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Overview

0O What is a time series?

O Autoregressive Models
O Moving Average Models
Q Integrated Models

0 ARMA, ARIMA, SARIMA, FARIMA models

O Note: These slides are based on R. Jain, “The Art of Computer
Systems Performance Analysis,” 2" Edition (in preparation).

http ww.cse.wustl.edu/~jain/cse567-17 ©2017 Raj Jain
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Stochastic Processes

O Ordered sequence of random observations
0 Example:
» Number of virtual machines in a server
> Number of page faults
> Number of queries over time
O Analysis Technique: Time Series Analysis

O Long-range dependence and self-similarity in such
processes can invalidate many previous results

Washington University in St. Louis http:/www.cse.wustl.edu/~jain/cse567-17 ©2017 Raj Jain

Stochastic Processes: Key Questions

What is a time series?

What are different types of time series models?
How to fit a model to a series of measured data?
What is a stationary time series?

Is it possible to model a series that is not stationary?

AN S o e

How to model a series that has a periodic or seasonal
behavior as is common in video streaming?

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-17 ©2017 Raj Jain




Stochastic Processes : Key Questions (Cont)

1. What are heavy-tailed distributions and why they are
important?

2. How to check if a sample of observations has a
heavy tail?

3. What are self-similar processes?

4. What are short-range and long-range dependent
processes?

5. Why long-range dependence invalidates many
conclusions based on previous statistical methods?

6. How to check if a sample has a long-range

What is a Time Series

O Time series = Stochastic Process

O A sequence of observations over time.

0O Examples: X
» Price of a stock over successive days

> Sizes of video frames

. Time t
» Sizes of packets over network

» Sizes of queries to a database system
> Number of active virtual machines in a cloud

0 Goal: Develop models of such series for resource

dependence? - _ ’ '
allocation and improving user experience.
Washington University in St. Louis ©2017 Raj Jain Washington University in St. Louis ©2017 Raj Jain
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Autoregressive Models Example 37.1

O Predict the variable as a linear regression of the
immediate past value: T = ag + a1T¢—1

O Here, Z; is the best estimate of x, given the past history]
{.CL‘Q, L1yenny 37,5_1}

0 Even though we know the complete past history, we
assume that x, can be predicted based on just x, ;.

0O Auto-Regressive = Regression on Self

Q Error: € = Ty — jt =Tt —ap — A1T¢t—1

0 Model: T¢ = ap + a1%¢—1 + €4

0 Best g, and a; = minimize the sum of square of errors

Washington University in St. Louis ©2017 Raj Jain
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0 The number of disk access for 50 database queries were measured to be: 73,
67, 83,53, 78, 88,57, 1,29, 14, 80, 77, 19, 14, 41, 55, 74, 98, 84, 88, 78,
15, 66, 99, 80, 75, 124, 103, 57, 49, 70, 112, 107, 123, 79, 92, 89, 116, 71,
68, 59, 84, 39, 33, 715,083, 77,37, 27, }(9

O For this data: th = 3313 th_l = 3356

%° =2 5
D wwey = 248147 Y af , =272102 n =49
t=2 t=2

th Z$%_1 - th—1 Z$t$n—1

apgp = 2 3
ny wiy — (P x-1)
3313 x 272102 — 3356 x 248147
= x 27210 X< 2ASUT _ 33181
49 x 272102 — 33562
Washington University in St. Louis ©2017 Raj Jain
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Example 37.1 (Cont)

MY TTy_1 — 9 Ty Ty1

ny ai (2 It71)2

49 x 248147 — 3313 x 3356 0.503
- 49 x 272102 — 33562

ay =

0O The AR(1) model for the series is:
s = 33.181 4+ 0.503x;_1 + e
O The predicted value of x, given x; is:
To = ag + a1y = 33.181 + 0.503 x 73 = 69.880
O The actual observed value of is 67. Therefore, the prediction

error is: .
ez = Tg — To = 67 — 69.880 = —2.880
O Sum of squared errors SSE = 32995.57

Washington University in St. Louis ©2017 Raj Jain
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Exercise 37.1

a Fit an AR(1) model to the following sample of 50
observations: 83, 86, 46, 34, 130, 109, 100, 81, 84,
148, 93, 76, 69, 40, 50, 56, 63, 104, 35, 55, 124, 52,
55, 81, 33, 76, 83, 90, 94, 37, -2, 33, 105, 133, 78, 50,
115, 149,98, 110, 25, 82, 59, 80, 43, 58, 88, 78, 55,
68. Find @/, a; and the minimum SSE.

