2^{k-p} Fractional Factorial Designs

Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu

These slides are available on-line at:

http://www.cse.wustl.edu/~jain/cse567-17/

Washington University in St. Louis

ttp://www.cse.wustl.edu/~jain/cse567-17

©2017 Raj Jain

19_1

- □ 2^{k-p} Fractional Factorial Designs
- □ Sign Table for a 2^{k-p} Design
- Confounding
- □ Other Fractional Factorial Designs
- □ Algebra of Confounding
- Design Resolution

Washington University in St. Louis

http://www.cse.wustl.edu/~iain/cse567-17/

©2017 Rai

19-2

2^{k-p} Fractional Factorial Designs

- □ Large number of factors
 - ⇒ large number of experiments
 - ⇒ full factorial design too expensive
 - ⇒ Use a fractional factorial design
- □ 2^{k-p} design allows analyzing k factors with only 2^{k-p} experiments.
 - 2^{k-1} design requires only half as many experiments
 - 2^{k-2} design requires only one quarter of the experiments

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Raj Jain

Example: 27-4 Design

Expt No.	A	В	С	D	Ε	F	G
1	-1	-1	-1	1	1	1	-1
2	1	-1	-1	-1	-1	1	1
3	-1	1	-1	-1	1	-1	1
4	1	1	-1	1	-1	-1	-1
5	-1	-1	1	1	-1	-1	1
6	1	-1	1	-1	1	-1	-1
7	-1	1	1	-1	-1	1	-1
8	1	1	1	1	1	1	1

□ Study 7 factors with only 8 experiments!

Washington University in St. Louis

p://www.cse.wustl.edu/~iain/cse567-1

©2017 Raj Jain

19-3

.

Fractional Design Features

■ Full factorial design is easy to analyze due to orthogonality of sign vectors.

Fractional factorial designs also use orthogonal vectors. That is:

> The sum of each column is zero.

$$\sum_{i} x_{ij} = 0 \quad \forall j$$

*j*th variable, *i*th experiment.

> The sum of the products of any two columns is zero.

$$\sum_{i} x_{ij} x_{il} = 0 \quad \forall j \neq 1$$

> The sum of the squares of each column is 2^{7-4} , that is, 8.

$$\sum_{i} x_{ij}^2 = 8 \ \forall j$$

Washington University in St. Louis

 $\underline{http://www.cse.wustl.edu/\sim}jain/cse567-17/$

©2017 Rai Jain

19-5

Example 19.1

I	А	В	С	D	Е	F	G	y
1	-1	-1	-1	1	1	1	-1	20
1	1	-1	-1	-1	-1	1	1	35
1	-1	1	-1	-1	1	-1	1	7
1	1	1	-1	1	-1	-1	-1	42
1	-1	-1	1	1	-1	-1	1	36
1	1	-1	1	-1	1	-1	-1	50
1	-1	1	1	-1	-1	1	-1	45
1	1	1	1	1	1	1	1	82
317	101	35	109	43	1	47	3	Total
39.62	12.62	4.37	13.62	5.37	0.125	5.87	0.37	Total/8

- □ Factors A through G explain 37.26%, 4.47%, 43.40%, 6.75%, 0%, 8.06%, and 0.03% of variation, respectively.
 - ⇒ Use only factors C and A for further experimentation.

©2017 Rai Jain

Analysis of Frac. Factorial Designs

■ Model:

$$y = q_0 + q_A x_A + q_B x_B + q_C x_C + q_D x_D$$
$$+q_E x_E + q_F x_F + q_G x_G$$

□ Effects can be computed using inner products.

$$q_A = \sum_{i} y_i x_{Ai}$$

$$= \frac{-y_1 + y_2 - y_3 + y_4 - y_5 + y_6 - y_7 + y_8}{8}$$

$$q_B = \sum_{i} y_i x_{Bi}$$

$$= \frac{-y_1 - y_2 + y_3 + y_4 - y_5 - y_6 + y_7 + y_8}{8}$$

Washington University in St. Louis

.//www.cse.wusti.edu/~jani/cse50

©2017 Rai Jair

19-6

Sign Table for a 2^{k-p} Design

Steps:

