Introduction to Time Series Analysis

Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu

Audio/Video recordings of this lecture are available at:

http://www.cse.wustl.edu/~jain/cse567-17/

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17

©2017 Raj Jain

37-1

- □ What is a time series?
- □ Autoregressive Models
- ☐ Moving Average Models
- ☐ Integrated Models
- □ ARMA, ARIMA, SARIMA, FARIMA models
- □ Note: These slides are based on R. Jain, "The Art of Computer Systems Performance Analysis," 2nd Edition (in preparation).

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

@2017 D : T :

37-2

Stochastic Processes

- □ Ordered sequence of random observations
- Example:
 - > Number of virtual machines in a server
 - > Number of page faults
 - > Number of queries over time
- Analysis Technique: Time Series Analysis
- □ Long-range dependence and self-similarity in such processes can invalidate many previous results

Stochastic Processes: Key Questions

- 1. What is a time series?
- 2. What are different types of time series models?
- 3. How to fit a model to a series of measured data?
- 4. What is a stationary time series?
- 5. Is it possible to model a series that is not stationary?
- 6. How to model a series that has a periodic or seasonal behavior as is common in video streaming?

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Raj Jain

Washington University in St. Louis

©201

37-3

37-4

http://www.cse.wustl.edu/~jain/cse567-17/

Stochastic Processes: Key Questions (Cont)

- 1. What are heavy-tailed distributions and why they are important?
- 2. How to check if a sample of observations has a heavy tail?
- 3. What are self-similar processes?
- 4. What are short-range and long-range dependent processes?
- 5. Why long-range dependence invalidates many conclusions based on previous statistical methods?
- 6. How to check if a sample has a long-range dependence?

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17

©2017 Raj Jain

37-5

What is a Time Series

- ☐ Time series = Stochastic Process
- □ A sequence of observations over time.
- Examples:
 - > Price of a stock over successive days
 - > Sizes of video frames
 - > Sizes of packets over network
 - > Sizes of queries to a database system
 - > Number of active virtual machines in a cloud
- □ Goal: Develop models of such series for resource allocation and improving user experience.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-

©2017 Rai Jair

Time t

37-6

Autoregressive Models

- \Box Predict the variable as a linear regression of the immediate past value: $\hat{x}_t = a_0 + a_1 x_{t-1}$
- lacktriangle Here, \hat{x}_t is the best estimate of \mathbf{x}_t given the past history $\{x_0, x_1, \dots, x_{t-1}\}$
- Even though we know the complete past history, we assume that x_t can be predicted based on just x_{t-1} .
- □ Auto-Regressive = Regression on Self
- \blacksquare Error: $e_t = x_t \hat{x}_t = x_t a_0 a_1 x_{t-1}$
- \square Model: $x_t = a_0 + a_1 x_{t-1} + e_t$
- \square Best a_0 and $a_1 \Rightarrow$ minimize the sum of square of errors

Washington University in St. Louis

tp://www.cse.wustl.edu/~jain/cse567-1

©2017 Raj Jain

Example 37.1

- □ The number of disk access for 50 database queries were measured to be: 73, 67, 83, 53, 78, 88, 57, 1, 29, 14, 80, 77, 19, 14, 41, 55, 74, 98, 84, 88, 78, 15, 66, 99, 80, 75, 124, 103, 57, 49, 70, 112, 107, 123, 79, 92, 89, 116, 71, 68, 59, 84, 39, 33, 71, 83, 77, 37, 27, 30.
- □ For this data: $\sum_{\substack{t=2\\50}}^{50} x_t = 3313$ $\sum_{t=2}^{50} x_{t-1} = 3356$ $\sum_{t=2}^{50} x_t x_{t-1} = 248147$ $\sum_{t=2}^{50} x_{t-1}^2 = 272102$ n = 49

$$a_0 = \frac{\sum x_t \sum x_{t-1}^2 - \sum x_{t-1} \sum x_t x_{t-1}}{n \sum x_{t-1}^2 - (\sum x_{t-1})^2}$$
$$= \frac{3313 \times 272102 - 3356 \times 248147}{49 \times 272102 - 3356^2} = 33.181$$

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Example 37.1 (Cont)

$$a_{1} = \frac{n \sum x_{t} x_{t-1} - \sum x_{t} \sum x_{t-1}}{n \sum x_{t-1}^{2} - (\sum x_{t-1})^{2}}$$
$$= \frac{49 \times 248147 - 3313 \times 3356}{49 \times 272102 - 3356^{2}} = 0.503$$

 \square The AR(1) model for the series is:

$$x_t = 33.181 + 0.503x_{t-1} + e_t$$

 \square The predicted value of x_2 given x_1 is:

$$\hat{x}_2 = a_0 + a_1 x_1 = 33.181 + 0.503 \times 73 = 69.880$$

□ The actual observed value of is 67. Therefore, the prediction error is:

$$e_2 = x_2 - \hat{x}_2 = 67 - 69.880 = -2.880$$

□ Sum of squared errors SSE = 32995.57

Exercise 37.1

☐ Fit an AR(1) model to the following sample of 50 observations: 83, 86, 46, 34, 130, 109, 100, 81, 84, 148, 93, 76, 69, 40, 50, 56, 63, 104, 35, 55, 124, 52, 55, 81, 33, 76, 83, 90, 94, 37, -2, 33, 105, 133, 78, 50, 115, 149, 98, 110, 25, 82, 59, 80, 43, 58, 88, 78, 55, 68. Find a_0 , a_1 and the minimum SSE.

