2^{k-p} Fractional Factorial Designs

Raj Jain
Washington University in Saint Louis
Saint Louis, MO 63130
Jain@cse.wustl.edu

These slides are available on-line at:

http://www.cse.wustl.edu/~jain/cse567-17/

19-1

Washington University in St. Louis

- □ 2^{k-p} Fractional Factorial Designs
- □ Sign Table for a 2^{k-p} Design
- Confounding
- Other Fractional Factorial Designs
- Algebra of Confounding
- Design Resolution

2^{k-p} Fractional Factorial Designs

- □ Large number of factors
 - \Rightarrow large number of experiments
 - ⇒ full factorial design too expensive
 - ⇒ Use a fractional factorial design
- $ightharpoonup 2^{k-p}$ design allows analyzing k factors with only 2^{k-p} experiments.
 - 2^{k-1} design requires only half as many experiments
 - 2^{k-2} design requires only one quarter of the experiments

Example: 2⁷⁻⁴ Design

Expt No.	A	В	С	D	\mathbf{E}	F	G
1	-1	-1	-1	1	1	1	-1
2	1	-1	-1	-1	-1	1	1
3	-1	1	-1	-1	1	-1	1
4	1	1	-1	1	-1	-1	-1
5	-1	-1	1	1	-1	-1	1
6	1	-1	1	-1	1	-1	-1
7	-1	1	1	-1	-1	1	-1
8	1	1	1	1	1	1	1

□ Study 7 factors with only 8 experiments!

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Fractional Design Features

□ Full factorial design is easy to analyze due to orthogonality of sign vectors.

Fractional factorial designs also use orthogonal vectors. That is:

> The sum of each column is zero.

$$\sum_{i} x_{ij} = 0 \quad \forall j$$

jth variable, ith experiment.

> The sum of the products of any two columns is zero.

$$\sum_{i} x_{ij} x_{il} = 0 \quad \forall j \neq 1$$

> The sum of the squares of each column is 2^{7-4} , that is, 8.

$$\sum_{i} x_{ij}^{2} = 8 \quad \forall j$$

Analysis of Frac. Factorial Designs

■ Model:

$$y = q_0 + q_A x_A + q_B x_B + q_C x_C + q_D x_D$$
$$+q_E x_E + q_F x_F + q_G x_G$$

■ Effects can be computed using inner products.

$$q_A = \sum_{i} y_i x_{Ai}$$

$$= \frac{-y_1 + y_2 - y_3 + y_4 - y_5 + y_6 - y_7 + y_8}{8}$$

$$q_B = \sum_{i} y_i x_{Bi}$$

$$= \frac{-y_1 - y_2 + y_3 + y_4 - y_5 - y_6 + y_7 + y_8}{8}$$

Example 19.1

I	A	В	\mathbf{C}	D	E	F	G	У
1	-1	-1	-1	1	1	1	-1	20
1	1	-1	-1	-1	-1	1	1	35
1	-1	1	-1	-1	1	-1	1	7
1	1	1	-1	1	-1	-1	-1	42
1	-1	-1	1	1	-1	-1	1	36
1	1	-1	1	-1	1	-1	-1	50
1	-1	1	1	-1	-1	1	-1	45
1	1	1	1	1	1	1	1	82
317	101	35	109	43	1	47	3	Total
39.62	12.62	4.37	13.62	5.37	0.125	5.87	0.37	Total/8

- □ Factors A through G explain 37.26%, 4.47%, 43.40%, 6.75%, 0%, 8.06%, and 0.03% of variation, respectively.
 - \Rightarrow Use only factors C and A for further experimentation.

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Rai Jain

Sign Table for a 2^{k-p} Design

Steps:

- Prepare a sign table for a full factorial design with k-p factors.
- 2. Mark the first column I.
- 3. Mark the next k-p columns with the k-p factors.
- 4. Of the (2^{k-p}-k+p-1) columns on the right, choose p columns and mark them with the p factors which were not chosen in step 1.