- 1. Prepare a sign table for a full factorial design with k-p factors.
- 2. Mark the first column I.
- 3. Mark the next k-p columns with the k-p factors.
- 4. Of the (2^{k-p}-k+p-1) columns on the right, choose p columns and mark them with the p factors which were not chosen in step 1.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

19-8

©2017 Raj Jair

Example: 27-4 Design

Expt No.	A	В	С	AB	AC	BC	ABC
1	-1	-1	-1	1	1	1	-1
2	1	-1	-1	-1	-1	1	1
3	-1	1	-1	-1	1	-1	1
4	1	1	-1	1	-1	-1	-1
5	-1	-1	1	1	-1	-1	1
6	1	-1	1	-1	1	-1	-1
7	-1	1	1	-1	-1	1	-1
8	1	1	1	1	1	1	1

Washington University in St. Louis

©2017 Raj Jain

19-9

Confounding

□ Confounding: Only the combined influence of two or more effects can be computed.

$$q_A = \sum_{i} y_i x_{Ai}$$

$$= \frac{-y_1 + y_2 - y_3 + y_4 - y_5 + y_6 - y_7 + y_8}{8}$$

$$q_D = \sum_{i} y_i x_{Di}$$

$$= \frac{-y_1 + y_2 + y_3 - y_4 + y_5 - y_6 - y_7 + y_8}{8}$$

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Raj Jain

Example: 24-1 Design

_							
Expt No.	A	В	С	AB	AC	BC	D
1	-1	-1	-1	1	1	1	-1
2	1	-1	-1	-1	-1	1	1
3	-1	1	-1	-1	1	-1	1
4	1	1	-1	1	-1	-1	-1
5	-1	-1	1	1	-1	-1	1
6	1	-1	1	-1	1	-1	-1
7	-1	1	1	-1	-1	1	-1
8	1	1	1	1	1	1	1

©2017 Raj Jain

19-10

Confounding (Cont)

$$q_{ABC} = \sum_{i} y_i x_{Ai} x_{Bi} x_{Ci}$$
$$= \frac{-y_1 + y_2 + y_3 - y_4 + y_5 - y_6 - y_7 + y_8}{8}$$

$$q_D = q_{ABC}$$

$$q_D + q_{ABC} = \sum_{i} y_i x_{Ai} x_{Bi} x_{Ci}$$

$$= \frac{-y_1 + y_2 + y_3 - y_4 + y_5 - y_6 - y_7 + y_8}{8}$$

□ ⇒ Effects of D and ABC are confounded. Not a problem if q_{ABC} is negligible.

http://www.cse.wustl.edu/~jain/cse567-17/

Confounding (Cont)

□ Confounding representation: D=ABCOther Confoundings:

$$q_A = q_{BCD} = \sum_{i} y_i x_{Ai}$$

$$= \frac{-y_1 + y_2 - y_3 + y_4 - y_5 + y_6 - y_7 + y_8}{8}$$

$$\Rightarrow A = BCD$$

□ $I=ABCD \Rightarrow$ confounding of ABCD with the mean.

Washington University in St. Louis

tp://www.cse.wustl.edu/~jain/cse567-17/

©2017 Rai Jain

19-13

Algebra of Confounding

- ☐ Given just one confounding, it is possible to list all other confoundings.
- □ Rules:
 - > *I* is treated as unity.
 - > Any term with a power of 2 is erased.

$$I = ABCD$$

Multiplying both sides by A:

$$A = A^2BCD = BCD$$

Multiplying both sides by B, C, D, and AB:

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Rai Jain

Other Fractional Factorial Designs

 $\ \square$ A fractional factorial design is not unique. 2^p different designs. Another 2^{4-1} Experimental Design