Washington University in St. Louis

37-10

Stationary Process

■ Each realization of a random process will be different:

- \Box x is function of the realization i (space) and time t: x(i, t)
- \square We can study the distribution of x_t in space.
- □ Each x_t has a distribution, e.g., Normal $f(x_t) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-(x_t \mu)^2}{2\sigma^2}}$
- \square If this same distribution (normal) with the same parameters μ , σ applies to $x_{t+1}, x_{t+2}, ...,$ we say x_t is stationary.

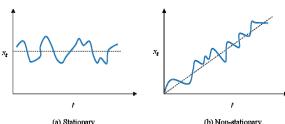
Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17

©2017 Rai Jair

Stationary Process (Cont)

- □ Stationary = Standing in time
 - ⇒ Distribution does not change with time.
- \square Similarly, the joint distribution of x_t and x_{t-k} depends only on knot on t.
- \square The joint distribution of $x_t, x_{t-1}, ..., x_{t-k}$ depends only on k not on t.



http://www.cse.wustl.edu/~jain/cse567-17/

Washington University in St. Louis

Autocorrelation

- □ Covariance of x_t and x_{t-k} = Auto-covariance at lag kAutocovariance of x_t at lag $k = \text{Cov}[x_t, x_{t-k}] = E[(x_t - \mu)(x_{t-k} - \mu)]$
- ☐ For a stationary series:
 - > Statistical characteristics do not depend upon time t.
 - \triangleright Autocovariance depends only on lag k and not on time t

Autocorrelation of x_t at lag k r_k = $\frac{\text{Autocovariance of } x_t \text{ at lag } k}{\text{Variance of } x_t}$ $= \frac{\text{Cov}[x_t, x_{t-k}]}{\text{Var}[x_t]}$ $= \frac{E[(x_t - \mu)(x_{t-k} - \mu)]}{E[(x_t - \mu)^2]}$

■ Autocorrelation is dimensionless and is easier to interpret than autocovariance.

Washington University in St. Louis

o://www.cse.wustl.edu/~jain/cse567-1

©2017 Rai Jain

37-13

Example 37.2

□ For the data of Example 37.1, the variance and covariance's at lag 1 and 2 are computed as follows:

Sample Mean
$$\overline{x} = \frac{1}{50} \sum_{t=1}^{50} x_t = \frac{3386}{50} = 67.72$$

$$Var(x_t) = E[(x_t - \mu)^2] = \frac{1}{49} \sum_{t=1}^{50} (x_t - \overline{x})^2 = \frac{273002 - 50 \times 67.72^2}{49} = 891.879$$

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Rai Jair

37-14

Example 37.2 (Cont)

$$Cov(x_{t}, x_{t-1}) = E[(x_{t} - \mu)(x_{t-1} - \mu)]$$

$$= \frac{1}{48} \sum_{t=2}^{50} (x_{t} - \overline{x}_{t})(x_{t-1} - \overline{x}_{t-1})$$

$$= \frac{1}{48} \left[\sum_{t=2}^{50} x_{t} x_{t-1} - \left(\frac{1}{49} \sum_{t=2}^{50} x_{t} \right) \sum_{t=2}^{50} x_{t-1} - \sum_{t=2}^{50} x_{t} \left(\frac{1}{49} \sum_{t=2}^{50} x_{t-1} \right) \right]$$

$$+ 49 \left(\frac{1}{49} \sum_{t=2}^{50} x_{t} \right) \left(\frac{1}{49} \sum_{t=2}^{50} x_{t-1} \right)$$

$$= \frac{1}{48} \left[\sum_{t=2}^{50} x_{t} x_{t-1} - \frac{1}{49} \left(\sum_{t=2}^{50} x_{t} \right) \left(\sum_{t=2}^{50} x_{t-1} \right) \right]$$

$$= \frac{1}{48} \left[248147 - \frac{3313 \times 3356}{49} \right] = 442.506$$

- □ Small Sample $\Rightarrow \overline{x}_t$ and \overline{x}_{t-1} are slightly different. Not so for large samples.
- □ Divisor is 48 since we used sample mean calculated from the same sample

 Washington University in St. Louis

 http://www.cse.wustl.edu/~jain/cse567-17/

 ©2017 Rai Jain

Example 37.2 (Cont)

$$Cov(x_{t}, x_{t-2}) = E[(x_{t} - \mu)(x_{t-2} - \mu)]$$

$$= \frac{1}{47} \sum_{t=3}^{50} (x_{t} - \overline{x}_{t})(x_{t-2} - \overline{x}_{t-2})$$

$$= \frac{1}{47} \left[\sum_{t=3}^{50} x_{t} x_{t-2} - \frac{1}{48} \left(\sum_{t=3}^{50} x_{t} \right) \left(\sum_{t=3}^{50} x_{t-2} \right) \right]$$

$$= \frac{1}{47} \left[229360 - \frac{3246 \times 3329}{48} \right]$$

$$= 90.136$$

□ Note: Only 48 pairs of $\{x_t, x_{t-1}\}$ ⇒ Divisor is 47

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Example 37.2 (Cont)

