW AN AW
IV VS W
»
H H
{a}) Stationary {b) Non-stationary
Washington University in St. Louis ©2015 Raj Jain
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Autocorrelation

a Covariance of x, and x, , = Auto-covariance at lag k
Autocovariance of z; at lag k = Cov|xy, x| = El(xs — p)(xi—p — )]

Q For a stationary series:
» Statistical characteristics do not depend upon time t.

» Autocovariance depends only on lag £ and not on time ¢

Autocovariance of x; at lag k

Autocorrelation of x; at lag k& 7 ,
Variance of x;

COV[ZCt, ZCt_k]

Var|z;]
El(ze — p)(xi—k — p)]
E[(z¢ — p)?]
a Autocorrelation is dimensionless and 1s easier to interpret than
autocovariance.
Washington University in St. Louis ©2015 Raj Jain
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Example 37.2

a For the data of Example 37.1, the variance and covariance's at
lag 1 and 2 are computed as follows:

_ 1 3386
Sample Mean x =— » x, =——=67.72
503 50
50 _ 792
Var(x,) = E[(x, — 1= =3 (x, - %) = 22002200772 _gq) g79
49 = 49
Washington University in St. Louis ©2015 Raj Jain
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Example 37.2 (Cont)

COV(Xt,xt_l) - E[(xz - /u)(xt—l _ ,Ll)]
] & _ _
- 4_9;(xt o xt)(‘xt—l o xt—l)
1 50 1 50 50 50 1 50
= — XX ,—| — X X, ; — X, | — X
IS F3) YIS 1 oY

t=2

1 & )1
+ 49 (4—9 ;xt j (4—9 ;xt_l H
[ (& (&
5| 2 _EKZXJ(ZJCH

_ 248147_3313x3356}

S — 433.476
49

a Small Sample = x and x_, are slightly different.

Not so for large samples.

Washington University in St. Louis

©2015 Raj Jain

37-15




Example 37.2 (Cont)

Cov(xt ’ xt—2) - E[(xt o /U)(xz—z o ,Ll)]

] & _ _
- 4_8 Z('xt - xt)(xt—Z - xt—Z)
=3

1 [ 50 1 (3 50
o 4_8 _;‘xﬁxt—z _4_8(tz;xt j (;xtz j:|

_ 1[50 3246%3329
48| 48
— 88.258

A Note: Only 48 pairs of {x, x, ;} = Divisor is 48

Washington University in St. Louis ©2015 Raj Jain
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Example 37.2 (Cont)

Var(x,) _891.879 _
Var(x,) 891.879
Cov(x,,x,,) _433.476

Autocorrelation at lag 0 =1, = 1

Autocorrelation at lag 1 =r, = =0.486
Var(x,) 891.879
Autocorrelation at lag 1 =r, = Covlx, X)) _ 433476 _ 0.486
Var(x,) 891.879
Washington University in St. Louis ©2015 Raj Jain
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White Noise

Q Errors e, are normal independent and 1dentically distributed
(IID) with zero mean and variance o2

a Such IID sequences are called “white noise” sequences.

Q Properties: Eles] = 0 vVt
Varle;] = Ele?]=0% Wt

_ - o> k=0

COV[Bt, €t—k = E_etet_k] = { 0 l{ 7& 0

B E[Gtet_k] o 1 =0

Corles, er_1] = Eled] 10 k#0

0 k

| Washington University in St. Louis ©2015 Raj Jain
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White Noise (Cont)

a The autocorrelation function of a white noise sequence 1s a
spike (0 function) at A=0.

Q The Laplace transform of a 0 function is a constant. So in
frequency domain white noise has a flat frequency spectrum.

| —

0 f 0 f

a It was incorrectly assumed that white light has no color and,
therefore, has a flat frequency spectrum and so random noise
with flat frequency spectrum was called white noise.