		_	r				
Expt No.	Α	В	С	D	AC	ВС	ABC
1	-1	-1	-1	1	1	1	-1
2	1	-1	-1	-1	-1	1	1
3	-1	1	-1	-1	1	-1	1
4	1	1	-1	1	-1	-1	-1
5	-1	-1	1	1	-1	-1	1
6	1	-1	1	-1	1	-1	-1
7	-1	1	1	-1	-1	1	-1
8	1	1	1	1	1	1	1

□ Confoundings: I=ABD, A=BD, B=AD, C=ABCD, D=AB, AC=BCD, BC=ACD, ABC=CD

Not as good as the previous design.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Rai Jain

19-14

Algebra of Confounding (Cont)

$$B = AB^2CD = ACD$$

$$C = ABC^2D = ABD$$

$$D = ABCD^2 = ABC$$

$$AB = A^2B^2CD = CD$$

and so on.

 $lue{}$ Generator polynomial: I=ABCD

For the second design: I=ABC.

□ In a 2^{k-p} design, 2^p effects are confounded together.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Raj Jain

19-15

Example 19.7

- \square In the 2^{7-4} design: D = AB, E = AC, F = BC, G = ABC \Rightarrow I = ABD, I = ACE, I = BCF, I = ABCG \Rightarrow I = ABD = ACE = BDF = ABCG □ Using products of all subsets: I = ABD = ACE = BCF = ABCG= ABD*ACE = ABD*BCF = ABD*ABCG

= ACE*BCF = ACE*ABCG

Two at a time Three at a time

= BCF*ABCG

=ABD*ACE*BCF=ABC*ACE*ABCG=ABD*BCF*AGCG=ACE*BCF*ABCG = ABD*ACE*BCF*ABCG \rightarrow Four at a time

 \Rightarrow I = ABD = ACE = BCF = ABCG = BCDE = ACDF = CDG = ABEF = BEG

= AFG

= DEF = ACEG = DFG = CEFG

= ABCDEFG

ington University in St. Louis

19-17

://www.cse.wustl.edu/~jain/cse567-17/

©2017 Rai Jain

Design Resolution

- □ Order of an effect = Number of terms Order of ABCD = 4, order of I = 0.
- □ Order of a confounding = Sum of order of two terms E.g., AB=CDE is of order 5.
- □ Resolution of a Design
 - = Minimum of orders of confoundings
- □ Notation: $R_{III} = Resolution-III = 2^{k-p}_{III}$
- Example 1: $I = ABCD \Rightarrow R_{IV} = Resolution-IV = 2^{4-1}_{IV}$ A=BCD, B=ACD, C=ABD, AB=CD, AC=BD, BC=AD, ABC=D, and I=ABCD

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Rai Jain

Example 19.7 (Cont)

- \Box I = ABD = ACE = BCF = ABCG = BCDE = ACDF = CDG = ABEF = BEG = AFG = DEF = ACEG = DFG = CEFG = ABCDEFG
- □ Total 2^p terms in the generator polynomial
- □ Other confoundings: Multiply both sides above by A A = BD = CE = ABCF = BCG = CDE = CDF = ACDG= BEF = ABEG = FG = ADEF = CEG = ADFG = ACEFG = BCDEFG

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Rai Jai

19-18

Design Resolution (Cont)

■ Example 2:

 $I = ABD \Rightarrow R_{III}$ design.

■ Example 3:

$$I = {}^{1}ABD = ACE = BCF = ABCG = BCDE$$

$$=$$
 $ACDF = CDG = ABEF = BEG$

$$=$$
 $AFG = DEF = ADEG = BDFG$

$$=$$
 $CEFG = ABCDEFG$

- ☐ This is a resolution-III design.
- □ A design of higher resolution is considered a better design.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Rai Jair

19-19

Number of Fractional Factorial Designs

- \square Table contains 2^{k-p} columns.
- □ Of these (k-p)+1 are main effects
- □ Choices for the next main effect:
- $m = 2^{k-p} (k-p) 1$ Choices for the next main effect: m-l

- □ Total number of designs = m(m-1)(m-2)...(m-p+1) =
- **Example:** 2^{7-4} Design. $m=2^3-3-1=4$