Washington University in St. Louis ©2017 Raj Jain
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Stationary Process

O Each realization of a random process will be different:

t
X

O x is function of the realization i (space) and time ¢: x(i, )

O We can study the distribution of x, in space.
1 —(zp—m)?
e 202

0 Each x, has a distribution, e.g., Normal f(z:) =

g ™
O If this same distribution (normal) with the same parameters f,
o applies to x,, ;, X, 5, ..., We say x, is stationary.

Washington University in St. Louis ©2017 Raj Jain
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Stationary Process (Cont)

O Stationary = Standing in time
= Distribution does not change with time.

0 Similarly, the joint distribution of x, and x, , depends only on k&
not on ¢.

O The joint distribution of x,, x, ;, ..., x,, depends only on & not
on £.

b

AN~
MV AAVARRW

! !

(a) Stationary (b} Non-stationary

Washington University in St. Louis ©2017 Raj Jain
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Autocorrelation

O Covariance of x, and x, , = Auto-covariance at lag k
Autocovariance of z; at lag k = Cov]zy, x4—x] = E[(zt — p)(xi—p — 1))
O For a stationary series:
> Statistical characteristics do not depend upon time t.

> Autocovariance depends only on lag k£ and not on time ¢

. Autocovariance of z; at lag k
ag r T =

Variance of x;
Covlxy, Tr—]

Var[z]
BEl(xy — p) (@41 — p)]
E[(xy — p)?]
O Autocorrelation is dimensionless and is easier to interpret than
autocovariance.
Washington University in St. Louis hitp://www.cse.wustl.edu/~jain/cse567-17

©2017 Raj Jain
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Example 37.2

O For the data of Example 37.1, the variance and covariance's at
lag 1 and 2 are computed as follows:

50
Sample Mean x = SLZx, _ 3386 _ 67.72

03 50
50 _ 2
Var(x,) = E[(x, —u)’]= ! Z(xl -x) = 273002 =50x67.72" _ 891.879
49 = 49
Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-17 ©2017 Raj Jain
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Example 37.2 (Cont)
Cov(x,,x,) = E[(x, = 1)(x,_; = )]

1 & _ _
= 4782()% =X )X —=X)
=2

1 [ 50 1 & 50 50 1 &
=— XX _—|— X, X _,— X | — X
48 -1 [49;/J2t—1 221(49;r—1j

=2 =2 =

1 50 l 50
+49| — —
(49 ,;x’J[w ;x“ H
1 [ s0 1 (& 50
=— XX _, —— X X

3313x3356}:442‘506

"5 2ag147-
0O Small Sample = X, and X,_; are slightly different.
Not so for large samples.

0 Divisor is 48 since we used sample mean calculated from the
same sample

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-17
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Example 37.2 (Cont)
Cov(xﬁxt—z) = E[(xt - ﬂ)(xt—z - ,U)]
YRR

[ 2)5)
=—| Yxx ,—| Yx X,
47 p— t7v=2 48 — t = -2

_ L{229360— 3246x3329}
47

=90.136
O Note: Only 48 pairs of {x,, x, ;} = Divisor is 47

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-1
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Example 37.2 (Cont)

Var(x,) _ 891.879 ~1
Var(x,) 891.879

Autocorrelation at lag 1 =r, = Covlx, %) _ 442.506 _ 0.496
Var(x,) 891.879

Autocorrelation at lag 0 = r, =

0.136
Autocorrelation at lag 2 =r, = Covx,, %) _ 9 =0.101

= Var(x,) 891.879
=)
2
5 1.0
[
=
=}
g
2 0 1 2
Lagk

Washington University in St. Louis http:/www.cse.wustl.edu/~jain/cse567-17 ©2017 Raj Jain
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White Noise

Q Errors e, are normal independent and identically distributed
(ITD) with zero mean and variance o2

O Such IID sequences are called “white noise” sequences.

O Properties: Ele] = 0 WVt
Varle;] = E[e}]=0> WVt
Covles,er—x] = FEleter—i] = { 82 Z;g
Corle, er—g] = E[g;%k] = { (1) Z;g
|
0 k

http ww.cse.wustl.edu/~jain/cse567-17. ©2017 Raj Jain
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White Noise (Cont)

O The autocorrelation function of a white noise sequence is a
spike (§ function) at k&=0.

