Performance Benchmarking Locality Aware
Runtime for NUMA Architecture

Justin Deters j.deters@wustl.edu -
(A paper written under the guidance of Prof. Raj Jain) Download
Abstract

Non-Uniform Memory Access architectures introduce a new level of difficulty to programmers.
Without the knowledge of the underlying runtime the performance of programs can suffer
because they are unaware of the difference in memory latencies in NUMA systems. We seek to
alleviate this issue by implementing a runtime that schedules computations on individual NUMA
nodes, hopefully countering this problem. This study specifically uses the systematic approach to
performance evaluation and a full factorial experimental design. We implemented our solution
within the Cilk runtime and performed our experiments on a 4 socket NUMA machine.

Keywords: parallel computing, NUMA, locality, runtime, Cilk, remote memory, caching

Table of Contents

1. Introduction
2. Experimental Design

2.1 System and Goals

2.2 Services and Outcomes

2.3 Metrics

2.4 Parameters and Factors
o 2.5 Statistical Methodology

3. Experiment and Analysis

o 3.1 Experiment

o 3.2 Analysis

e 4. Summary
o References

e List of Acronyms

O O O o

1. Introduction

Non-Uniform Memory Architectures (NUMA) are systems that have more than one CPU and
therefore more than one bank of main memory. Accessing memory that is non-local to a
particular CPU has a higher memory latency, introducing non-uniform access times and paths to
memory [Lameter13]. The NUMA architecture introduces some difficulty into programming. If

http://www.cse.wustl.edu/~jain/cse567-17/ftp/numaeval/index.html 1

http://www.cse.wustl.edu/%7Ejain/cse567-17/ftp/numaeval/index.html

the programmers do not account for the underlying hardware, they may not achieve their
expected performance. This is due to the execution suffering from the use of non-local memory.

Several systems have been suggested to conquer the locality problem. Drebes et al. suggest
dynamically grouping computations together on nodes using "work pushing". The process takes
tasks that have data that depend on each other and place them on the same NUMA nodes
[Drebes16]. Majo and Gross suggest a more hands on approach. They directly modify algorithms
and use OS tools to increase data locality [Majo13]. Our solution was to modify a parallel
runtime to pin computations to single CPUs, hopefully increasing the locality overall.

2. Experimental Design

In order to determine if our modified runtime system actually improves performance and
increases locality we must first define what we want to measure. In this section, we strictly
define our system, outline what data we will collect, and establish the statistical methodology
employed to analyze our data.

2.1 System and Goals

Our system was comprised of two separate pieces, the hardware architecture and the software
runtime that specifically targets the architecture. Our hardware consisted of a four socket NUMA
machine. Each socket had an Intel SandyBridge EP E5-4620 with 8 cores running at 2.20GHz.
Every core had a private L1 cache of 32 kB, a private L2 cache of 256 kB, and a shared L3 cache
of 16 MB. Sockets then had a local DRAM of 132 GB. The piece of the system that introduces
the non-uniform aspect of the NUMA was the inclusion of the Intel QuickPath Interconnects
(QP1) between each socket. The QPls allowed for the sockets to access remote memory and
transmit other information [Intel09]. Figure 1 shows the topology of the system.

The software side of our system consists of two separate runtimes, a "vanilla” non-NUMA aware
runtime, and a "locality"” NUMA aware runtime. In general, it is not an issue if a programmer is
unaware of the NUMA architecture of their system. The operating system will allocate memory
and schedule the computation on as many cores as needed, even across sockets. However, this
lack of knowledge can lead to significant performance degradation. The vanilla version of our
runtime behaves in this way.

The Cilk runtime works using the fork-join parallelism model. When the runtime encounters the
keyword "cilk_spawn" it creates new work for the runtime to complete, forking the computation.
If a worker runs out of work, it will randomly steal work from another victim worker and
continue the computation. When the runtime encounters the "cilk_sync" keyword, it waits for all
the workers to finish before executing more computation, joining the computation [Frigo98].
Because the runtime is not aware of the NUMA architecture, it may randomly steal work from a
worker on another socket resulting in performance degradation due to the expense of remote
memory accesses.

http://www.cse.wustl.edu/~jain/cse567-17/ftp/numaeval/index.html 2

http://www.cse.wustl.edu/%7Ejain/cse567-17/ftp/numaeval/index.html

The locality version of the runtime attempted to solve this problem by building knowledge of the
system's architecture into the runtime. Instead of randomly stealing work from anywhere across
the system, the locality runtime steals work from workers located on its socket. This hopefully
results in better performance due to the increased locality of the memory accesses.

The goal of this study was to determine if the locality version of the runtime results in
significantly better performance through directly utilizing the NUMA architecture.

HE
g o

Figure 1.