Example: 27-4 Design

_								
	Expt No.	A	В	\mathbf{C}	AB	AC	BC	ABC
•	1	-1	-1	-1	1	1	1	-1
	2	1	-1	-1	-1	-1	1	1
	3	-1	1	-1	-1	1	-1	1
	4	1	1	-1	1	-1	-1	-1
	5	-1	-1	1	1	-1	-1	1
	6	1	-1	1	-1	1	-1	-1
	7	-1	1	1	-1	-1	1	-1
	8	1	1	1	1	1	1	1

Example: 2⁴⁻¹ Design

Expt No.	A	В	С	AB	AC	BC	D
1	-1	-1	-1	1	1	1	-1
2	1	-1	-1	-1	-1	1	1
3	-1	1	-1	-1	1	-1	1
4	1	1	-1	1	-1	-1	-1
5	-1	-1	1	1	-1	-1	1
6	1	-1	1	-1	1	-1	-1
7	-1	1	1	-1	-1	1	-1
8	1	1	1	1	1	1	1

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Raj Jain

Confounding

□ **Confounding**: Only the combined influence of two or more effects can be computed.

$$q_A = \sum_{i} y_i x_{Ai}$$

$$= \frac{-y_1 + y_2 - y_3 + y_4 - y_5 + y_6 - y_7 + y_8}{8}$$

$$q_D = \sum_{i} y_i x_{Di}$$

$$= \frac{-y_1 + y_2 + y_3 - y_4 + y_5 - y_6 - y_7 + y_8}{8}$$

Confounding (Cont)

$$q_{ABC} = \sum_{i} y_{i} x_{Ai} x_{Bi} x_{Ci}$$

$$= \frac{-y_{1} + y_{2} + y_{3} - y_{4} + y_{5} - y_{6} - y_{7} + y_{8}}{8}$$

$$q_D = q_{ABC}$$

$$q_D + q_{ABC} = \sum_{i} y_i x_{Ai} x_{Bi} x_{Ci}$$

$$= \frac{-y_1 + y_2 + y_3 - y_4 + y_5 - y_6 - y_7 + y_8}{8}$$

Arr \Rightarrow Effects of D and ABC are confounded. Not a problem if q_{ABC} is negligible.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Confounding (Cont)

□ Confounding representation: D=ABCOther Confoundings:

$$q_A = q_{BCD} = \sum_i y_i x_{Ai}$$

$$= \frac{-y_1 + y_2 - y_3 + y_4 - y_5 + y_6 - y_7 + y_8}{8}$$

$$\Rightarrow A = BCD$$

□ $I=ABCD \Rightarrow$ confounding of ABCD with the mean.

Other Fractional Factorial Designs

ightharpoonup A fractional factorial design is not unique. 2^p different designs. Another 2^{4-1} Experimental Design

Expt No.	A	В	С	D	AC	BC	ABC
1	-1	-1	-1	1	1	1	-1
2	1	-1	-1	-1	-1	1	1
3	-1	1	-1	-1	1	-1	1
4	1	1	-1	1	-1	-1	-1
5	-1	-1	1	1	-1	-1	1
6	1	-1	1	-1	1	-1	-1
7	-1	1	1	-1	-1	1	-1
8	1	1	1	1	1	1	1

□ Confoundings: I=ABD, A=BD, B=AD, C=ABCD, D=AB, AC=BCD, BC=ACD, ABC=CD

Not as good as the previous design.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Algebra of Confounding

- □ Given just one confounding, it is possible to list all other confoundings.
- □ Rules:
 - > *I* is treated as unity.
 - > Any term with a power of 2 is erased.

$$I = ABCD$$

Multiplying both sides by A:

$$A = A^2BCD = BCD$$

Multiplying both sides by B, C, D, and AB:

Algebra of Confounding (Cont)

$$B = AB^2CD = ACD$$

$$C = ABC^2D = ABD$$

$$D = ABCD^2 = ABC$$

$$AB = A^2B^2CD = CD$$

and so on.