O The Laplace transform of a § function is a constant. So in
frequency domain white noise has a flat frequency spectrum.

L |

0 t 0 f

O It was incorrectly assumed that white light has no color and,
therefore, has a flat frequency spectrum and so random noise
with flat frequency spectrum was called white noise.

Ref: http://en.wikipedia.org/wiki/Colors_of noise
Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567- ©2017 Raj Jain
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White Noise Autocorrelations

O It can be shown that autocorrelations for white noise are
normally distributed with mean:

-1
E[?“k] ~ —
n
and variance:
Var[rg] ~ —
n

O Therefore, their 95% confidence interval is —1/n F 1.96//n
Zog75 =1.96

This is generally approximated as F2/v/n

O This confidence interval can be used to check if a particular
autocorrelation is zero.

http vw.cse.wustl.edu/~jain/cse567-17 ©2017 Raj Jain
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Example 37.3

O For the data of Example 37.1: n=50
CI = 72/4/(50) = 70.283

Antocorrelations ry
_E
e

%s Confidence Interval

‘ r, 1s not significantly different from zero.

http://www.cse.wustl.edu/~jain/cse567-17,

Washington University in St. Louis

©2017 Raj Jain
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Exercise 37.2

O Determine autocorrelations at lag 0 through 2 for the
data of Exercise 37.1 and determine which of these
autocorrelations are significant at 95% confidence.

Washington University in St. Louis ustl.edu/~jain/cseS67-17 ©2017 Raj Jain
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X, 1s a Stationary process

N

a.  Normal errors
b. Independent errors
4. Additive errors

http://www.cse.wustl.edu/~jain/cse567-17

Washington University in St. Louis

Assumptions for AR(1) Models

Linear relationship between successive values
3. Normal Independent identically distributed errors:

©2017 Raj Jain
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Visual Tests for AR(1) Models

1. Plotx, as a function of ¢ and look for trends

x, vs. x, ; for linearity

Errors e, vs. predicted values '+ for additivity
Q-Q Plot of errors for Normality

5. Errors e, vs. t for [ID

Howon

1. Plot of x,

Number of Disk Accesses x,
Ll \ [}

T T T T T 1
o 10 0 an 40 S0
Time ¢

ustl.edu/~jain/cse567-17 ©2017 Raj Jain
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Visual Tests (Cont)

2. Plot of x, vs. x,;

Washington University in St. Louis

140
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http://www.cse.wustl.edu/~jain/cse567-17. ©2017 Raj Jain
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Visual Tests (Cont)

3. Errors e, vs. predicted values 4. Q-Q Plot of errors

807
60
. 60+ A
.
40 . R 401 *
.
e, = T et e 20
t &ond . e
o - e
20 40 64 ¢ 8 100 120 3 2 1 1 2 3
-20 e °* - A~ -20
. .
. . x |
40 t . -40 z
60 . * 60
-80 80 -80-
60
5. Errors e, vs. t .
.
40 .
- * ¢
20 M hd . .
e . e . . Lo ° M
t 04— * as o . - .
*10 20 ¢ 30 400 50
.
20 Y MY . R
. .
.
40 M M
.
60 - ¢
-80 cpm 17
Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-1 ©2017 Raj Jain

Washington University in St. Louis

Exercise 37.3

O Conduct visual tests to verify whether or not the
AR(1) model fitted in Exercise 37.1 is appropriate .

http://www.cse.wustl.edu/~jain/cse567-17

©2017 Raj Jain
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AR(p) Model

Q x, 1s a function of the last p values:

Ty =ag +a1T¢—1 + A2T¢—2 + - + ApTr—p + €4

O AR(2): x¢ =ap + a1T¢—1 + a2T¢—2 + €

O ARQ): ¢t = ap + a1xi—1 + asxi—2 +azxri—3 + e

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-17 ©2017 Raj Jain
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Backward Shift Operator

B(xt) = 241
0 Similarly, B(B(x;)) = B(x4—1) = 242
2 Or B’z = m4_s
B3:1:t = Ti_3
kat = Ti_p

O Using this notation, AR(p) model is:

Tt —A1Tt—1 — A2Tt—2 — =" — ApTt—p = Ao
x4 — a1 Bry — asB?xy — - - — apBPzy = ag
(1—a1B—ayB*— - — apBP)xy = ag
Cbp(B)xt = Qag

