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Simple Linear Regression Models

O Regression Model: Predict a response for a given set
of predictor variables.

O Response Variable: Estimated variable

O Predictor Variables: Variables used to predict the
response. predictors or factors

O Linear Regression Models: Response is a linear
function of predictors.

O Simple Linear Regression Models:
Only one predictor
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Definition of a Good Model
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Good Model (Cont)

O Regression models attempt to minimize the distance
measured vertically between the observation point
and the model line (or curve).

O The length of the line segment is called residual,
modeling error, or simply error.

O The negative and positive errors should cancel out
= Zero overall error
Many lines will satisfy this criterion.

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-17, ©2017 Raj Jain

Good Model (Cont)

a Choose the line that minimizes the sum of squares of
the errors. R
Y =bo+ b1

where, ¢ 1s the predicted response when the
predictor variable is x. The parameters b, and b, are
fixed regression parameters to be determined from the
data.

Q Given n observation pairs {(x;, ¥,), ..., (x,, V,)}, the
estimated response ¢J; for the i observation is:
Yi = bo + biz;
Q The error is:

ustl.ed
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Good Model (Cont)

O The best linear model minimizes the sum of squared
errors (SSE):

D i1 € = D e (Yi —bo — biz;)
subject to the constraint that the mean error is zero:

> i1 €= iy (yi —bo —biz;) =0

a This is equivalent to minimizing the variance of errors
(see Exercise).
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Estimation of Model Parameters

O Regression parameters that give minimum error
variance are:

_ Xxy —nTy
Y2 — nz?

Q where, . .
_ 1
=1 =1
n n
dYxy = Z TiY; Yz? = Z :1:?
i=1 i=1

by and bo =9y — 01T

T =

S|
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Example 14.1

O The number of disk 1/O's and processor times of
seven programs were measured as: (14, 2), (16, 5),
(27,7), (42, 9), (39, 10), (50, 13), (83, 20)

Q For this data: n=7, ¥ xy=3375, L x=271, X x*>=13,855,
Y y=66, X y*=828, x=38.71, y=9.43. Therefore,

Yoy —nxy 3375 — 7 x 38.71 x 9.43
Y22 —n(z)2 13,855 — 7 x (38.71)2
bo = §—b17 =943 —0.2438 x 38.71 = —0.0083

by = 0.2438

O The desired linear model is:
CPU time = —0.0083 + O.2438(Number of Disk I/O’s)

Washington University in St. Louis htp://www.cse.wustl.edu/~jain/cse567-17 ©2017 Raj Jain

Example 14.1 (Cont)
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Example 14. (Cont)

a Error Computation

Disk I/O’s CPU Time Estimate Error Error?

T ¥  Ui=bo+b1 x; e;=y-U; e?

14 2 3.4043  -1.4043 1.9721

16 5) 3.8918 1.1082 1.2281

27 7 6.5731 0.4269 0.1822

42 9 10.2295  -1.2295 1.5116

39 10 9.4982  0.5018 0.2518

50 13 12.1795  0.8205 0.6732

83 20 20.2235  -0.2235 0.0500

by 271 66 66.0000 0.00 5.8690
Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-17, ©2017 Raj Jain
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Derivation of Regression Parameters

O The error in the ith observation is:
ei =Y — Ui =y — (bp + b1x;)

= §—by—bT
O Setting mean error to zero, we obtain:
bo =9y — 0T
O Substituting b0 in the error expression, we get:

http://www.cse.wustl.edu/~jain/cse567-17
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O For a sample of n observations, the mean error is:

e = +y,e==>{yi— (bo+biz;)}

ei =Y —y+bT—bix;=(y; —9) — bi(z; — %)

©2017 Raj Jain
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Derivation of Regression Parameters (Cont)

O The sum of squared errors SSE is:
SSE = Z e?
=1

= 2 {(‘/l —9)"--2b1 (y; — ) (@ — &) + b7 (2 — :Z')z}
i=1

SSE 1 n B 1 n B )
BE L S 02> ) ()
i=1 i=1

1 n
2 =2
+b1n—1;(x’ z)