Autocorrelation at lag
$$0 = r_0 = \frac{Var(x_t)}{Var(x_t)} = \frac{891.879}{891.879} = 1$$

Autocorrelation at lag 1 =
$$r_1 = \frac{Cov(x_t, x_{t-1})}{Var(x_t)} = \frac{442.506}{891.879} = 0.496$$

Autocorrelation at lag
$$2 = r_2 = \frac{Cov(x_t, x_{t-2})}{Var(x_t)} = \frac{90.136}{891.879} = 0.101$$

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Rai Jain

37-17

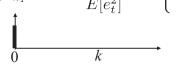
White Noise

- \Box Errors e_t are normal independent and identically distributed (IID) with zero mean and variance σ^2
- □ Such IID sequences are called "white noise" sequences.
- $lue{}$ Properties: $E[e_t] = 0 \quad \forall t$

$$Var[e_t] = E[e_t^2] = \sigma^2 \quad \forall t$$

$$Cov[e_t, e_{t-k}] = E[e_t e_{t-k}] = \begin{cases} \sigma^2 & k = 0 \\ 0 & k \neq 0 \end{cases}$$

$$Cor[e_t, e_{t-k}] = \frac{E[e_t e_{t-k}]}{E[e_t^2]} = \begin{cases} 1 & k = 0 \\ 0 & k \neq 0 \end{cases}$$



Washington University in St. Louis

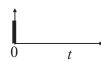
http://www.cse.wustl.edu/~jain/cse567-17/

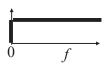
©2017 Rai Jair

37-18

White Noise (Cont)

- □ The autocorrelation function of a white noise sequence is a spike (δ function) at k=0.
- $lue{}$ The Laplace transform of a δ function is a constant. So in frequency domain white noise has a flat frequency spectrum.





□ It was incorrectly assumed that white light has no color and, therefore, has a flat frequency spectrum and so random noise with flat frequency spectrum was called white noise.

Ref: http://en.wikipedia.org/wiki/Colors_of_noise

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Raj Jain

White Noise Autocorrelations

☐ It can be shown that autocorrelations for white noise are normally distributed with mean:

$$E[r_k] \approx \frac{-1}{n}$$

and variance:

$$\operatorname{Var}[r_k] \approx \frac{1}{n}$$

□ Therefore, their 95% confidence interval is $-1/n \mp 1.96/\sqrt{n}$ $z_{0.975} = 1.96$

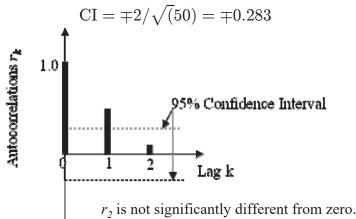
This is generally approximated as $\mp 2/\sqrt{n}$

☐ This confidence interval can be used to check if a particular autocorrelation is zero.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

□ For the data of Example 37.1: n=50



Washington University in St. Louis

37-21

Exercise 37.2

□ Determine autocorrelations at lag 0 through 2 for the data of Exercise 37.1 and determine which of these autocorrelations are significant at 95% confidence.

Washington University in St. Louis

©2017 Rai Jaiı

37-22

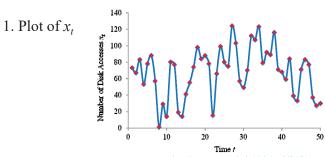
Assumptions for AR(1) Models

- x_t is a Stationary process
- Linear relationship between successive values
- Normal Independent identically distributed errors:
 - Normal errors
 - Independent errors
- Additive errors

Washington University in St. Louis

Visual Tests for AR(1) Models

- Plot x_t as a function of t and look for trends
- x_t vs. x_{t-1} for linearity
- Errors e_t vs. predicted values \hat{x}_t for additivity
- Q-Q Plot of errors for Normality
- Errors e_t vs. t for IID

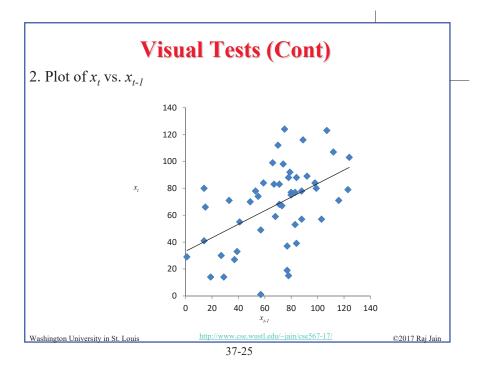


Washington University in St. Louis

37-24

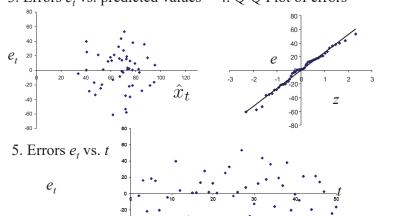
37-23

http://www.cse.wustl.edu/~jain/cse567-17



Visual Tests (Cont)

3. Errors e_t vs. predicted values 4. Q-Q Plot of errors



ashington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-1

37-26

Exercise 37.3

□ Conduct visual tests to verify whether or not the AR(1) model fitted in Exercise 37.1 is appropriate .