Q Here, &, 1s a polynomial of degree p. o
Washington Universg/ in St. Louis http:/www.Tse.wusth.edu/~jain/cse567-1

+ e
+ e
+ €
+ e

©2017 Raj Jain
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AR(p) Parameter Estimation

Ty = ap + a12¢—1 + Q22 + €
0 The coefficients a,'s can be estimated by minimizing SSE using
Multiple Linear Regression.
n

SSE = Z e? = Z(mt —ag — a1T4_1 — ATy_2)?
t=3

Q Optimal a,, a,, and a, = Minimize SSE
= Set the first differential to zero:
d n

ESSE = E —2(.Z’t —ag — aA1T¢—1 — agﬂft_g) =0
0 t=3
d n
ESSE = E =224 1(2t — ap — a1x4—1 — agwi—2) =0
1 t=3
d n
d—SSE = > 20 o(xy —ag—ayxi_q — aszy_g) =0
a £
2 =3
Washington University in St. Louis http://www.cse.wustl.cdu/~jain/cse567-17 ©2017 Raj Jain
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AR(p) Parameter Estimation (Cont)

O The equations can be written as:

Swpq PO AR D TEE
Moo DoTpo1Ti—o i,

Note: All sums are for /=3 to n. n-2 terms.

ai
a2

O Multiplying by the inverse of the first matrix, we get:

a2

YTt Do Tio1Ti—o i,

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-17

n—2 Sowia th—2:| [(10] B [%xf }
thxt:Z

ag n—2 S S o ! Sy
ar | = | Xx Yai g Y waTio T
Zﬂﬂtfﬂt—z

©2017 Raj Jain
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AR(p) Parameter Estimation (Cont)
a n-p ZXH Zxr—z fofp h sz

a 2 E 2 2 . 2 E

1 X1 X X X2 XX, XX
a = 2 cee E

2 zxzfz ZXFIXFZ ZXFZ thfzxzfp XX

a ; )
r zxt—p zx!—lxt-p Zxr—2xt—p Zxr—p XiXip

a All sums are from ¢=p to t=n and have n-p terms.
0 For larger data sets: 7, is the autocorrelation at lag &

-1

a 1 h Vi I
a| | n 1 T, 7
a, Foy Typ vt 1 r,
1 1\th = _ =
(1,))™ term =1, /a;_(l_al_az_..._ap)x
Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-17 ©2017 Raj Jain
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Example 37.5

O Consider the data of Example 37.1 and fit an AR(2) model:
a| [1 #]'[n
Lz}:_’i 1} Lj

[ 1 04967 '[0.496
“l0496 1 } {0.101}

[0.592
_—0.192}
a,=(-a,-a,)x =(1-0.592+0.192)67.72 = 40.688

O SSE=31979.39
0O Small sample = Values of a, a,, and a, are approximate.

0 Exact model by regression:

x,=39.979+0.587x,, —0.180x,_, +e¢, SSE=31969.99

Exercise 37.4

a Fit an AR(2) model to the data of Exercise 37.1.
Determine parameters a,, a;, a, and the SSE using
multiple regression. Repeat the determination of
parameters using autocorrelation function values.

Washington University in St. Louis ©2017 Raj Jain Washington University in St. Louis ©2017 Raj Jain
37-33 37-34
| I
Exercise 37.5 Determining the Order AR(p)a» ¥2/V(n)

O Fit an AR(3) model to the data of Exercise 37.1.
Determine parameters a,, a;, a,, a; and the SSE using
multiple regression.

Washington University in St. Louis ©2017 Raj Jain
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ACF of AR(1) is an exponentially decreasing fn of k&
Fit AR(p) models of order p=0, 1, 2, ...
Compute the (1-a1)% confidence intervals of a, = a, ¥ Zran

O 0 0 0o

After some p, the last coefficients a, will not be signiﬁcé/ﬂz for
all higher order models.

This highest p is the order of the AR(p) model for the series.