_ 2 2 2.2
= s, — 2bis;, +bis;

http://www.cse.wustl.edu/~jain/cse567-17, ©2017 Raj Jain
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Derivation (Cont)

O Differentiating this equation with respect to b, and
equating the result to zero:

1 d(SSE) 9 9
1 db = —28,, +2b1s;, =0
Q That 1s,
b — ngcy _ Xry —nTy
b 52 Xx? —n(z)2

Homework 14A: Exercise 14.7

O The time to encrypt a & byte record using an encryption
technique is shown in the following table. Fit a linear
regression model to this data.

Record Observations
Size 1 2 3
128 386 375 393
256 850 805 824
384 1544 1644 1553
512 3035 3123 3235
640 6650 6839 6768
768 13,887 14,567 13,456
896 28,059 27,439 27,659
1024 50,916 52,129 51,360

http://www.cse.wustl.edu/~jain/cse567-17
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Allocation of Variation

O Error variance without Regression = Variance of the response

Error = ¢; = Observed Response — Predicted Response
= Yi—y
and
1 n
Variance of Errors without regression = Z €2

n—1 o

1 n

—\2
= a1 Z(yz )
i=1

= Variance of y

http://www.cse.wustl.edu/~jain/cse567-17,
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Allocation of Variation (Cont)

O The sum of squared errors without regression would be:
n

—\2
> (Wi—7)
=1
O This is called total sum of squares or (SST). It is a measure of

y's variability and is called variation of y. SST can be

computed as follows:
n

SST =) (yi —9)° = (Z y§> — ng® = SSY — S50
=1

=1

0O Where, SSY is the sum of squares of y (or X y?). SSO is the sum
of squares of 9/and is equal to Y

Washington University in St. Louis htp://www.cse.wustl.edu/~jain/cse567-17 ©2017 Raj Jain
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Allocation of Variation (Cont)

Q The higher the value of R?, the better the regression.
R?=1 = Perfect fit R>=0 = No fit

2
S:Uy

Sample Correlation(x,y) = Ry, =
.

O Coefficient of Determination R2
= {Correlation Coefficient (x,y)}>

O Shortcut formula for SSE:
SSE = Xy? — byZy — b1 Xy

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-17, ©2017 Raj Jain

Allocation of Variation (Cont)

explained by the regression. It is called SSR:
SSR = SST — SSE

SST = SSR + SSE

or

determination, R2:
g2 SSR _ SST —SSE
SST SST

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-17

O The difference between SST and SSE is the sum of squares

O The fraction of the variation that is explained determines the
goodness of the regression and is called the coefficient of

©2017 Raj Jain
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Example 14.2

SSE = Xy? —byXy — b1 Xzy

SST = SSY —SS0 = %y* — n(gy)?
= 828 — 7 x (9.43)% = 205.71
SSR = SST — SSE = 205.71 — 5.87 = 199.84

_ SSR_ 199.84

R? =
SST ~ 205.71

=0.9715

14-19
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a For the disk I[/O-CPU time data of Example 14.1:

= 828 4+ 0.0083 x 66 — 0.2438 x 3375 = 5.87

O The regression explains 97% of CPU time's variation.

©2017 Raj Jain
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Standard Deviation of Errors

a Since errors are obtained after calculating two regression
parameters from the data, errors have n-2 degrees of freedom

[ SSE
Se =
n—2

SSE/(n-2) is called mean squared errors or (MSE).
Standard deviation of errors = square root of MSE.

O SSY has n degrees of freedom since it is obtained from n
independent observations without estimating any parameters.

O SSO has just one degree of freedom since it can be computed
simply from

0 SST has n-1 degrees of freedom, since one parameter Y
must be calculated from the data before SST can be computed.

http://www.cse.wustl.edu/~jain/cse567-17, ©2017 Raj Jain
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Standard Deviation of Errors (Cont)

0 SSR, which is the difference between SST and SSE,
has the remaining one degree of freedom.

Q Overall,
SST = SSY — SSO = SSR + SSE
n—-1 = n - 1 = 1 4+ (n—2)

O Notice that the degrees of freedom add just the way
the sums of squares do.

