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OverviewOverview



 

What is a time series?


 

Autoregressive Models


 

Moving Average Models


 

Integrated Models


 

ARMA, ARIMA, SARIMA, FARIMA models


 

Note: These slides are based on R. Jain, “The Art of Computer 
Systems Performance Analysis,”

 
2nd

 

Edition (in preparation).
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Stochastic ProcessesStochastic Processes



 

Ordered sequence of random observations


 

Example:


 

Number of virtual machines in a server


 

Number of page faults


 

Number of queries over time


 

Analysis Technique: Time Series Analysis


 

Long-range dependence and self-similarity in such 
processes can invalidate many previous results
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Stochastic Processes: Key QuestionsStochastic Processes: Key Questions

1.
 

What is a time series?
2.

 
What are different types of time series models?

3.
 

How to fit a model to a series of measured data?
4.

 
What is a stationary time series?

5.
 

Is it possible to model a series that is not stationary?
6.

 
How to model a series that has a periodic or seasonal 
behavior as is common in video streaming?
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Stochastic Processes : Key Questions (Cont)Stochastic Processes : Key Questions (Cont)

1.
 

What are heavy-tailed distributions and why they are 
important?

2.
 

How to check if a sample of observations has a 
heavy tail?

3.
 

What are self-similar processes?
4.

 
What are short-range and long-range dependent 
processes?

5.
 

Why long-range dependence invalidates many 
conclusions based on previous statistical methods?

6.
 

How to check if a sample has a long-range 
dependence?
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What is a Time SeriesWhat is a Time Series



 

Time series = Stochastic Process 


 

A sequence of observations over time.


 

Examples:


 

Price of a stock over successive days


 

Sizes of video frames


 

Sizes of packets over network


 

Sizes of queries to a database system


 

Number of active virtual machines in a cloud 


 

Goal: Develop models of such series for resource 
allocation and improving user experience.

Time t

xt
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Autoregressive ModelsAutoregressive Models



 

Predict the variable as a linear regression of the 
immediate past value:



 

Here,       is the best estimate of xt

 

given the past history



 

Even though we know the complete past history, we 
assume that xt

 

can be predicted based on just xt-1

 

.


 

Auto-Regressive = Regression on Self


 

Error:


 

Model:


 

Best a0

 

and a1

 

 minimize the sum of square of errors
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Example 37.1Example 37.1


 

The number of disk access for 50 database queries were measured to be: 73, 
67, 83, 53, 78, 88, 57, 1, 29, 14, 80, 77, 19, 14, 41, 55, 74, 98, 84, 88, 78, 
15, 66, 99, 80, 75, 124, 103, 57, 49, 70, 112, 107, 123, 79, 92,

 

89, 116, 71, 
68, 59, 84, 39, 33, 71, 83, 77, 37, 27, 30.



 

For this data:
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Example 37.1 (Cont)Example 37.1 (Cont)



 

The AR(1) model for the series is:



 

The predicted value of  x2

 

given  x1

 

is:



 

The actual observed value of  is 67. Therefore, the prediction 
error is:



 

Sum of squared errors SSE = 32995.57

xt = 33.181 + 0.503xt−1 + et

x̂2 = a0 + a1x1 = 33.181 + 0.503× 73 = 69.880

e2 = x2 − x̂2 = 67− 69.880 = −2.880
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Exercise 37.1



 

Fit an AR(1) model to the following sample of 50 
observations: 83, 86, 46, 34, 130, 109, 100, 81, 84, 
148, 93, 76, 69, 40, 50, 56, 63, 104, 35, 55, 124, 52, 
55, 81, 33, 76, 83, 90, 94, 37, -2, 33, 105, 133, 78, 50, 
115, 149, 98, 110, 25, 82, 59, 80, 43, 58, 88, 78, 55, 
68. Find a0

 

,  a1

 

and the minimum SSE.
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Stationary ProcessStationary Process


 

Each realization of a random process will be different:



 

x
 

is function of the realization i
 

(space) and time t: x(i, t)


 

We can study the distribution of xt

 

in space.