AR(p) Model

 \square x_t is a function of the last p values:

$$x_t = a_0 + a_1 x_{t-1} + a_2 x_{t-2} + \dots + a_p x_{t-p} + e_t$$

 \square AR(2): $x_t = a_0 + a_1 x_{t-1} + a_2 x_{t-2} + e_t$

2017

Washington University in St. Louis

//www.cse.wustl.edu/~iain/cse567-17/

©2017 Raj Jain

http://www.cse.wustl.edu/~jain/cse567-17/

Washington University in St. Louis

Backward Shift Operator

$$B(x_t) = x_{t-1}$$

$$B(B(x_t)) = B(x_{t-1}) = x_{t-2}$$

$$B^2x_t = x_{t-2}$$

$$B^3x_t = x_{t-3}$$

$$B^kx_t = x_{t-k}$$

 \Box Using this notation, AR(p) model is:

$$x_t - a_1 x_{t-1} - a_2 x_{t-2} - \dots - a_p x_{t-p} = a_0 + e_t$$

$$x_t - a_1 B x_t - a_2 B^2 x_t - \dots - a_p B^p x_t = a_0 + e_t$$

$$(1 - a_1 B - a_2 B^2 - \dots - a_p B^p) x_t = a_0 + e_t$$

$$\phi_p(B) x_t = a_0 + e_t$$

ngton University in St. Louis http://www.cse.v

C2

37-29

AR(p) Parameter Estimation

$$x_t = a_0 + a_1 x_{t-1} + a_2 x_{t-2} + e_t$$

 \Box The coefficients a_i 's can be estimated by minimizing SSE using Multiple Linear Regression.

SSE =
$$\sum e_t^2 = \sum_{t=3}^{\infty} (x_t - a_0 - a_1 x_{t-1} - a_2 x_{t-2})^2$$

□ Optimal a_0 , a_1 , and $a_2 \Rightarrow$ Minimize SSE

⇒Set the first differential to zero:

$$\frac{d}{da_0}SSE = \sum_{t=3}^{n} -2(x_t - a_0 - a_1 x_{t-1} - a_2 x_{t-2}) = 0$$

$$\frac{d}{da_1}SSE = \sum_{t=3}^{n} -2x_{t-1}(x_t - a_0 - a_1 x_{t-1} - a_2 x_{t-2}) = 0$$

$$\frac{d}{da_2}SSE = \sum_{t=3}^{n} -2x_{t-2}(x_t - a_0 - a_1 x_{t-1} - a_2 x_{t-2}) = 0$$

Washington University in St. Louis

ttp://www.cse.wustl.edu/~jain/cse567-17/

©2017 Rai Ia

37-30

AR(p) Parameter Estimation (Cont)

☐ The equations can be written as:

$$\begin{bmatrix} n-2 & \sum x_{t-1} & \sum x_{t-2} \\ \sum x_{t-1} & \sum x_{t-1}^2 & \sum x_{t-1} x_{t-2} \\ \sum x_{t-2} & \sum x_{t-1} x_{t-2} & \sum x_{t-1}^2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} \sum x_t \\ \sum x_t x_{t-1} \\ \sum x_t x_{t-2} \end{bmatrix}$$

Note: All sums are for t=3 to n. n-2 terms.

■ Multiplying by the inverse of the first matrix, we get:

$$\left[\begin{array}{c} a_0 \\ a_1 \\ a_2 \end{array} \right] = \left[\begin{array}{ccc} n-2 & \sum x_{t-1} & \sum x_{t-2} \\ \sum x_{t-1} & \sum x_{t-1}^2 & \sum x_{t-1}x_{t-2} \\ \sum x_{t-2} & \sum x_{t-1}x_{t-2} & \sum x_{t-2}^2 \end{array} \right]^{-1} \left[\begin{array}{c} \sum x_t \\ \sum x_t x_{t-1} \\ \sum x_t x_{t-1} \end{array} \right]$$

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Raj Jain

AR(p) Parameter Estimation (Cont)

$$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_p \end{bmatrix} = \begin{bmatrix} n-p & \sum x_{t-1} & \sum x_{t-2} & \cdots & \sum x_{t-p} \\ \sum x_{t-1} & \sum x_{t-1}^2 & \sum x_{t-1}x_{t-2} & \cdots & \sum x_{t-1}x_{t-p} \\ \sum x_{t-2} & \sum x_{t-1}x_{t-2} & \sum x_{t-2}^2 & \cdots & \sum x_{t-2}x_{t-p} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \sum x_{t-p} & \sum x_{t-1}x_{t-p} & \sum x_{t-2}x_{t-p} & \cdots & \sum x_{t-p}^2 \end{bmatrix}^{-1} \begin{bmatrix} \sum x_t \\ \sum x_t x_{t-1} \\ \sum x_t x_{t-1} \\ \vdots \\ \sum x_t x_{t-p} \end{bmatrix}$$

- \square All sums are from t=p to t=n and have n-p terms.
- $lue{}$ For larger data sets: r_k is the autocorrelation at lag k

$$\begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_p \end{bmatrix} = \begin{bmatrix} 1 & r_1 & \cdots & r_{p-1} \\ r_1 & 1 & \cdots & r_{p-2} \\ \vdots & \vdots & \vdots & \vdots \\ r_{p-1} & r_{p-2} & \cdots & 1 \end{bmatrix}^{-1} \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_p \end{bmatrix}$$