14-21
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Example 14.3

a For the disk I[/O-CPU data of Example 14.1, the
degrees of freedom of the sums are:

SS SST = SSY — SS0 = SSR + SSE
205.71 = 828 — 62229 = 199.84 + 5.87
DF: 6 = 7 - 1 = 1 + 5

O The mean squared error is:

SSE B 5.87
DF for Errors 5

QO The standard deviation of errors is:
se = VMSE = v/1.17 = 1.08

http://www.cse.wustl.edu/~jain/cse567-1 ©2017 Raj Jain
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Confidence Intervals
for Regression Params

0O Regression coefficients b, and b, are estimates from a single
sample of size » = Random
= Using another sample, the estimates may be different. If 3,
and f3, are true parameters of the population. That is,

y = Po + bz
0 Computed coefficients b, and b, are estimates of 3, and 3,
respectively.

1 72 1/2
Sby = Se [5 + T2 22 n:Z“2]
Se
Sp =
' (X2 — nf2]1/2

14-23
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Confidence Intervals (Cont)

O The 100(1-a)% confidence intervals for b, and b, can be be
computed using t;_o. 5y --- the 1-0/2 quantile of a t variate
with n-2 degrees of freedom. The confidence intervals are:

bo F tsp,
And
b1 F Lsp,
O If a confidence interval includes zero, then the regression

parameter cannot be considered different from zero at the at
100(1-a)% confidence level.

Washington University in St. Louis htp://www.cse.wustl.edu/~jain/cse567-17 ©2017 Raj Jain

Example 14.4

O For the disk I/O and CPU data of Example 14.1, we have n=7,
T=38.71, X2?=13,855, and s,~1.0834.

O Standard deviations of b, and b, are:

B L 72 1/2
b0 T Fe n  Yx? — nx?

14-25

Example 14.4 (Cont)

O From Appendix Table A.4, the 0.95-quantile of a #-variate with
5 degrees of freedom is 2.015.
= 90% confidence interval for b, is:

—0.0083 F (2.015)(0.8311) = —0.0083 F 1.6747

= (—1.6830, 1.6663)
a Since, the confidence interval includes zero, the hypothesis that
this parameter is zero cannot be rejected at 0.10 significance
level. = b, 1s essentially zero.

0 90% Confidence Interval for b, is:
0.2438 F (2.015)(0.0187) = 0.2438 F 0.0376

= (0.2061, 0.2814)

O Since the confidence interval does not include zero, the slope
b, 1s significantly different from zero at this confidence level.

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-17, ©2017 Raj Jain

1 (38.71)* V2
— 1.0834 |- + : —0.8311
7 13,855 — 7 x 38.71 x 38.71]
8¢
Sp = _——
' [Zx? — n:E?]l/2
1.0834
- g = 0.0187
[13,855 — 7 x 38.71 x 38.71]
Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-17 ©2017 Raj Jain
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Case Study 14.1:
Remote Procedure Call
UNIX ARGUS

Data | Time | Data | Time
Bytes Bytes
64 26.4 92 32.8
64 26.4 92 34.2
64 26.4 92 324
64 26.2 92 34.4
234 33.8 348 41.4
590 41.6 604 51.2
846 50.0 860 76.0
1060 48.4 | 1074 | 80.8
1082 49.0 1074 79.8
1088 42.0 1088 58.6
1088 41.8 1088 57.6
1088 41.8 | 1088 | 59.8
1088 42.0 1088 57.4

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-17, ©2017 Raj Jain
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Case Study 14.1 (Cont)

Q Unix:
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40

Elapsed time in milliseconds
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Case Study 14.1 (Cont)

Q Argus:
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Time on UNIX

Time on ARGUS
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Case Study 14.1 (Cont)

O Best linear models are:

0.017 (Data size in bytes) + 26.898
0.034 (Data size in bytes) + 31.068
O The regressions explain 81% and 75% of the

variation, respectively.