Ref:
Washington University in St. Louis ©2015 Raj Jain
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White Noise Autocorrelations

QO It can be shown that autocorrelations for white noise are
normally distributed with mean:

—1

Elry] =~ —

n

and variance;: .
Var|ry| ~ —

n

0 Therefore, their 95% confidence interval is —1/n F 1.96/v/n

This is generally approximated as F2/+/n

a This confidence interval can be used to check 1f a particular
autocorrelation 1s zero.

Washington University in St. Louis ©2015 Raj Jain
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Example 37.3

a For the data of Example 37.1: n=50
CI = 72/4/(50) = 70.283

-
% LD
2 .
5 I {95% Clonfidence Interval
7 I

U, N =2

r, 1s not significantly different from zero.
Washington University in St. Louis ©2015 Raj Jain
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Exercise 37.2

a Determine autocorrelations at lag 0 through 2 for the
data of Exercise 37.1 and determine which of these
autocorrelations are significant at 95% confidence.

Washington University in St. Louis

©2015 Raj Jain
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Assumptions for AR(1) Models

a x, 1s a Stationary process

A Linear relationship between successive values

a Normal Independent 1dentically distributed errors:

» Normal errors
> Independent errors

a Additive errors

Washington University in St. Louis

©2015 Raj Jain
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O

MNumber of Disk Accesses v,

Washington University in St. Louis

x, vs. x, ; for linearity

140
1200 4

—
o 2
o= w2

G -

Visual Tests for AR(1) Models

1. Plotx, as a function of ¢ and look for trends

Errors e, vs. predicted values '+ for additivity
Q-Q Plot of errors for Normality
Errors e, vs. ¢ for ud

10 0 an 40 Nt

Time #
http://www.cse.wustl.edu/~jain/cse567-15/ ©2015 Raj Jain
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Visual Tests (Cont)

140 -
120 - ¢ ¢
.
¢ .
100 - ¢ PO
X
0 T * T T T T T ] Xt_]
0 20 40 60 80 100 120 140
Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-15/ ©2015 Raj Jain
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Visual Tests (Cont)
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Exercise 37.3

a Conduct visual tests to verify whether or not the
AR(1) model fitted in Exercise 37.1 1s appropriate .

Washington University in St. Louis

©2015 Raj Jain
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AR(p) Model

a x, 1s a function of the last p values:

Tt = a0+ a1T¢—1 + A2T¢—2 + *** + ApTi—p T €4

d AR(2) Ty = Qg+ A1T¢—1 + QoTi_9 + €4

QARQ): ¢t = ag + a1T¢—1 + G2Tr—2 + A3T¢—3 + €4

Washington University in St. Louis ©2015 Raj Jain
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Backward Shift Operator

B(ZUt) — Lt—1
a Similarly, B(B(xt)) — B(mt—l) = Xt—9
a Or BQZCt — T 5

BBZCt — T+—3
kat — Tt—L

a Using this notation, AR(p) model 1s:

Tt —A1Tt—1 — AT — +* — ApTp_p = Qo T €
Ty — a1 Bx; — asB%x; — - — ap,Bry = ag+ ey
(1—a1B—a2B2—---—apo)xt = ag+ e
Op(B)ry = ag+ e
a Here, &, 1s a polynomial of degree p.
Washington Universi? in St. Louis ©2015 Raj Jain
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AR(p) Parameter Estimation

Tt = Qg + A1T¢—1 + A2T¢—2 1 €4
a The coefficients a,'s can be estimated by minimizing SSE using
Multiple Linear Regression.
SSE = Z e? = Z(:ct —ag — A1 Tp—1 — agact_g)Q
t=3
a Optimal a), a,;, and a, = Minimize SSE