 

Each xt

 

has a distribution, e.g., Normal


 

If this same distribution (normal) with the same parameters μ, 
σ

 
applies to xt+1

 

, xt+2

 

, …, we say xt

 

is stationary.

xt

t
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Stationary Process (Cont)Stationary Process (Cont)



 

Stationary = Standing in time 
 Distribution does not change with time.



 

Similarly, the joint distribution of xt

 

and xt-k

 

depends only on k
 not on t.



 

The joint distribution of xt

 

, xt-1

 

, …, xt-k

 

depends only on k
 

not 
on t.
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AutocorrelationAutocorrelation


 

Covariance of xt

 

and xt-k

 

= Auto-covariance at lag k



 

For a stationary series: 


 

Statistical characteristics do not depend upon time t.


 

Autocovariance
 

depends only on lag k
 

and not on time t



 

Autocorrelation is dimensionless and is easier to interpret than
 autocovariance.
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Example 37.2Example 37.2


 

For the data of Example 37.1, the variance and covariance's at 
lag 1 and 2 are computed as follows:

  50

=1

1 3386Sample Mean = = = 67.72
50 50t

t
x x

250
2 2

=1

1 273002 50 67.72( ) = [( ) ] = ( ) = = 891.879
49 49t t t

t
Var x E x x x  

 
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Example 37.2 (Cont)Example 37.2 (Cont)



 

Small Sample 
 
and       are slightly different. 

Not so for large samples.


 

Divisor is 48 since we used sample mean calculated from the 
same sample

1 1
50

1 1
=2

50 50 50 50 50

1 1 1
=2 =2 =2 =2 =2

50 50

1
=2 =2

50

1
=2 =2

( , ) = [( )( )]
1= ( )( )
48

1 1 1=
48 49 49

1 1  49
49 49

1 1=
48 49

t t t t

t t t t
t

t t t t t t
t t t t t

t t
t t

t t
t t

Cov x x E x x

x x x x

x x x x x x

x x

x x

  

 

  





 

 

    
     
   

  
   

  





    

 


50 50

1
=2

1 3313 3356= 248147 = 442.506
48 49

t t
t

x x 

   
   

   
   

 

tx 1tx 
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Example 37.2 (Cont)Example 37.2 (Cont)



 

Note: Only 48 pairs of {xt

 

, xt-1

 

}  Divisor is 47

2 2
50

2 2
=3

50 50 50

2 2
=3 =3 =3

( , ) = [( )( )]
1= ( )( )
47

1 1=
47 48

1 3246 3329= 229360
47 48

= 90.136

t t t t

t t t t
t

t t t t
t t t

Cov x x E x x

x x x x

x x x x

  

 

 

 

 

   
   

   
   



  
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Example 37.2 (Cont)Example 37.2 (Cont)
 

0
( ) 891.8790 = = = = 1
( ) 891.879

t

t

Var xAutocorrelation at lag r
Var x

1
1

( , ) 442.5061 = = = = 0.496
( ) 891.879
t t

t

Cov x xAutocorrelation at lag r
Var x



2
2

( , ) 90.1362 = = = = 0.101
( ) 891.879
t t

t

Cov x xAutocorrelation at lag r
Var x



Lag k

A
ut

oc
or

re
la

tio
n 

r k

0 1 2

1.0
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White NoiseWhite Noise


 

Errors et

 

are normal independent and identically distributed 
(IID) with zero mean and variance σ2



 

Such IID sequences are called “white noise”
 

sequences.


 

Properties:

k0
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White Noise (Cont)White Noise (Cont)


 

The autocorrelation function of a white noise sequence is a 
spike (δ

 
function) at k=0.



 

The Laplace transform of a δ
 

function is a constant. So in 
frequency domain white noise has a flat frequency spectrum.