2.2 Services and Outcomes

Our system (the NUMA machine and the runtime) offers many different services to users. Most
importantly, users should be able to complete general computations on our system. If the system
behaves without error, users should receive the same answer to their computation as they would
on any other machine. The Cilk runtime expands on general computation and gives users an easy
way to create parallel applications. Assuming the user has not introduced their own race
conditions, both versions of our runtime should result in a race free computation. We assumed
that our runtime systems are executing correctly.

The services the hardware specifically provides should be validated by the manufacturer. These
services include distributed memory, caching, remote access to memory, and the hardware
performance monitoring counters. In order to do measurement and analysis we assumed that the
hardware functions properly and the numbers reported by the performance counters are
representative of the real behavior of the system.

2.3 Metrics

We represented performance on our system through two separate metrics, locality and speed up.
The locality metric was comprised of three separate indicators. The first was the number of L3
misses that are serviced from remote DRAM. This was measured via the
mem_load_uops_llc_miss_retired.remote_dram performance counter [Intel17]. Similarly, the
second indicator was the number of L3 misses that are serviced by local DRAM, measured with
the mem_load uops_llc_miss_retired.local_dram performance counter [Intel17]. Finally, the
third indicator was the number of L3 misses that are serviced from remote cache. Unlike the
other two, this had to be extrapolated out of several performance counters. The
mem_load_uops_retired.llc_miss performance counter, which counts all L3 misses, had the
previous two counters subtracted from it [Intel17]. The resulting counter represented the number
of L3 misses that were serviced by remote cache.

http://www.cse.wustl.edu/~jain/cse567-17/ftp/numaeval/index.html 3

http://www.cse.wustl.edu/%7Ejain/cse567-17/ftp/numaeval/index.html

Increased locality was indicated by a decrease in L3 misses being serviced by remote DRAM
and remote caches. Inversely, L3 misses being served local DRAM would increase. If the work
is being done locally, there would be less access remote memory and more access local memory,
thus higher locality.

Speed up was indicated by taking the execution time of the work being done on a single core and
dividing it by the execution time of the work being done on all cores (in our case 32 total cores).
Perfect linear speed up would result in 32 times faster than the single core execution. The closer
each runtime got to perfect linear speed up, the better the indicated performance. This indicator
allowed us to better compare the runtimes rather than directly comparing the execution times of
programs. To use the locality runtime, programs had to be modified with new structures. This
un-paired the programs from their execution on each of the runtimes. As long as the single core
runs of the programs had similar execution times, the indicator was still valid.

2.4 Parameters and Factors

In our experiment, we held many system parameters constant. The clock speed of the processors
was kept at a constant rate. The logical cores were disabled, so only physical cores were being
executed upon. Both versions of the runtime were compiled using the same complier and run on
CentOS 7. Every experiment (except for determining speed up) was run on all 32 cores of our
system. All hardware pre-fetching remained in place during our experiments. None of the
underlying hardware parameters were modified between experiments. Holding these parameters
constant allowed us to isolate the behavior of our runtimes.

In our experiments we varied two factors, the type of runtime and the benchmark being used on
the runtime. The two levels of the runtime were simply the vanilla runtime and the locality
runtime. The benchmarks and their inputs are described in Table 1.

Table 1 i i
| Benchmark | Description | Input
Cilksort A parallel version of merge | A random array of 524288
| . sort using the Cilk runtime. | integers.
Heat A simulation of heat A 2048 x 500 matrix with
dispersion using a five- 10 time steps.
point stencil computation.
Matrix Transpose A parallel version of matrix | Transposing a random
| | transpose | 2048 x 2048 matrix.
Matrix Multiplication A parallel version of matrix | Multiplying a random 2048
multiplication. x 2048 matrix with another
| 2048 x 2048 matrix.

2.5 Statistical Methodology

We chose to do direct experimentation and implement both the runtimes and all the benchmarks,
rather than mathematical modeling or simulation. Given that the Cilk runtime and the
benchmarks had already been implemented, they only needed modification on our part to study
them.

Our locality metric's indicators were categorical, so we chose to do a 2 x 4 full factorial design

with 6 replications. Each runtime had each benchmark run on it six times. The replications
allowed us to examine the amount of interaction the benchmarks and the runtime had apart from

http://www.cse.wustl.edu/~jain/cse567-17/ftp/numaeval/index.html 4

http://www.cse.wustl.edu/%7Ejain/cse567-17/ftp/numaeval/index.html

the main effects. All of the replications were averaged using the arithmetic mean before
computing the effects.

For the speed up metric we had to use a slightly different experimental design. We still used a 2
x 4 full factorial design, but we did not include any replications. Due to the fact that the metric is
comprised of two separate indicators, replicating the experiment itself did not make sense. The
sequential run was completely independent from the 32-core run. Instead we ran each benchmark
and using a single core and 32 cores for each runtime, and then repeated that 6 times. Then using
the arithmetic mean, we created an average runtime for each benchmark. Using this we could
then create our speed up metric and do our analysis on it.