—Set the first differential to zero:
d n

—SSE = g —2(zy —ag — a1y — asxy_2) =0
dao
=3
n
d
—SSE = g —2x;_1(xy —ap — a1xT4—1 — a2T4_2) =0
da,1
=3
n
d
—SSE = E —2x¢_o(x — ag — a1x4—1 — agx—2) =0
da,g
t=3
Washington University in St. Louis ©2015 Raj Jain
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AR(p) Parameter Estimation (Cont)

a The equations can be written as:

n — 2 > T > X2 ag DXt
DT DTF D Tp1T2 a1 | = | D xewy—y
S Tp—o Y Ti_1Tp_2 Soxi g as S xiw_o

Note: All sums are for =3 to n. n-2 terms.

a Multiplying by the inverse of the first matrix, we get:

—1
ao n—2 > xiq > X0 > Xy
a1 = th—l fo_l Zfbt—lﬂft—2 Zﬂftfﬁt—l
a2 Z«Tt—2 Ziﬁt—1£€t—2 233%_2 Zﬂftiﬁt—2

Washington University in St. Louis ©2015 Raj Jain
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_ - — 1-1 ~

a, n—p Z X1 Z X2 o Z Xi—p Z X
; > Y

1 Z X X1 Z Xe1Xia Z XX p XX
a = 2 e Z

2 Z xt—z Z xt—lxt—Z Z xt—2 Z 'xt—Z'xt—p XX

L >
P th -p th X p th 2% p th - | XXy

Q All sums are from t=p to t=n and have n-p terms.

a For larger data sets: 7, 1s the autocorrelation at lag £

_ — _ -1 —

a, N I R
G| | hnooh r, v,
a, | ([T T 1 IR
a,=(1-a,—a,—-—a,)x
Washington University in St. Louis ©2015 Raj Jain




Example 37.5

Q Consider the data of Example 37.1 and fit an AR(2) model:
T
a, | |n 1 v,

(1 0.486] [0.486
“l0486 1 } {0.099}

[ 0.575
) _—0.182}

a,=(1—a,—a,)x =(1-0.575+0.182)67.72 = 41.164

a SSE=31979.32

O Small sample = Values of a0, al, and a2 are approximate.

O Exact model by regression:

x, =39.979+0.587x,_, —0.180x,_, +e¢, SSE=31969.99
Washington University in St. Louis ©2015 Raj Jain
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Exercise 37.4

a Fit an AR(2) model to the data of Exercise 37.1.
Determine parameters a,, a;, a, and the SSE using
multiple regression. Repeat the determination of
parameters using autocorrelation function values.

Washington University in St. Louis ©2015 Raj Jain
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Exercise 37.5

a Fit an AR(3) model to the data of Exercise 37.1.
Determine parameters a,, a;, a,, a; and the SSE using
multiple regression.

Washington University in St. Louis

©2015 Raj Jain
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Determining the Order AR(p)

ACF of AR(1) 1s an exponentially decreasing fn of &
Fit AR(p) models of order p=0, 1, 2, ...
Compute the confidence intervals of a,,  ap + 2/ \/Zn)

After some p, the last coefticients a, will not be significant for
all higher order models.

This highest p is the order of the AR(p) model for the series.

This sequence of last coefficients 1s also called "Partial
Autocorrelation Function (PACF)"

U O 0 O

U O

PACF (k)

Washington University in St. Louis ©2015 Raj Jain
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Example 37.6

a For the data of Example 37.1, we have:
O AR(1): x, =33.1814+0.503x,_, +e¢,

a AR(Q2): x, =39.979+0.587x,_,—0.180x, , +e,

a Similarly, AR(3):x, =37.313+0.598x,_, —0.211x,_, +0.052x,_, +e¢,
a PACF atlags 1, 2, and 3 are: 0.503, -0.180, and 0.052

F Y
% 10 fm
g
E {95“ o Confidenc & Interval
2 I o
2 o0 1 1 I 3 Logk . .
-------------------------------- AR(1) 1s appropriate.
| Washington University in St. Louis ©2015 Raj Jain
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Computing PACF