O

O This sequence of last coefficients is also called "Partial
Autocorrelation Function (PACF)" 2
/ p:
" Iy PACF() |1 4. 1
1 2 n
. 1T Y I
....................... A ! —2//n) Lag k
Washington University in St. Louis ©2017 Raj Jain




Example 37.6

O For the data of Example 37.1, we have:

Computing PACF

PACFatlag 1 =s, =q, in AR(1)=7, )
|M |= Determinant of M

a AR(1): x, =33.181+0.503x, , +e, 1 »
. 1
0 ARQ2): x,=39.979+0.587x, ,—0.180x, , +e, P
=S, =a, i It 2l

0 Similarly, AR(3): x, =37.313+0.598x,_, —0.211x,_, +0.052x_, +e, PACFatlag2=s, =a, In ARQ2) =13 p
0 PACEF atlags 1, 2, and 3 are: 0.503, -0.180, and 0.052 nod

' L onog

10 = Pl on

95%% Confidenc e Interval ror 7

PACFatlag3=s,=a, in AR3)=1——

1 1 n

AR(1) is appropriate. il

A |

Washington University in St. Louis http:/www.cse.wustl.edu/~jain/cse567-17 ©2017 Raj Jain Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-17 ©2017 Raj Jain
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Computing PACF (Cont) Exercise 37.6

L7 hea

h 1 s L

i T | -

. T T h T

PACF atlag k =s, =a, in AR(k) =

1 I Teo Tho

h 1 s 1o

Teer T3 1 h

i i h 1

http://www.cse.wustl.edu/~jain/cse567-
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0 Using the results of Exercises 37.1, 37.4, and 37.5,
determine the partial autocorrelation function at lags
1, 2, 3 for the data of Exercise 37.1. Determine which
values are significant. Based on this which AR(p)
model will be appropriate for this data?

http://www.cse.wustl.edu/~jain/cse567-17, ©2017 Raj Jain
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Moving Average (MA) Models

IglllglllllllllIIIIIIIIIIIIIIIIIIIIII
fod t

O Moving Average of order 1: MA(1)
ry —bo =€ +bregy
b, is the mean of the time series.
O The parameters b, and b, cannot be estimated using standard
regression formulas since we do not know errors. The errors
depend on the parameters.

0 So the only way to find optimal b, and b, is by iteration.
= Start with some suitable values and change b, and b, until
SSE is minimized and average of errors is zero.

http://www.cse.wustl.edu/~jain/cse567-17 ©2017 Raj Jain
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Example 37.4

O Consider the data of Example 37.1.
130
Q For this data: 7 = — = 67.72
T 750 ; xt

O We start with b, = 67.72, b,=0.4,
Assuming e,=0, compute all the errors and SSE.
e =x—b,—be,=73-67.72-0.4x0=5.28
e,=x,—by—be =67-67.72-0.4x5.28=-2.832

50
_ 1 Z _ and SSE = 33542.8
€= % - €y = 0.152

0O We then adjust a,, and b, until SSE is minimized and mean
error is close to zero.

http ww.cse.wustl.edu/~jain/cse567-17. ©2017 Raj Jain
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Example 37.4 (Cont)

O The steps are: Starting with by = Z and trying various values
of b,. SSE is minimum at ,=0.475. SSE= 33221.06

33900
33800 .
33700 B
33600
*
SRE | 33500 |
33400 *
.
33300
o0t
33200 haad
33100 . . . : ‘
03 035 04 045 05 055 06

by
www.cse.wustl.edw/~jain/cse567-17 ©2017 Raj Jain

37-43

Washington University in St. Louis hitp

Example 37.4 (Cont)

1 50
e=— =—-0.1661
e 50 ;et
0 Keeping b,=0.475, try neighboring values of b, to get
average error as close to zero as possible.

Q b= 67.475 gives e=-0.001 SSE=33221.93

http vw.cse.wustl.edu/~jain/cse567-17 ©2017 Raj Jain
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MA(q) Models

IglllglllllllllIIIIIIIIIIIIIIIIIIIIII
fod t

O Moving Average of order 1: MA(1)
xy —bo =€ +breg—y
O Moving Average of order 2: MA(2)
Tt — b() =e; + blet_l + bget_Q
O Moving Average of order a: MA(q)
Ty —bo = e; +bieg—1 +baes_o + -+ bgei_q
O Moving Average of order 0: MA(0) (Note: This is also AR(0))

v —bo=e . .
x/b, is a white noise. b, is the mean of the time series.

Washington University in St. Louis ©2017 Raj Jain
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Exercise 37.7

a Fit an MA(0) model to the data of Exercise 37.1.
Determine parameter b, and SSE

Washington University in St. Louis ©2017 Raj Jain
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MA(q) Models (Cont)

0 Using the backward shift operator B, MA(q):

ry —by = e +bBey+byB%e+ -+ byBley
= (140 B+bB*+ - +b,B%e
- \I’q(B)et

Q Here, ¥, is a polynomial of order g.