 $(i,j)^{\text{th}}$ term = $\mathbf{r}_{[i-j]}$ $a_0 = (1 - a_1 - a_2 - \dots - a_n)\overline{x}$

ashington University in St. Louis

ttp://www.cse.wustl.edu/~jain/cse567-17/

□ Consider the data of Example 37.1 and fit an AR(2) model:

$$\begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 1 & r_1 \\ r_1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} r_1 \\ r_2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0.496 \\ 0.496 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 0.496 \\ 0.101 \end{bmatrix}$$

$$= \begin{bmatrix} 0.592 \\ -0.192 \end{bmatrix}$$

$$a_0 = (1 - a_1 - a_2)\overline{x} = (1 - 0.592 + 0.192)67.72 = 40.688$$

- □ SSE= 31979.39
- □ Small sample \Rightarrow Values of a_0 , a_1 , and a_2 are approximate.
- Exact model by regression:

$$x_t = 39.979 + 0.587x_{t-1} - 0.180x_{t-2} + e_t$$
geton University in St. Louis

http://www.cse.wustl.edu/~jain

SSE=31969.99

Exercise 37.4

□ Fit an AR(2) model to the data of Exercise 37.1. Determine parameters a_0 , a_1 , a_2 and the SSE using multiple regression. Repeat the determination of parameters using autocorrelation function values.

Washington University in St. Louis

©2017 Rai Jaiı

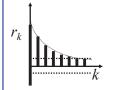
37-34

Exercise 37.5

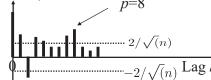
 \square Fit an AR(3) model to the data of Exercise 37.1. Determine parameters a_0 , a_1 , a_2 , a_3 and the SSE using multiple regression.

Determining the Order AR(p) $a_p \mp 2/\sqrt{(n)}$

- \square ACF of AR(1) is an exponentially decreasing fn of k
- \square Fit AR(p) models of order p=0, 1, 2, ...
- □ Compute the (1- α)% confidence intervals of $a_p = a_p \mp \frac{z_{1-\alpha/2}}{\sqrt{z_p}}$
- \square After some p, the last coefficients a_n will not be significant for all higher order models.
- \square This highest p is the order of the AR(p) model for the series.
- ☐ This sequence of last coefficients is also called "Partial **Autocorrelation Function (PACF)**"



PACF(k)

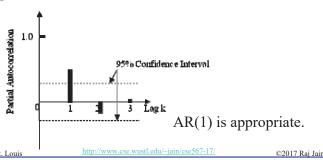


http://www.cse.wustl.edu/~jain/cse567-17/

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17

- For the data of Example 37.1, we have:
- \triangle AR(1): $x_t = 33.181 + 0.503x_{t-1} + e_t$
- □ AR(2): $x_t = 39.979 + 0.587x_{t-1} 0.180x_{t-2} + e_t$
- □ Similarly, AR(3): $x_t = 37.313 + 0.598x_{t-1} 0.211x_{t-2} + 0.052x_{t-3} + e_t$
- □ PACF at lags 1, 2, and 3 are: 0.503, -0.180, and 0.052



37-37

Computing PACF

37-38

Exercise 37.6

■ Using the results of Exercises 37.1, 37.4, and 37.5, determine the partial autocorrelation function at lags 1, 2, 3 for the data of Exercise 37.1. Determine which

values are significant. Based on this which AR(p)

model will be appropriate for this data?

Computing PACF (Cont)

$$\operatorname{PACF at lag} k = s_k = a_k \text{ in } \operatorname{AR}(k) = \begin{bmatrix} 1 & r_1 & \cdots & r_{k-2} & r_1 \\ r_1 & 1 & \cdots & r_{k-3} & r_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ r_{k-2} & r_{k-3} & \cdots & 1 & r_{k-1} \\ r_{k-1} & r_{k-2} & \cdots & r_1 & r_k \end{bmatrix} \\ \hline 1 & r_1 & \cdots & r_{k-2} & r_{k-1} \\ r_1 & 1 & \cdots & r_{k-3} & r_{k-2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ r_{k-2} & r_{k-3} & \cdots & 1 & r_1 \\ r_{k-1} & r_{k-2} & \cdots & r_1 & 1 \end{bmatrix}$$

Washington University in St. Louis http://www.cse.wustl.6

©2017 Raj Jain

Washington University in St. Louis

Washington University in St. Louis

nttp://www.cse.wustl.edu/~iain/cse567-17/

©2017 Raj Jain

37-39

Moving Average (MA) Models

- ☐ Moving Average of order 1: MA(1) $x_t b_0 = e_t + b_1 e_{t-1}$ b_0 is the mean of the time series.
- ightharpoonup The parameters b_0 and b_1 cannot be estimated using standard regression formulas since we do not know errors. The errors depend on the parameters.
- □ So the only way to find optimal b_0 and b_1 is by iteration. ⇒ Start with some suitable values and change b_0 and b_1 until SSE is minimized and average of errors is zero.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Raj Jain

©2017 Rai Jain

37-41

Example 37.4

- □ Consider the data of Example 37.1.
- $\bar{x} = \frac{1}{50} \sum_{t=1}^{50} x_t = 67.72$
- We start with $b_0 = 67.72$, $b_1 = 0.4$, Assuming $e_0 = 0$, compute all the errors and SSE. $e_1 = x_1 - b_0 - b_1 e_0 = 73 - 67.72 - 0.4 \times 0 = 5.28$ $e_2 = x_2 - b_0 - b_1 e_1 = 67 - 67.72 - 0.4 \times 5.28 = -2.832$... $\bar{e} = \frac{1}{50} \sum_{t=1}^{50} e_t = -0.152$ and SSE = 33542.8
- $lue{}$ We then adjust a_0 and b_1 until SSE is minimized and mean error is close to zero.