 

It was incorrectly assumed that white light has no color and, 
therefore, has a flat frequency spectrum and so random noise 
with flat frequency spectrum was called white noise.

t0 f0

Ref:  http://en.wikipedia.org/wiki/Colors_of_noise

http://en.wikipedia.org/wiki/Colors_of_noise
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White Noise AutocorrelationsWhite Noise Autocorrelations


 

It can be shown that autocorrelations for white noise are 
normally distributed with mean:

 

and variance:



 

Therefore, their 95% confidence interval is
 

This is generally approximated as



 

This confidence interval can be used to check if a particular  
autocorrelation is zero.

0.975 1.96z 
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Example 37.3



 

For the data of Example 37.1: n=50
CI = ∓2/

p
(50) = ∓0.283

r2

 

is not significantly different from zero.
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Exercise 37.2



 

Determine autocorrelations at lag 0 through 2 for the 
data of Exercise 37.1 and determine which of these 
autocorrelations are significant at 95% confidence.
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Assumptions for AR(1) ModelsAssumptions for AR(1) Models

1.

 

xt

 

is a Stationary process 
2.

 

Linear relationship between successive values
3.

 

Normal Independent identically distributed errors:
a.

 

Normal errors
b.

 

Independent errors
4.

 

Additive errors
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Visual Tests for AR(1) ModelsVisual Tests for AR(1) Models
1.

 

Plot xt

 

as a function of t
 

and look for trends
2.

 

xt

 

vs. xt-1

 

for linearity
3.

 

Errors et

 

vs. predicted values       for additivity
4.

 

Q-Q Plot of errors for Normality
5.

 

Errors et

 

vs. t
 

for IID

1. Plot of xt
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Visual Tests (Cont)Visual Tests (Cont)
2. Plot of

 
xt

 

vs. xt-1

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140
xt-1

xt
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Visual Tests (Cont)Visual Tests (Cont)
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0
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-3 -2 -1 0 1 2 3

et t

3. Errors et

 

vs. predicted values 4. Q-Q Plot of errors

5. Errors et

 

vs. t
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Exercise 37.3



 

Conduct visual tests to verify whether or not the 
AR(1) model fitted in Exercise 37.1 is appropriate .
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AR(pAR(p) Model) Model



 

xt

 

is a function of the last p values:



 

AR(2):



 

AR(3):
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

 

Similarly,


 

Or



 

Using this notation, AR(p) model is:



 

Here, φp
 

is a polynomial of degree p.

Backward Shift OperatorBackward Shift Operator
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AR(pAR(p) Parameter Estimation) Parameter Estimation



 

The coefficients ai

 

's
 

can be estimated by minimizing SSE using 
Multiple Linear Regression.



 

Optimal a0

 

, a1

 

, and a2

 


 

Minimize SSE 
Set the first differential to zero:
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AR(pAR(p) Parameter Estimation (Cont)) Parameter Estimation (Cont)



 

The equations can be written as:
 

Note: All sums are for t=3 to n. n-2
 

terms.


 

Multiplying by the inverse of the first matrix, we get:
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AR(pAR(p) Parameter Estimation (Cont)) Parameter Estimation (Cont)



 

All sums are from t=p
 

to t=n
 

and have n-p
 

terms.


 

For larger data sets: rk

 

is the autocorrelation at lag k

1 1 1 1

2 1 2 2

1

1

2

1
1

1

p

p

p p p p

a r r r
a r r r

a r r r











     
     
     
     
     
          




     


 
1 20

2
1 11 1

1

1 2 1
2

2 22 1 2 2 2

2
1 2

t t t p t

t tt t t t t t p

t tt t t t t t p

p t t pt p t t p t t p t p

x x x x
x xx x x x x
x xx x x x x x

x xx

n pa
a x
a

x x x x xa

  

     

     

 



   

    
    
    
     
    
    
         

   
   

   

   






     
 

0 1 2(1 )pa a a a x    (i,j)th

 

term = r|i-j|
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Example 37.5Example 37.5


 

Consider the data of Example 37.1 and fit an AR(2) model:



 

SSE= 31979.39 


 

Small sample  Values of a0

 

, a1

 

, and a2

 

are approximate. 