Washington University in St. Louis ©2017 Raj Jain
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Example 37.8

a Fit MA(2) model to the data of Example 37.1

x,=b,+e +be_ +be, ,

O Round 1: Setting by, = z, = 67.72, we try 9 combinations of
b,={0.2,0.3,0.4} and ,={0.2, 0.3, 0.4}.
Minimum SSE is 33490.26 at ,=0.4 and 5,=0.2

O Round 2: Try 4 new points around the current minimum
b,~{0.35, 0.45} and b,={0.15, 0.25}
Minimum SSE is 32551.62 at b,=0.45, b,=0.15

O Round 3: Try 4 new points around the current minimum.
Try b,={0.425,0.475} and b,={0.125, 0.175}
Minimum SSE is 32342.61 at b,=0.475, ,=0.125

Washington University in St. Louis ©2017 Raj Jain
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Example 37.8 (Cont)

0 Round 4: Try 4 new points around the current minimum.
Try b,={0.4625, 0.4875} and b,={0.125, 0.175}
Minimum SSE is 32201.58 at ,=0.4875, b,=0.125

O Round 5: Try 4 new points around the current minimum.
Try b,={0.481, 0.493} and ,={0.112, 0.137}

Minimum SSE is 32148.21 at ,=0.493, b,=0.137

O Since the decrease in SSN is small (close to 0.1%), we

arbitrarily stop here.

O The model is:

X, =67.72+¢,+0.493¢_, +0.137¢,_,

Washington University in St. Louis http:/www.cse.wustl.edu/~jain/cse567-17 ©2017 Raj Jain
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Exercise 38.8

a Fit an MA(1) model to the data of Exercise 37.1.
Determine parameters b,, b, and the minimum SSE.

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse567-17 ©2017 Raj Jain
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Autocorrelations for MA(1)

O For this series, the mean is:
u=E[x]=b,+Ele]+bEle ]=b,
O The variance is:
Var[z;] = E[(z¢—p)?] = E[(e; + bies—1)?]
= Ele? +2bjeres_1 +biel ]
= E[e?] 4+ 2biEletes_1] + b2Ele? 4]
= 0% +2b x 0+ bjo? = (1+b])0?
O The autocovariance at lag 1 is:
autocovar at lag 1 = FE[(x; — p)(zi—1 — p)]
= Ele; +bier—1)(et—1 + brer—2)]
= FEleter—1 +bres_1e4—1 + biees_o + bies_1eq_o)
= E[0+bEel ]+0+0

= b102
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Autocorrelations for MA(1) (Cont)

O The autocovariance at lag 2 is:
Covar at lag 2 = E[(z; — p)(xi—2 —
= E[(et + blet_l)(et_g + blet_g)]

—r - - .9 1
= LDletet—2 + b1€6¢t—1€1—2 + 0161643 + b1€1_1€¢_3)|

0+04+0+0=
a For MA(1), the autocovariance at all higher lags (k>1) is 0.
0 The autocorrelation is: 1 E=0
0 E>1

0 The autocorrelation of MA(g) series is non-zero only
for lags k< g and is zero for all higher lags.
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Example 37.9

a For the data of Example 37.1:
O Autocorrelation is zero for all lags k >1.
0 MA(1) model is appropriate for this data.

Example 37.10

0 The order of the last significant r, determines the
order of the MA(g) model.

a For the following data, all autocorrelations at lag 9
and higher are zero = MA(8) model would be
appropriate

q=8
/
Autocorrelation r;, 1. 1 \
il i
! —2/\/(n) Lagk
©2017 Raj Jain Washington University in St. Louis ©2017 Raj Jain
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Exercise 37.9 Duality of AR(p) vs. MA(q)

a Fit an MA(2) model to the data of Exercise 37.2.
Determine parameters b, b;, b, and the minimum
SSE. For this data, which model would you choose
MA(0), MA(1) or MA(2) and why?

Washington University in St. Louis ©2017 Raj Jain
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O Determining the coefficients of AR(p) is straight
forward but determining the order p requires an
iterative procedure

O Determining the order q of MA(q) 1s straight forward
but determining the coefficients requires an iterative
procedure

Washington University in St. Louis ©2017 Raj Jain
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Non-Stationarity: Integrated Models

O In the white noise model MA(0): x, =b, +e,
The mean b, is independent of time.