Washington University in St. Louis

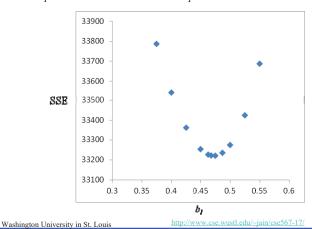
http://www.cse.wustl.edu/~jain/cse567-1

©2017 Rai Jain

37-42

Example 37.4 (Cont)

□ The steps are: Starting with $b_0 = \bar{x}$ and trying various values of b_1 . SSE is minimum at b_1 =0.475. SSE=33221.06



-- --

Washington University in St. Louis

Example 37.4 (Cont)

$$\overline{e} = \frac{1}{50} \sum_{t=1}^{50} e_t = -0.1661$$

- Keeping b_1 =0.475, try neighboring values of b_0 to get average error as close to zero as possible.
- \Box b_0 = 67.475 gives \bar{e} =-0.001 SSE=33221.93

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Raj Jair

37-43

MA(q) Models

- Moving Average of order 1: MA(1) $x_t b_0 = e_t + b_1 e_{t-1}$
- Moving Average of order 2: MA(2) $x_t b_0 = e_t + b_1 e_{t-1} + b_2 e_{t-2}$
- Moving Average of order q: MA(q) $x_t b_0 = e_t + b_1 e_{t-1} + b_2 e_{t-2} + \cdots + b_q e_{t-q}$
- Moving Average of order 0: MA(0) (Note: This is also AR(0)) $x_t b_0 = e_t$ x_t - b_0 is a white noise. b_0 is the mean of the time series.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17

©2017 Rai Jair

37-45

Exercise 37.7

□ Fit an MA(0) model to the data of Exercise 37.1. Determine parameter b_0 and SSE

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Raj Jai

37-46

MA(q) Models (Cont)

□ Using the backward shift operator B, MA(q):

$$x_{t} - b_{0} = e_{t} + b_{1}Be_{t} + b_{2}B^{2}e_{t} + \dots + b_{q}B^{q}e_{t}$$

$$= (1 + b_{1}B + b_{2}B^{2} + \dots + b_{q}B^{q})e_{t}$$

$$= \Psi_{q}(B)e_{t}$$

 \square Here, Ψ_q is a polynomial of order q.

Example 37.8

□ Fit MA(2) model to the data of Example 37.1

$$x_{t} = b_{0} + e_{t} + b_{1}e_{t-1} + b_{2}e_{t-2}$$

- Round 1: Setting $b_0 = \bar{x}_t = 67.72$, we try 9 combinations of $b_1 = \{0.2, 0.3, 0.4\}$ and $b_2 = \{0.2, 0.3, 0.4\}$. Minimum SSE is 33490.26 at $b_1 = 0.4$ and $b_2 = 0.2$
- □ Round 2: Try 4 new points around the current minimum b_0 ={0.35, 0.45} and b_2 ={0.15, 0.25} Minimum SSE is 32551.62 at b_1 =0.45, b_2 =0.15
- □ Round 3: Try 4 new points around the current minimum. Try b_1 ={0.425, 0.475} and b_2 ={0.125, 0.175} Minimum SSE is 32342.61 at b_1 =0.475, b_2 =0.125

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Raj Jain

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Example 37.8 (Cont)

- □ Round 4: Try 4 new points around the current minimum. Try b_1 ={0.4625, 0.4875} and b_2 ={0.125, 0.175} Minimum SSE is 32201.58 at b_1 =0.4875, b_2 =0.125
- □ Round 5: Try 4 new points around the current minimum. Try b_1 ={0.481, 0.493} and b_2 ={0.112, 0.137} Minimum SSE is 32148.21 at b_1 =0.493, b_2 =0.137
- □ Since the decrease in SSN is small (close to 0.1%), we arbitrarily stop here.
- □ The model is:

$$x_t = 67.72 + e_t + 0.493e_{t-1} + 0.137e_{t-2}$$

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Rai Jair

37-49

Exercise 38.8

□ Fit an MA(1) model to the data of Exercise 37.1. Determine parameters b_0 , b_1 and the minimum SSE.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Raj Jain

37-50

Autocorrelations for MA(1)