PACFatlag 1 =s, =a 1n AR(1)=
S 1= (D=7 ‘M ‘ZDeterminant of M

LA
: A
PACF atlag2 =s, =a, in AR(2) = 1
h
o1
Lnog
no1on
: hoh N
PACF atlag3 =s, =a, in AR(3) =
1 rn r
nolon
r, n 1
Washington University in St. Louis ©2015 Raj Jain
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Computing PACF (Cont)

noo 1 7,

v, s 7,

PACFatlagk =s, =a, in AR(k) = =~ %
I h Ve
i I V-2

Vey Vo, =t 1

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-15/ ©2015 Raj Jain
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Exercise 37.6

a Using the results of Exercises 37.1, 37.4, and 37.5,
determine the partial autocorrelation function at lags
1, 2, 3 for the data of Exercise 37.1. Determine which
values are significant. Based on this which AR(p)
model will be appropriate for this data?

Washington University in St. Louis ©2015 Raj Jain
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Moving Average (MA) Models

IéllléllIIIIIIIIIIIIIIIIIIIIIIIIIIIII
e t

a Moving Average of order 1: MA(1)
Ty — by = e; + brei—q
b, 1s the mean of the time series.
Q The parameters b, and b, cannot be estimated using standard

regression formulas since we do not know errors. The errors
depend on the parameters.

a So the only way to find optimal b, and b, is by iteration.
—> Start with some suitable values and change b, and b, until
SSE 1s minimized and average of errors 1s zero.

»
»

Washington University in St. Louis ©2015 Raj Jain
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Example 37.4

a Consider the data of Example 37.1.

50
1
Q Forthisdata: r = — = 67.72
750 ; i
O We start with b, = 67.72, b,=0.4,

Assuming e,~0, compute all the errors and SSE.

150

— e; = —0.152 and SSE = 33542.8
50 —

o

O We then adjust a, and b, until SSE 1s minimized and mean
error 1s close to zero.

Washington University in St. Louis ©2015 Raj Jain
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Example 37.4 (Cont)

a The steps are: Starting with by = & and trying various values

of b,. SSE 1s minimum at 5,=0.475. SSE=33221.06

33900
33800
33700
33600
SNE | 33500
33400
33300
33200

33100

0.3 0.35 0.4 0.45 0.5 0.55 0.6

&y

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-15/

©2015 Raj Jain
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Example 37.4 (Cont)
1 50

e=—>Ye =-0.1661
505

a Keeping b,=0.475, try neighboring values of b, to get
average error as close to zero as possible.

Q b,=67.475 gives €=-0.001 SSE=33221.93

©2015 Raj Jain
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MA(qg) Models

IéllléllIIIIIIIIIIIIIIIIIIIIIIIIIIIII
e t

O Moving Average of order 1: MA(1)
Ty —bg = €y + brey 1
a Moving Average of order 2: MA(2)
Ty — by = €4 +breg_1 + boey_o
O Moving Average of order a: MA(q)
Ty —bg = et +brer—1 +bae_o+ -+ bger—g
a Moving Average of order 0: MA(0) (Note: This 1s also AR(0))

rp—bop=¢ . .
x-b,1s a white noise. b, 1s the mean of the time series.

»
»

Washington University in St. Louis ©2015 Raj Jain
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Exercise 37.7

a Fit an MA(0) model to the data of Exercise 37.1.
Determine parameter b, and SSE

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-15/ ©2015 Raj Jain
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MA(q) Models (Cont)

a Using the backward shift operator B, MA(q):

Lt — b() = €t blBet + bQBQGt + -+ quqet
— (1—|—blB—|—b2B2 -+ °°°+quq)€t
= \Ifq(B)Gt

a Here, ¥, 1s a polynomial of order g.