Does Argus takes larger time per byte as well as a
larger set up time per call than Unix?

Case Study 14.1 (Cont)

UNIX:
Para- Std. Confidence
meter  Mean  Dev. Interval
by 26.898 2.005 ( 23.2968, 30.4988)
by 0.017 0.003 ( 0.0128, 0.0219)
ARGUS:
Para- Std. Confidence
meter  Mean  Dev. Interval
bp 31.068 4.711 ( 22.6076, 39.5278)
by 0.034 0.006 ( 0.0231, 0.0443)

O Intervals for intercepts overlap while those of the slopes do not.
= Set up times are not significantly different in the two
systems while the per byte times (slopes) are different.

©2017 Raj Jain
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Homework 14B: Exercise 14.7

O For the data of Exercise 14.7 (Homework 14A), compute R?
and 90% confidence intervals for regression parameters.

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-17,

©2017 Raj Jain
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CI for Predictions (Cont)

0O m = oo = Standard deviation of the mean of a large
number of future observations at X,

1 4 (zp _3_5)2 12
Sg. =8¢ | — + =——-L—
Yp “In  Xa2—nz?

0 100(1-a)% confidence interval for the mean can be

constructed using a t quantile read at n-2 degrees of
freedom.

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-17,

Confidence Intervals for Predictions

Yp = bo + b1z
O This is only the mean value of the predicted response. Standard
deviation of the mean of a future sample of m observations is:

1 1 (z,-7)]"?
S@mp=se[—+ +M]

m n Xx?2—nx?

0 m =1 = Standard deviation of a single future observation:

1 T, —T)2 1/2
841, = Se [1 o = A M]

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-17,
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CI for Predictions (Cont)

O Goodness of the prediction decreases as we move
away from the center.

A
Upper

confidence ,’ Mean

Lower
\ confidence

/ hound

Eal

http://www.cse.wustl.edu/~jain/cse567-17,
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Example 14.5

0 Using the disk I/O and CPU time data of Example
14.1, let us estimate the CPU time for a program with
100 disk 1/O's.

CPU time = —0.0083 + 0.2438(Number of disk 1/0’s)

a For a program with 100 disk I/O's,
the mean CPU time is:

CPU time = —0.0083 + 0.2438(100) = 24.3674

Standard deviation of errors s, = 1.0834

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-17, ©2017 Raj Jain

Example 14.5 (Cont)

O The standard deviation of the predicted mean of a large number
of observations is:

1 (100 — 38.71)2
S =1.0834 |-
0 7 713,855 — 7(38.71)2

1/2
= 1.2159

O From Table A.4, the 0.95-quantile of the t-variate with 5
degrees of freedom is 2.015.
= 90% CI for the predicted mean

= 24.3674 F (2.015)(1.2159)
= (21.9174, 26.8174)

14-37

Example 14.5 (Cont)

0 CPU time of a single future program with 100 disk
I/O's:
1/2

1 100 — 38.71)2
gy, = 1.0834 [1+ = + ( ) = 1.6286

7 13,855 —7(38.71)2

a 90% CI for a single prediction:
= 24.3674 F (2.015)(1.6286)

—  (21.0858, 27.6489)

ustl.edu/~jain/cse567-17 ©2017 Raj Jain
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Visual Tests
for Regression Assumptions
Regression assumptions:

1. The true relationship between the response variable y
and the predictor variable x is linear.

2. The predictor variable x is non-stochastic and it 1s
measured without any error.

3. The model errors are statistically independent.

The errors are normally distributed with zero mean
and a constant standard deviation.

http://w

Washington University in St. Louis www.cse.wustl.edu/~jain/cse567-17, ©2017 Raj Jain
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1. Linear Relationship: Visual Test 2. Independent Errors: Visual Test
O Scatter plot of y versus x = Linear or nonlinear relationship 1. Scatter plot of ¢; versus the predicted response ¥;