 \Box Generator polynomial: I=ABCD

For the second design: I=ABC.

□ In a 2^{k-p} design, 2^p effects are confounded together.

Example 19.7

■ In the 2^{7-4} design:

$$D = AB, E = AC, F = BC, G = ABC$$

$$\Rightarrow$$
 I = ABD, I = ACE, I = BCF, I = ABCG

$$\Rightarrow$$
 I = ABD = ACE = BDF = ABCG

Using products of all subsets:

$$I = ABD = ACE = BCF = ABCG$$

- = ABD*ACE = ABD*BCF = ABD*ABCG
- = ACE*BCF = ACE*ABCG
- = BCF*ABCG
- =ABD*ACE*BCF=ABC*ACE*ABCG=ABD*BCF*AGCG=ACE*BCF*ABCG
- = ABD*ACE*BCF*ABCG } Four at a time

$$\Rightarrow$$
 I = ABD = ACE = BCF = ABCG

- = BCDE = ACDF = CDG
- = ABEF = BEG
- = AFG
- = DEF = ACEG = DFG = CEFG
- = ABCDEFG

				D	Ε	F	G
Expt No.	Α	В	С	AB	AC	BC	ABC
1	-1	-1	-1	1	1	1	-1
2	1	-1	-1	-1	-1	1	1
3	-1	1	-1	-1	1	-1	1
4	1	1	-1	1	-1	-1	-1
5	-1	-1	1	1	-1	-1	1
6	1	-1	1	-1	1	-1	-1
7	-1	1	1	-1	-1	1	-1
8	1	1	1	1	1	1	1

Two at a time Three at a time

Example 19.7 (Cont)

- □ I = ABD = ACE = BCF = ABCG = BCDE = ACDF = CDG = ABEF = BEG = AFG = DEF = ACEG = DFG = CEFG = ABCDEFG
- □ Total 2^p terms in the generator polynomial
- Other confoundings: Multiply both sides above by A
 A = BD = CE = ABCF = BCG = CDE = CDF = ACDG
 = BEF = ABEG = FG = ADEF = CEG = ADFG = ACEFG
 = BCDEFG

Design Resolution

- □ Order of an effect = Number of terms Order of ABCD = 4, order of I = 0.
- □ Order of a confounding = Sum of order of two terms E.g., AB=CDE is of order 5.
- Resolution of a Design
 - = Minimum of orders of confoundings
- □ Notation: $R_{III} = Resolution-III = 2^{k-p}_{III}$
- □ Example 1: $I=ABCD \Rightarrow R_{IV} = \text{Resolution-IV} = 2^{4-1}_{IV}$ A=BCD, B=ACD, C=ABD, AB=CD, AC=BD, BC=AD, ABC=D, and I=ABCD

Design Resolution (Cont)

Example 2:

$$I = ABD \Rightarrow R_{III}$$
 design.

□ Example 3:

$$I = ABD = ACE = BCF = ABCG = BCDE$$
 $= ACDF = CDG = ABEF = BEG$
 $= AFG = DEF = ADEG = BDFG$
 $= CEFG = ABCDEFG$

- □ This is a resolution-III design.
- □ A design of higher resolution is considered a better design.