□ For this series, the mean is:

$$\mu = E[x_t] = b_0 + E[e_t] + b_1 E[e_{t+1}] = b_0$$

☐ The variance is:

$$Var[x_t] = E[(x_t - \mu)^2] = E[(e_t + b_1 e_{t-1})^2]$$

$$= E[e_t^2 + 2b_1 e_t e_{t-1} + b_1^2 e_{t-1}^2]$$

$$= E[e_t^2] + 2b_1 E[e_t e_{t-1}] + b_1^2 E[e_{t-1}^2]$$

$$= \sigma^2 + 2b_1 \times 0 + b_1^2 \sigma^2 = (1 + b_1^2) \sigma^2$$

☐ The autocovariance at lag 1 is:

autocovar at lag 1 =
$$E[(x_t - \mu)(x_{t-1} - \mu)]$$

= $E[e_t + b_1 e_{t-1})(e_{t-1} + b_1 e_{t-2})]$
= $E[e_t e_{t-1} + b_1 e_{t-1} e_{t-1} + b_1 e_t e_{t-2} + b_1^2 e_{t-1} e_{t-2}]$
= $E[0 + b_1 E[e_{t-1}^2] + 0 + 0]$
= $b_1 \sigma^2$

ashington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Raj Jain

Autocorrelations for MA(1) (Cont)

☐ The autocovariance at lag 2 is:

Covar at lag 2 =
$$E[(x_t - \mu)(x_{t-2} - \mu]$$

= $E[(e_t + b_1 e_{t-1})(e_{t-2} + b_1 e_{t-3})]$
= $E[e_t e_{t-2} + b_1 e_{t-1} e_{t-2} + b_1 e_t e_{t-3} + b_1^2 e_{t-1} e_{t-3}]$
= $0 + 0 + 0 + 0 = 0$

- = 0+0+0+0=0For MA(1), the autocovariance at all higher lags (k > 1) is 0.
- The autocorrelation is: $r_k = \begin{cases} 1 & k = 0 \\ \frac{b_1}{1 + b_1^2} & k = 1 \\ 0 & k > 1 \end{cases}$
- □ The autocorrelation of MA(q) series is non-zero only for lags k < q and is zero for all higher lags.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

- □ For the data of Example 37.1:
- \square Autocorrelation is zero for all lags k > 1.
- □ MA(1) model is appropriate for this data.

Washington University in St. Louis

tp://www.cse.wustl.edu/~jain/cse56/

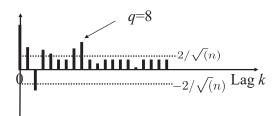
©2017 Raj Jair

37-53

Example 37.10

- \square The order of the last significant r_k determines the order of the MA(q) model.
- □ For the following data, all autocorrelations at lag 9 and higher are zero \Rightarrow MA(8) model would be appropriate

 $Autocorrelation r_k$



Washington University in St. Louis

edu/~jain/cse567-17/

©2017 R

37-54

Exercise 37.9

□ Fit an MA(2) model to the data of Exercise 37.2. Determine parameters b_0 , b_1 , b_2 and the minimum SSE. For this data, which model would you choose MA(0), MA(1) or MA(2) and why?

Duality of AR(p) vs. MA(q)

- □ Determining the coefficients of AR(p) is straight forward but determining the order p requires an iterative procedure
- □ Determining the order q of MA(q) is straight forward but determining the coefficients requires an iterative procedure

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Raj Jain

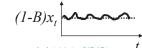
Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-17/

Non-Stationarity: Integrated Models

- In the white noise model MA(0): $x_t = b_0 + e_t$
- \Box The mean b_0 is independent of time.
- □ If it appears that the time series in increasing approximately linearly with time, the first difference of the series can be modeled as white noise: $(x_t x_{t-1}) = b_0 + e_t$
- Or using the B operator: $(1-B)x_t = x_t-x_{t-1}$

$$(1-B)x_t = b_0 + e_t$$

- ☐ This is called an "integrated" model of order 1 or I(1). Since the errors are integrated to obtain x.
- \square Note that x_i is not stationary but $(1-B)x_i$ is stationary.



Vashington University in St. Louis Lhttp://www.cse.wustl.edu/~jain/cse567-1

37-5

Integrated Models (Cont)

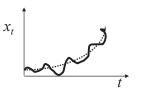
☐ If the time series is parabolic, the second difference can be modeled as white noise:

$$(x_t - x_{t-1}) - (x_{t-1} - x_{t-2}) = b_0 + e_t$$

Or $(1-B)^2 x_t = b_0 + e_t$ This is an I(2) model. Also written as:

$$D^2 x_t = b_0 + e_t$$

Where Operator D = 1-B



Washington University in St. Louis

tp://www.cse.wustl.edu/~jain/cse567-17/

©2017 Rai Ja

37-58

ARMA and ARIMA Models

- ☐ It is possible to combine AR, MA, and I models
- \square ARMA(p, q) Model:

$$\begin{array}{rcl} x_t - a_1 x_{t-1} - \ldots - a_p x_{t-p} & = & b_0 + e_t + b_1 e_{t-1} + \ldots + b_q e_{t-q} \\ \phi_p(B) x_t & = & b_0 + \psi_q(B) e_t \end{array}$$

□ ARIMA(p,d,q) Model:

$$\phi_p(B)(1-B)^d x_t = b_0 + \psi_q(B)e_t$$

□ Using algebraic manipulations, it is possible to transform AR models to MA models and vice versa.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Raj Jain