©2015 Raj Jain
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Example 37.8

a Fit MA(2) model to the data of Example 37.1

x,=b,+e +be_ +b,e,_,

Q Round 1: Settingp, = z, = 67.72 we try 9 combinations of
b,={0.2,0.3,0.4} and »,={0.2, 0.3, 0.4}.
Minimum SSE 1s 33490.26 at 5,=0.4 and 5,=0.2

a Round 2: Try 4 new points around the current minimum
b,={0.35,0.45} and b,={0.15, 0.25}
Minimum SSE 1s 32551.62 at ,=0.45, ,=0.15

a Round 3: Try 4 new points around the current minimum.
Try b,={0.425, 0.475} and ,={0.125, 0.175}
Minimum SSE 1s 32342.61 at 5,=0.475, ,=0.125

Washington University in St. Louis ©2015 Raj Jain
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Example 37.8 (Cont)

a Round 4: Try 4 new points around the current minimum.
Try b,={0.4625, 0.4875} and H,={0.125, 0.175}
Minimum SSE 1s 32201.58 at 5,=0.4875, 5,=0.125

O Round 5: Try 4 new points around the current minimum.
Try b,={0.481, 0.493} and b,={0.112, 0.137}
Minimum SSE is 32148.21 at »,=0.493, ,=0.137

a Since the decrease in SSN 1s small (close to 0.1%), we
arbitrarily stop here.

d The model is:

x, =67.72+e +0.493e,_, +0.137e,_,

Washington University in St. Louis ©2015 Raj Jain
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Exercise 38.8

a Fit an MA(1) model to the data of Exercise 37.1.
Determine parameters b,, b, and the minimum SSE.

Washington University in St. Louis

©2015 Raj Jain
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Autocorrelations for MA(1)

Q For this series, the mean 1s:
= FElri] =ag+ Ele:] + b1 Ele;_1] = ag

2 The variance 1s:

Var|xy] =

ol

E|
E

(fb"t

1)°] = El(es + bres—1)?]

et + 2bierer_1 + blet 1]
et] + 2b1 Eleter 1] + blE[e%_l]
0% 4+ 2b; x 04 b20? = (14 b%)o?

a The autocovariance at lag 1 1s:

autocovar at lag 1

Washington University in St. Louis

El(xy — p)(we—1 — p)]

Ele: + bies—1)(er—1 + bres_2)]
erei_1 + bres_1ei_1 + bireces_o + biei_1e,_o]
0+ b E[e?_ ] +0+0]

b10'

2

©2015 Raj Jain
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Autocorrelations for MA(1) (Cont)

a The autocovariance at lag 2 1is:
Covar at lag 2 = FE[(xs — p)(xi—2 — Y
= FEl(e; +bireg—1)(et—2 + brey—3)]
= PElerer—o + bres—1€i—2 + breses_s + bies_16_3]

0+0+0+0=0
a For MA(1), the autocovariance at all higher lags (£>1) 1s 0.

Q The autocorrelation 1s: 1 E—0
— b k=1

Tk = 1452
0 k>1

3 The autocorrelation of MA(g) series 1s non-zero only
for lags k< g and 1s zero for all higher lags.

Washington University in St. Louis ©2015 Raj Jain
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Example 37.9

a For the data of Example 37.1:
a Autocorrelation 1s zero for all lags k >1.
0 MA(1) model 1s appropriate for this data.

Washington University in St. Louis ©2015 Raj Jain
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Example 37.10

A The order of the last significant r, determines the
order of the MA(g) model.

A For the following data, all autocorrelations at lag 9
and higher are zero = MA(8) model would be
appropriate

Autocorrelation Pk O TP N Y 2/+/(n)

Washington University in St. Louis ©2015 Raj Jain
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Exercise 37.9

a Fit an MA(2) model to the data of Exercise 37.2.
Determine parameters b, b;, b, and the minimum

SSE. For this data, which model would you choose
MA(0), MA(1) or MA(2) and why?
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Duality of AR(p) vs. MA(q)

a Determining the coefficients of AR(p) 1s straight
forward but determining the order p requires an
iterative procedure

a Determining the order q of MA(q) 1s straight forward
but determining the coefficients requires an iterative
procedure
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Non-Stationarity: Integrated Models

0 In the white noise model AR(0): 2+ = ao + €¢

The mean q, 1s independent of time.