Number of possible designs = $\frac{m!}{(m-p)!} = \frac{4!}{1!} = 24$

D=AB,		
E=AC,	E=BC,	E=ABC
G=BC G=ABC	G=AC G=ABC	G=AC G=BC

D=ABC NNN

©2017 Rai Jain

http://www.cse.wustl.edu/~jain/cse567-17/ Washington University in St. Louis

19-21

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

19-22

©2017 Rai Jair

Case Study 19.1: Latex vs. troff

Factor

Bytes

Floats

Tables

В

D

Program

Equations

Footnotes

Factors and Levels

-Level

Latex

2100

0

0

0

0

+Level

troff-me

25000

10

10

10

10

Case Study 19.1 (Cont)

□ Design: 2⁶⁻¹ with I=BCDEF

	Factor	Effect	% Variation
В	Bytes	12.0	39.4%
A	Program	9.4	24.4%
С	Equations	7.5	15.6%
AC	Program		
	× Equations	7.2	14.4%
E	Tables	3.5	3.4%
F	Footnotes	1.6	0.70%

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-17/ ©2017 Rai Jain

Case Study 19.1: Conclusions

- Over 90% of the variation is due to: Bytes, Program, and Equations and a second order interaction.
- ☐ Text file size were significantly different making it's effect more than that of the programs.
- ☐ High percentage of variation explained by the ``program × Equation" interaction
 - ⇒ Choice of the text formatting program depends upon the number of equations in the text. troff not as good for equations.

CPU Time						
Program	# of Equations					
	-1(0)	1(10)				
-1(Latex)	-9.7	-9.1				
1(Troff)	-5.3	24.1				

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Rai Jair

19-23

Case Study 19.1: Conclusions (Cont)

- □ Low ``Program × Bytes" interaction ⇒ Changing the file size affects both programs in a similar manner.
- ☐ In next phase, reduce range of file sizes. Alternately, increase the number of levels of file sizes.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Raj Jair

19-25

Homework 19

□ **Updated** Exercise 19.1 Analyze the 2⁴⁻¹ design:

		C_1		C	\mathcal{T}_2
		D_1	D_2	D_1	D_2
A_1	B_1		30	15	
	B_1 B_2		20	10	
A_2	B_1	100			30
	B_2	110			50

- Quantify all main effects.
- Quantify percentages of variation explained.
- □ Sort the variables in the order of decreasing importance.
- □ List all confoundings.
- □ Can you propose a better design with the same number of experiments.
- □ What is the resolution of the design?

http://www.cse.wustl.edu/~jain/cse567-17/

19-27

©2017 Raj Jain

Summary

- ☐ Fractional factorial designs allow a large number of variables to be analyzed with a small number of experiments
- Many effects and interactions are confounded
- ☐ The resolution of a design is the sum of the order of confounded effects
- □ A design with higher resolution is considered better

Washington University in St. Louis

nttp://www.cse.wusti.edu/~jain/cse56/-1/

©2017 Rai Jain

19-26

19-28

Scan This to Download These Slides

Raj Jain http://rajjain.com

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Raj Jair

Related Modules

CSE567M: Computer Systems Analysis (Spring 2013),

ttps://www.youtube.com/playlist?list=PLjGG94etKypJEKjNAa1n_1X0bWWNyZcof

CSE473S: Introduction to Computer Networks (Fall 2011), The Computer Networks (Fall 20

https://www.youtube.com/playlist?list=PLjGG94etKypJWOSPMh8Azcgy5e_10TiDw

Wireless and Mobile Networking (Spring 2016),

https://www.youtube.com/playlist?list=PLjGG94etKypKeb0nzyN9tSs_HCd5c4wXF

CSE571S: Network Security (Fall 2011),

https://www.youtube.com/playlist?list=PLjGG94etKypKvzfVtutHcPFJXumyyg93u

Video Podcasts of Prof. Raj Jain's Lectures,

rps://www.youtube.com/channel/UCN4-5wzNP9-ruOzQMs-8NUw

Washington University in St. Louis