Example 37.11

- Consider the MA(1) model: $x_t = b_0 + e_t + b_1 e_{t-1}$
- □ It can be written as: $(x_t b_0) = (1 + b_1 B)e_t$

$$(1+b_1B)^{-1}(x_t-b_0) = e_t$$

$$(1-b_1B+b_1^2B^2-b_1^3B^3+...)(x_t-b_0) = e_t$$

$$(x_t-b_1x_{t-1}+b_1^2x_{t-2}-b_1^3x_{t-3}+\cdots)-\frac{b_0}{1+b_1} = e_t$$

$$x_t = \frac{b_0}{1+b_1}+b_1x_{t-1}-b_1^2x_{t-2}+b_1^3x_{t-3}-\cdots+e_t$$

□ If b_i <1, the coefficients decrease and soon become insignificant. This results in a finite order AR model.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

Exercise 39.10

□ Convert the following AR(1) model to an equivalent MA model:

$$x_{t} = a_{0} + a_{1}x_{t-1} + e_{t}$$

Washington University in St. Louis

ttp://www.cse.wustl.edu/~iain/cse567-17/

©2017 Raj Jain

37-61

Non-Stationarity due to Seasonality

- □ The mean temperature in December is always lower than that in November and in May it always higher than that in March ⇒Temperature has a yearly season.
- \Box One possible model could be I(12):

 $x_{t} - x_{t-12} = b_0 + e_t$

or

$$(1 - B^{12})x_t = b_0 + e_t$$

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Rai Jair

37-62

Seasonal ARIMA (SARIMA) Models

□ SARIMA $(p, d, q) \times (P, R, Q)^s$ Model:

$$\phi_p(B)\Phi_P(B^s)(1-B^s)^R(1-B)^dx_t = b_0 + \psi_q(B)\Psi_Q(B^s)e_t$$

□ Fractional ARIMA (FARIMA) Models ARIMA(p, d+ δ , q) -0.5 \leq δ <0.5 \Rightarrow Fractional Integration allowed

 \Rightarrow Fractional Integration allowed.

Exercise 37.11

■ Write the expression for SARIMA $(1,0,1)(0,1,0)^{12}$ model in terms of x's and e's.

Washington University in St. Louis <a href="http://doi.org/10.1007/jhttp://doi

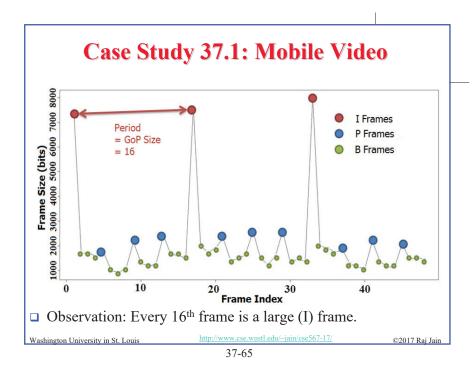
http://www.cse.wustl.edu/~jain/cse567-17/

©2017 Raj Jain

Washington University in St. Louis

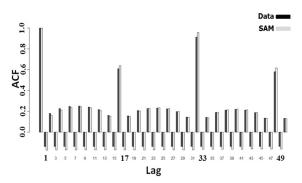
©2017 Raj Jair

http://www.cse.wustl.edu/~jain/cse567-17/



Traffic Modeling – All Frames

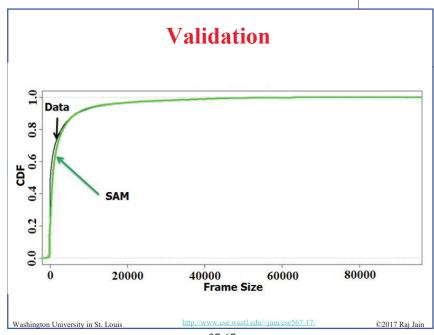
□ A closer look at the ACF graph shows a strong continual correlation every 16 lag → GOP size



 \square Result: SARIMA (1, 0, 1)x(1,1,1)^s Model, s=group size =16

Washington University in St. Louis

37-66



□ AR(1) Model:

 $x_t = a_0 + a_1 x_{t-1} + e_t$

■ MA(1) Model:

 $x_{t} - b_{0} = e_{t} + b_{1}e_{t-1}$

□ ARIMA(1,1,1) Model:

 $x_t - x_{t-1} = a_0 + a_1(x_{t-1} - x_{t-2}) + e_t + b_1 e_{t-1}$

■ Seasonal ARIMA $(1,0,1)x(0,1,0)^{12}$ model:

 $x_t - x_{t-12} = a_0 + a_1(x_{t-1} - x_{t-13}) + e_t + b_1e_{t-1}$

37-69

Related Modules

CSE567M: Computer Systems Analysis (Spring 2013),

https://www.youtube.com/playlist?list=PLjGG94etKypJEKjNAa1n 1X0bWWNyZcof

CSE473S: Introduction to Computer Networks (Fall 2011)

 $\underline{https://www.youtube.com/playlist?list=PLjGG94etKypJWOSPMh8Azcgy5e_10TiDw}$

Wireless and Mobile Networking (Spring 2016),

https://www.youtube.com/playlist?list=PLjGG94etKypKeb0nzyN9tSs_HCd5c4wXF

CSE571S: Network Security (Fall 2011),

 $\underline{https://www.youtube.com/playlist?list=PLjGG94etKypKvzfVtutHcPFJXumyyg93u}$

Video Podcasts of Prof. Raj Jain's Lectures,

https://www.youtube.com/channel/UCN4-5wzNP9-ruOzQMs-8NUw

Washington University in St. Louis

http://www.cse.wustl.edu/~iain/cse567-17

©2017 Rai Ia