(

a If it appears that the time series 1n increasing approximately
linearly with time, the first difference of the series can be
modeled as white noise: (x: — Tr—1) = ag + €

A Or using the B operator: (1-B)x, = xx,
(1 ——l?)xt:::a0-+-et
Q This 1s called an "integrated" model of order 1 or I(1). Since the
errors are integrated to obtain x.

a Note that x, 1s not stationary but (1-B)x, 1s stationary.

XtLlJf/‘ (]_B)xtw

[ [
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Integrated Models (Cont)

Q If the time series 1s parabolic, the second difference can be

modeled as white noise:
(Tt —wp—1) — (T4—1 — xT4—2) = ap + €

Q Or (1-— B)2xt = ag + €¢
This 1s an I(2) model. Also written as:
D’x, = b, +e,

Where Operator D = 1-B

A

X

v
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ARMA and ARIMA Models

a It 1s possible to combine AR, MA, and I models
a ARMA(p, g) Model:

Tt — Q1T4—1 — . — QpTi—p = bo+er+bres—1+ ... +bser_q
¢p(B)xt bo + q(B)ey

a ARIMA(p,d,q) Model:

p(B) (1 — B) s = bo + (B)e;

a Using algebraic manipulations, it is possible to transform AR
models to MA models and vice versa.
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Example 37.11

0 Consider the MA(1) model: x, =b, +e, +be,_,
2 It can be written as: (x, —=b,) =(1+b,B)e,
(1+ blB)_l(xt —by) =e¢,
(1-5,B+bB* =b'B’ +..)(x,~b,) =¢,

b
2 3 0o _
(xt DX, +bx,_, —bx, +"')_1+b1 =&
. bo b b2 b3 ...
xt_1+b TOX, =0 X, YO X, 4 T €
|

a If b,<1, the coefficients decrease and soon become

insignificant. This results in a finite order AR model.
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Exercise 39.10

a Convert the following AR(1) model to an equivalent
MA model:

X, =d, + ax, + €

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-15/ ©2015 Raj Jain

37-61



Non-Stationarity due to Seasonality

a The mean temperature in December 1s always lower than that
in November and in May it always higher than that in March
—Temperature has a yearly season.

a One possible model could be 1(12):

Ty — Ti—12 = Qg + €¢

d or
(]. — B12)£Ct — Ay + e
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Seasonal ARIMA (SARIMA) Models

Q SARIMA (p.d,q) x (P, R,Q)* Model:

p(B)2p(B°)(1 = B*)(1 = B)“z; = by + 14(B) T (B)er

3 Fractional ARIMA (FARIMA) Models
ARIMA(p, d+9, q) -0.5<0<0.5
—Fractional Integration allowed.
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Exercise 37.11

0 Write the expression for SARIMA(1,0,1)(0,1,0)!?
model 1n terms of x’s and e’s.
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Case Study

37.1: Mobile Video
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a Observation: Every 16" frame is a large (I) frame.
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Traffic Modeling — All Frames

O A closer look at the ACF graph shows a strong continual
correlation every 16 lag =» GOP size

Data sm
=9 SAM
L L Lt
- PP rreerrrereeyee
1 17 1 23 25 72 2 033 49
Lag
AResult: SARIMA (1, 0, 1)x(1,1,1)* Model, s=group size =16
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Validation
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0 AR(1) Model:
Ty = ag 1+ A1Tr—1 + €
a MA(1) Model:
Ty —agp = €y +brey 1
0 ARIMAC(1,1,1) Model:
Tt — Tt—1 = Qo + a1(Tr—1 — Tt—2) + e + bre—q

Q Seasonal ARIMA (1,0,1)x(0,1,0)!? model:

Tt — Ti—12 = a0 + a1(T4—1 — T4—13) + €1 + bres_q
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