Number of Fractional Factorial Designs

- \square Table contains 2^{k-p} columns.
- \Box Of these (k-p)+1 are main effects
- Choices for the next main effect:

$$m = 2^{k-p} - (k-p) - 1$$

□ Choices for the next main effect: *m-1*

Expt No.	Α	В	С	AB	AC	BC	ABC
1	-1	-1	-1	1	1	1	-1
2	1	-1	-1	-1	-1	1	1
3	-1	1	-1	-1	1	-1	1
4	1	1	-1	1	-1	-1	-1
5	-1	-1	1	1	-1	-1	1
6	1	-1	1	-1	1	-1	-1
7	-1	1	1	-1	-1	1	-1
8	1	1	1	1	1	1	1

- . . .
- Total number of designs = $m(m-1)(m-2)...(m-p+1) = \frac{\lfloor m \rfloor}{\lfloor m-n \rfloor}$
- **Example:** 2^{7-4} Design. $m=2^3-3-1=4$

Number of possible designs =
$$\frac{m!}{(m-p)!} = \frac{4!}{1!} = 24$$

Case Study 19.1: Latex vs. troff

Factors and Levels

	Factor	-Level	+Level
A	Program	Latex	troff-me
В	Bytes	2100	25000
\mathbf{C}	Equations	0	10
D	Floats	0	10
E	Tables	0	10
F	Footnotes	0	10

Case Study 19.1 (Cont)

□ Design: 2⁶⁻¹ with I=BCDEF

	Factor	Effect	% Variation
В	Bytes	12.0	39.4%
A	Program	9.4	24.4%
C	Equations	7.5	15.6%
AC	Program		
	× Equations	7.2	14.4%
$\mid E \mid$	Tables	3.5	3.4%
F	Footnotes	1.6	0.70%

Case Study 19.1: Conclusions

- □ Over 90% of the variation is due to: Bytes, Program, and Equations and a second order interaction.
- □ Text file size were significantly different making it's effect more than that of the programs.
- High percentage of variation explained by the ``program × Equation" interaction
 - ⇒ Choice of the text formatting program depends upon the number of equations in the text. troff not as good for equations.

CDII	Timo
\cup r \cup	\mathbf{T} IIII \mathbf{e}

Program	# of Equations						
	-1(0)	1(10)					
-1(Latex)	-9.7	-9.1					
1(Troff)	-5.3	24.1					

Case Study 19.1: Conclusions (Cont)

- □ Low ``Program × Bytes" interaction ⇒ Changing the file size affects both programs in a similar manner.
- □ In next phase, reduce range of file sizes. Alternately, increase the number of levels of file sizes.

- ☐ Fractional factorial designs allow a large number of variables to be analyzed with a small number of experiments
- Many effects and interactions are confounded
- □ The resolution of a design is the sum of the order of confounded effects
- □ A design with higher resolution is considered better

Homework 19

■ **Updated** Exercise 19.1 Analyze the 2⁴⁻¹ design:

		C	1	C	$\frac{7}{2}$
		D_1	D_2	D_1	D_2
A_1	B_1		30	15	
	B_2		20	10	
A_2	B_1	100			30
	B_2	110			50

- Quantify all main effects.
- Quantify percentages of variation explained.
- □ Sort the variables in the order of decreasing importance.
- List all confoundings.
- □ Can you propose a better design with the same number of experiments.
- What is the resolution of the design?

http://www.cse.wustl.edu/~jain/cse567-17/

Scan This to Download These Slides

Raj Jain http://rajjain.com

Related Modules

CSE567M: Computer Systems Analysis (Spring 2013),

https://www.youtube.com/playlist?list=PLjGG94etKypJEKjNAa1n_1X0bWWNyZcof

CSE473S: Introduction to Computer Networks (Fall 2011),

https://www.youtube.com/playlist?list=PLjGG94etKypJWOSPMh8Azcgy5e_10TiDw

Wireless and Mobile Networking (Spring 2016),

https://www.youtube.com/playlist?list=PLjGG94etKypKeb0nzyN9tSs HCd5c4wXF

CSE571S: Network Security (Fall 2011),

 $\underline{https://www.youtube.com/playlist?list=PLjGG94etKypKvzfVtutHcPFJXumyyg93u}$

Video Podcasts of Prof. Raj Jain's Lectures,

https://www.youtube.com/channel/UCN4-5wzNP9-ruOzQMs-8NUw

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Raj Jain