 

Exact model by regression:

1 1 1

2 1 2

1

1

1
1

1 0.496 0.496
0.496 1 0.101

0.592
0.192

a r r
a r r





     
     

     

   
    
   
 

   

0 1 2(1 ) (1 0.592 0.192)67.72 40.688a a a x      

1 239.979 0.587 0.180t t t tx xx e     SSE=31969.99
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Exercise 37.4



 

Fit an AR(2) model to the data of Exercise 37.1. 
Determine parameters a0

 

, a1

 

,  a2

 

and the SSE using 
multiple regression. Repeat the determination of 
parameters using autocorrelation function values.
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Exercise 37.5



 

Fit an AR(3) model to the data of Exercise 37.1. 
Determine parameters a0

 

, a1

 

,  a2

 

, a3

 

and the SSE using 
multiple regression. 
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Determining the Order Determining the Order AR(pAR(p))


 

ACF of AR(1) is an exponentially decreasing fn of k


 

Fit AR(p) models of order p=0, 1, 2, …


 

Compute the (1-)% confidence intervals of ap



 

After some p, the last coefficients ap

 

will not be significant for 
all higher order models.



 

This highest p
 

is the order of the AR(p) model for the series.


 

This sequence of last coefficients is also called "Partial 
Autocorrelation Function

 
(PACF)"

Lag k

PACF(k)

0

p=8

rk

k

1 /2
p

z
n

a  
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Example 37.6


 

For the data of Example 37.1, we have:


 

AR(1):


 

AR(2):


 

Similarly, AR(3):


 

PACF at lags 1, 2, and 3 are: 0.503, -0.180, and 0.052

 
133.181 0.503t t tx x e  

1 239.979 0.587 0.180t t t tx x x e    

1 2 337.313 0.598 0.211 0.052t t t t tx x x x e      

AR(1) is appropriate.
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Computing PACF

1 1 1

1

1 2
2

1

1

1 1

1 2

2 1 3
3 3

1 2

1 1

2 1

2

in AR(1)

in

PACF at lag 1 = s  
1

PACF at lag 2 = s  
1

1

1
1

PACF at lag 3 = s  
1

 AR(2)

in AR(3)

1
1

r
r r

r
r

r r
r r
r r r

r r
r r

a r

r

a

a

r

 

 

 

M = Determinant of M
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Computing PACF (Cont)

1 2 1

1 3 2

2 3 1

1 2 1

1 2 1

1 3 2

2 3 1

1 2 1

1
1

in AR( )

1

PACF at lag  =
1

1

1

 

1

 

k

k

k k k

k k k
k

k k

k k

k k

k k

k

r r r
r r r

r r r
r r r r

a k
r r r

r r r

r r r
r r

k s

r





  

 

 

 

 

 

 




    





    


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Exercise 37.6



 

Using the results of Exercises 37.1, 37.4, and 37.5, 
determine the partial autocorrelation function at lags 
1, 2, 3 for the data of Exercise 37.1. Determine which 
values are significant. Based on this which AR(p) 
model will be appropriate for this data?
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Moving Average (MA) ModelsMoving Average (MA) Models



 

Moving Average of order 1: MA(1)
 b0

 

is the mean of the time series.


 

The parameters b0

 

and b1

 

cannot be estimated using standard 
regression formulas since we do not know errors. The errors 
depend on the parameters.



 

So the only way to find optimal b0

 

and b1

 

is by iteration. 
 Start with some suitable values and change b0

 

and b1

 

until 
SSE is minimized and average of errors is zero.

t
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Example 37.4Example 37.4


 

Consider the data of Example 37.1.



 

For this data:



 

We start with b0

 

= 67.72, b1

 

=0.4, 
Assuming e0

 

=0, compute all the errors and SSE.
 

and SSE = 33542.8



 

We then adjust a0

 

and b1

 

until SSE is minimized and mean 
error is close to zero. 