A (a) Lincar A (b} Multilinear A A

(a) No trend (b) Trend A
. (c) Trend
. Residual Residual Residual
W ¥ as ® @ . - . .
: L] - ei . s . . ei . . ei a .
. . 0 fremmmommmoetens 0 p------ oo W I .
- . . - . " . . . .. .
> g * (& Non ’ > > >
A () Outlier o S I;La' Predicted response - Predicted response - Predicted response
. £ ,:
¥ ¥ . ’,r' a All tests for independence simply try to find dependence.
L t/”
. .
. .. S i
L - e
Washington University in St. Louis d hitp:/www CS,C,-,\LUi‘,,L}JLu«,IJLTE),\LS 67-17/ ©2017 Raj Jain Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-17, ©2017 Raj Jain
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Independent Errors (Cont) 3. Normally Distributed Errors: Test
2. Plot the residuals as a function of the experiment number O Prepare a normal quantile-quantile plot of errors.
Linear = the assumption is satisfied.
Y . T » - .
(a) No trend A {b) Trend Normal A '
Residual Residual a) Norma (b Nonnormal
€; e % . » ¢ . .
() -------------:--- O ----------------- “f’ L
. " . . L L
i : . Residual . Residual -
= el -
. ol ]“ﬂntllﬂ ;'( quanﬁle .” .
I' s
bl oy ITETIITITARTITT ETETI o i
0 4 8 12 16 0 4 8 12 16 ~ e
-
Experiment number Experiment ber > »
periment number Normal quantile MNormal quantile
Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-17, ©2017 Raj Jain Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-17, ©2017 Raj Jain
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4. Constant Standard Deviation of Errors

O Also known as homoscedasticity

14-45

A . .
A (8) No trend in spread (b) Increasing spread
e,
. eI e,
Residual | ~ . T . Residual | -¢ ,* .
. - . . 0 L I - -
----------------- e; e v e s,
€; 0 « . » ! . * ss = *
. - Bl PO .
"""""""" e _ .
Predicted response Predicted response
O Trend = Try curvilinear regression or transformation
Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-17, ©2017 Raj Jain

Example 14.6

For the disk I/O and CPU time data of Example 14.1

32+ 16 [ )
2 1.6 2 f
g 24 | S 08| »
g 0.8 =
o | e < i iy
E 16} - g OF
= o =] = P
E 8 I P g .g -0.8 % -0.8 | //
O o s ~ S
I \', . L -1.6 7"\ \. L
0 25 s0 75 100 O 8 16 24 32 -6 -08 0 08 16

Number of disk I/0s Predicted Response Normal Quantile

1. Relationship is linear
2. No trend in residuals = Seem independent

3. Linear normal quantile-quantile plot = Larger deviations at
lower values but all values are small

http://www.cse.wustl.edu/~jain/cse567-17, ©2017 Raj Jain
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Example 14.7: RPC Performance
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| | 1 | 1 1 i | |
165 20 10 60 80 T R
Predicted Response Normal Quantile
1. Larger errors at larger responses
2. Normality of errors is questionable
Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-17, ©2017 Raj Jain

O Terminology: Simple Linear Regression model, Sums of
Squares, Mean Squares, degrees of freedom, percent of
variation explained, Coefficient of determination, correlation
coefficient

0O Regression parameters as well as the predicted responses have
confidence intervals

a It is important to verify assumptions of linearity, error
independence, error normality = Visual tests

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-1 ©2017 Raj Jain
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Homework 14C: Exercise 14.7

O For the data of Exercise 14.7 (Homework 14B), use visual tests
to verify the regression assumptions. Write your observations
from the graphs.

|
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Related Modules
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Acronyms

o ClI Confidence Interval

o CPU Central Processing Unit

0 Kbyte Kilo Byte (Kilo=1024)

O MSE Mean Squared Error

o RPC Remote Procedure Call

o SSo Sum of squares of y

o SSE Sum of Squared Errors

o SSR Sum of Squares explained by Regression

a SST Total Sum of Squares

o SSYy Sum of Squares of y

Washington University in St. Louis ©2017 Raj Jain
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