O

O If it appears that the time series in increasing approximately
linearly with time, the first difference of the series can be
modeled as white noise: (X, —x,_,) =5, +e¢,

O Or using the B operator: (1-B)x, = x,-x,
(1-B)x, =b, +e,
O This is called an "integrated" model of order 1 or I(1). Since the
errors are integrated to obtain x.
O Note that x, is not stationary but (1-B)x, is stationary.

Integrated Models (Cont)

O =x_)=(x_ =%, _,)=byte,

0 Or (1-B)’x, =h,+e,
This is an I(2) model. Also written as:

2 —
D x, =b, +e,

Where Operator D = 1-B

O If the time series is parabolic, the second difference can be
modeled as white noise:

X, | pat™ (1-B)x, pAA A
t
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ARMA and ARIMA Models Example 37.11

O It is possible to combine AR, MA, and I models
0 ARMA(p, ¢) Model:

T — Q1T—1 — ... — ApTi_p bo +e; +breg—1 + ... + bgei_q

qbp(B)xt = bo+ @qu(B)et
0 ARIMA(p,d,q) Model:

¢p(B)(1 — B)dxt = bo + Vg (B)ey

O Using algebraic manipulations, it is possible to transform AR
models to MA models and vice versa.

Washington University in St. Louis http:/www.cse.wustl.edu/~jain/cse567-17 ©2017 Raj Jain
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0 Consider the MA(1) model: x, =b,+e, +be,,
O It can be written as: (x, —b,) = (1+b,B)e,

(1 "'blB)7I ('xt _bo) =€
(1-bB+b'B* BB +..)(x,—b,) = ¢,

(xt—blx,_]+b12xt_2—b3x +---)— b =e

b
0 2 3
X, = +bx,_ —bx,_,+b'x,_y—+e,
1+b,

Q If b,<1, the coefficients decrease and soon become
insignificant. This results in a finite order AR model.

http ww.cse.wustl.edu/~jain/cse567-1
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Exercise 39.10

0 Convert the following AR(1) model to an equivalent
MA model:

X, =q, + a, X, + ¢

Non-Stationarity due to Seasonality

0O The mean temperature in December is always lower than that
in November and in May it always higher than that in March
—=Temperature has a yearly season.

O One possible model could be I(12):

X, =X = bO +e
a or

(1-B")x, =b, +e,
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Seasonal ARIMA (SARIMA) Models Exercise 37.11

0 SARIMA (p.d,q) x (P, R.Q)* Model:
¢p(B)@p(B°)(1 — B*)*(1 — B)"wy = by + ¢q(B)Vq(B*)e;
0 Fractional ARIMA (FARIMA) Models

ARIMA(p, d+9, q) -0.5<6<0.5

—Fractional Integration allowed.
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0 Write the expression for SARIMA(1,0,1)(0,1,0)!2
model in terms of x’s and e’s.
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Case Study 37.1: Mobile Video Traffic Modeling — All Frames
g ? O A closer look at the ACF graph shows a strong continual
§~ < . 4’9“ fl ® IFrames correlation every 16 lag =» GOP size
x F—_’Ecr;lgg Size 1 w i o
3 g l =16 /‘ ’ © BFrames 2 SAM
ag ! ®
E%‘ \ \l | | \l ©
(=4 \ / \ : \ 1y
0% ' 2
§s .1 / ‘ / \ <y
g o
< | ‘ <
B le t AJRADN A ° e
N N Y s T A CEPCLCCLLCE L LU Tren
ﬁ{] 10 'F Ind 30 40 oo zyL:;nB“SSM’ Tore®
rame lndex
O Observation: Every 16™ frame is a large (I) frame. OResult: SARIMA (1, 0, 1)x(1,1,1)s Model, s=group size =16
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Validation
<
™ |Data
b
=}
2 ]
ws \ 2 AR(1) Model:
3] _
S SAM Ty = Qo + a1Ti—1 + €
. 0 MA(1) Model:
=] X _bo =€+ blez—l
2 0 ARIMA(1,1,1) Model:
0 20000 40000 60000 80000 Ty — Tp—1 = o + a1(Te—1 — Te—2) + € + bres—1
RERRS O Seasonal ARIMA (1,0,1)x(0,1,0)'2 model:
, Ty — 2412 = ag + a1(Te—1 — T4_13) + er + bregq
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