1 1 0 1 0 73 67.72 0.4 0 5.28e x b b e       

2 2 0 1 1 67 67.72 0.4 5.28 2.832e x b b e        
…
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Example 37.4 (Cont)Example 37.4 (Cont)


 

The steps are: Starting with              and trying various values 
of b1

 

. SSE is minimum at b1

 

=0.475. SSE= 33221.06
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Example 37.4 (Cont)Example 37.4 (Cont)



 

Keeping b1

 

=0.475, try neighboring values of b0

 

to get 
average error as close to zero as possible.



 

b0

 

= 67.475 gives    =-0.001 SSE=33221.93

50

=1

1= = 0.1661
50 t

t
e e 

ē
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MA(MA(qq) Models) Models



 

Moving Average of order 1: MA(1)



 

Moving Average of order 2: MA(2)



 

Moving Average of order q: MA(q)



 

Moving Average of order 0: MA(0) (Note: This is also AR(0))
 xt

 

-b0

 

is a white noise. b0

 

is the mean of the time series.

t
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Exercise 37.7



 

Fit an MA(0) model to the data of Exercise 37.1. 
Determine parameter  b0

 

and SSE 
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MA(qMA(q) Models (Cont)) Models (Cont)



 

Using the backward shift operator B, MA(q):



 

Here, Ψq
 

is a polynomial of order q.
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Example 37.8


 

Fit MA(2) model to the data of Example 37.1



 

Round 1: Setting                             , we try 9 combinations of 
b1

 

={0.2,0.3,0.4} and b2

 

={0.2, 0.3, 0.4}.
 Minimum SSE is 33490.26 at b1

 

=0.4 and b2

 

=0.2


 

Round 2: Try 4 new points around the current minimum
 b0

 

={0.35, 0.45} and b2

 

={0.15, 0.25}
 Minimum SSE is 32551.62 at b1

 

=0.45, b2

 

=0.15


 

Round 3: Try 4 new points around the current minimum.
 Try b1

 

={0.425, 0.475} and b2

 

={0.125, 0.175}
 Minimum SSE is 32342.61 at b1

 

=0.475, b2

 

=0.125

0 1 1 2 2t t t tx b e b e b e    

b0 = x̄t = 67.72
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Example 37.8 (Cont)


 

Round 4: Try 4 new points around the current minimum.
 Try b1

 

={0.4625, 0.4875} and b2

 

={0.125, 0.175}
 Minimum SSE is 32201.58 at b1

 

=0.4875, b2

 

=0.125


 

Round 5: Try 4 new points around the current minimum.
 Try b1

 

={0.481, 0.493} and b2

 

={0.112, 0.137}
 Minimum SSE is 32148.21 at b1

 

=0.493, b2

 

=0.137


 

Since the decrease in SSN is small (close to 0.1%), we 
arbitrarily stop here. 



 

The model is:

  1 267.72 0.493 0.137t t t tx e e e    
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Exercise 38.8



 

Fit an MA(1) model to the data of Exercise 37.1. 
Determine parameters b0

 

, b1

 

and the minimum SSE. 
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Autocorrelations for MA(1)Autocorrelations for MA(1)


 

For this series, the mean is:



 

The variance is:



 

The autocovariance
 

at lag 1 is:

0 1 1 0[ ] [ ] [ ]t t tE x b E e b E e b     
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Autocorrelations for MA(1) (Cont)Autocorrelations for MA(1) (Cont)


 

The autocovariance
 

at lag 2 is:



 

For MA(1), the autocovariance
 

at all higher lags (k>1) is 0.


 

The autocorrelation is:



 

The autocorrelation of MA(q) series is non-zero only 
for lags k<

 
q and is zero for all higher lags.
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Example 37.9



 

For the data of Example 37.1:


 

Autocorrelation is zero for all lags k >1.


 

MA(1) model is appropriate for this data.
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Example 37.10Example 37.10



 

The order of the last significant rk

 

determines the 
order of the MA(q) model.



 

For the following data, all autocorrelations at lag 9 
and higher are zero  MA(8) model would be 
appropriate

Lag k

Autocorrelation rk

0

q=8
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Exercise 37.9



 

Fit an MA(2) model to the data of Exercise 37.2. 
Determine parameters b0

 

, b1

 

, b2

 

and the minimum 
SSE. For this data, which model would you choose 
MA(0), MA(1) or MA(2) and why? 
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Duality of AR(p) vs. MA(q)



 

Determining the coefficients of AR(p) is straight 
forward but determining the order p requires an 
iterative procedure



 

Determining the order q of MA(q) is straight forward 
but determining the coefficients requires an iterative 
procedure
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NonNon--StationarityStationarity: Integrated Models: Integrated Models



 

In the white noise model MA(0):


 

The mean b0

 

is independent of time.


 

If it appears that the time series in increasing approximately 
linearly with time, the first difference of the series can be 
modeled as white noise:



 

Or using the B operator: (1-B)xt

 

= xt

 

-xt-1



 

This is called an "integrated" model of order 1 or I(1). Since the 
errors are integrated to obtain x.



 

Note that xt

 

is not stationary but (1-B)xt

 

is stationary.

t

xt

t

(1-B)xt

0t tx b e 

1 0)( t t tx x b e  

0(1 ) t tB x b e 
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Integrated Models (Cont)Integrated Models (Cont)


 

If the time series is parabolic, the second difference can be 
modeled as white noise:



 

Or
 This is an I(2) model. Also written as:

 

Where Operator D = 1-B

t

xt

2
0=t tD x b e

1 1 2 0) (( )t tt t txx x x b e      

2
0(1 ) t txB b e 
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ARMA and ARIMA ModelsARMA and ARIMA Models



 

It is possible to combine AR, MA, and I models


 

ARMA(p, q) Model:



 

ARIMA(p,d,q) Model:



 

Using algebraic manipulations, it is possible to transform AR 
models to MA models and vice versa.
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Example 37.11


 

Consider the MA(1) model:


 

It can be written as:
0 1 1t t tx b e b e   

0 1( ) (1 )t tx b b B e  

1
1 0(1 ) ( )t tb B x b e  

  2 2 3 3
1 1 1 01 ... ( )t tb B b B b B x b e     

  2 3 0
1 1 1 2 1 3

11t t t t t
bx b x b x b x e

b       




  2 30
1 1 1 2 1 3

11t t t t t
bx b x b x b x e

b        






 

If b1

 

<1, the coefficients decrease and soon become 
insignificant. This results in a finite order AR model.
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Exercise 39.10



 

Convert the following AR(1) model to an equivalent 
MA model: 

0 1 1t t tx a a x e  
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NonNon--StationarityStationarity
 

due to Seasonalitydue to Seasonality


 

The mean temperature in December is always lower than that 
in November and in May it always higher than that in March 
Temperature has a yearly season.



 

One possible model could be I(12):



 

or
12 0t t tx x b e  

12
0)(1 t tx b eB  
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Seasonal ARIMA (SARIMA) ModelsSeasonal ARIMA (SARIMA) Models



 

SARIMA                           Model:



 

Fractional ARIMA (FARIMA) Models 
ARIMA(p, d+δ, q)  -0.5<δ<0.5

 Fractional Integration allowed.
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Exercise 37.11



 

Write the expression for SARIMA(1,0,1)(0,1,0)12

 model in terms of x’s
 

and e’s.
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

 

Observation: Every 16th

 

frame is a large (I) frame.

Case Study 37.1: Mobile VideoCase Study 37.1: Mobile Video
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

 

A closer look at the ACF graph shows a strong continual 
correlation every  16 lag   GOP size

Traffic Modeling Traffic Modeling ––
 

All FramesAll Frames

Result: SARIMA (1, 0, 1)x(1,1,1)s

 

Model, s=group size =16



37-67
©2017 Raj Jainhttp://www.cse.wustl.edu/~jain/cse567-17/Washington University in St. Louis

Validation
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SummarySummary



 

AR(1) Model:



 

MA(1) Model:



 

ARIMA(1,1,1) Model:



 

Seasonal ARIMA (1,0,1)x(0,1,0)12

 

model:

0 1 1t t tbx e b e   
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