3. Experiment and Analysis

In this section, we describe the implementation of the runtime system as well as the modified
benchmarks. We then analyze the experimental data. For the locality metric, we analyze the data
indicator by indicator. For the speed up metric, we analyze the metric as a whole.

3.1 Experiment

The locality runtime was implemented by modifying the existing Intel Cilk Plus runtime. It
added new keywords that allowed the user to specifically "pin" the portions of the computation
to certain nodes. This required us to then modify the existing benchmarks to take advantage of
these new keywords. In each of the benchmarks, the computation was split over the four NUMA
nodes as best as possible. In addition to this, the data structures had to be modified to be
distributed over the four nodes rather than contiguous on one.

Likwid

To measure our runtimes, we utilized the Likwid performance monitoring suite. Likwid allows
users to easily access the Intel performance counter registers [Treibig10]. Normally, reading the
Intel performance counters would be a very involved process of setting specific bits to read very
specific events [Intel17]. Likwid elevates this issue by having many of the performance counters
pre-configured in the application. All users have to do it build their own custom "performance
group” in a plain text file to access these counters and display their metrics [Treibig10].

Likwid also provides the ability to have fine grained monitoring via their programming interface.
Users add a series of function calls to their programs and Likwid only monitors the sections of
code in between the function calls [Treibig10]. Both of our runtimes were modified to utilize the
fine-grained monitoring.

The measuring markers were inserted in the portions of the runtime that pass execution to the
user code. By doing this we accomplished two things. First, we ensured that the performance
counters are only being read during serial parts of the execution. The worker that evokes the start
function would be the same worker that evoked the stop function. Second, we isolated the
monitoring to just the change in performance of the benchmarks themselves. We could then be

http://www.cse.wustl.edu/~jain/cse567-17/ftp/numaeval/index.html 5

http://www.cse.wustl.edu/%7Ejain/cse567-17/ftp/numaeval/index.html

certain that changes in our metrics were due to user code execution, rather than reflecting the
changes made in the runtime.

Intel Performance Counters

The assumption that all the performance counters were functioning properly turned out to be
invalid. Within the SandyBridge EP architecture, the performance counters we had chosen to
monitor our program turned out to have bugs. This was documented by Intel in their
specification update [Intel1702]. Luckily, Intel provided a fix for their counters so that they
would collect the right numbers. However, this fix resulted in worse performance for other
metrics, such as memory latency [Intel1702]. Because of this they were only enabled during the
testing for our locality indicators. After we confirmed that the fix worked with micro-
benchmarks, we continued our experiment with our original assumption in place.

3.2 Analysis

In order to determine if our runtime has any effect on the performance of the benchmarks, we
perform our 2 x 4 full factorial experiments. In this section, we analyze the L3 misses serviced
by remote cache, the L3 misses serviced by remote DRAM, L3 misses serviced by local DRAM,
and the speed up of each of the benchmarks.

L3 Misses Serviced by Remote Cache

Our analysis beings with an examination of the L3 misses serviced by remote cache. Due to
space constraints, we do not show each individual experiment, but only the average of the trials.
The calculation of the effects is shown in Table 2.

Table 2

Remote Cache sum mean effect

| vanilla Locality |

Cilksort | 2328199.667 1433546 | 3761745667 | 1880872.833 -2291624.479
Heat | 3708746.667 2520269.333 | 6229016 | 3114508 -1057989.313

Mat 581483.3333 342083.6667 923567 4617835 | -3710713.813
Transpose | | |
Matmul 15829591.33 6636058.5 22465649.83 11232824.92 T080327.604

sum 22448021 10931957.5 33379978.5
mean | 5612005.25 2732989375 | | 4172497.313
effect 1439507.938 | -1430507.938

interactions
9921811042 | 992181.1042
-845260.2708 | B45269.2708
-1319808.104 | 1319808.104
3157258.479 | -3157258.479

It is immediately apparent that the locality runtime is responsible for some sort of reduction in
the L3 misses being serviced by remote caches. However, to what extent cannot be determined
with this evaluation alone. We continue our examination with an ANOVA analysis in Table 3.

http://www.cse.wustl.edu/~jain/cse567-17/ftp/numaeval/index.html

http://www.cse.wustl.edu/%7Ejain/cse567-17/ftp/numaeval/index.html

Table 3
ANOVA % explained | DoF | Mean Square | F-Com F-Table

[ssv [195088415 | [a8 |

s50 8.35667E+14 1
[ssT 1115216415 | 100% | 47 |
ssa [9.94648E+13 | 9% | 1| 9.9464BE+13 | 26.68984055 | F[9, 1,40]= | 2.84
ss8 8398626414 75% | 3| 27995aE+14 | 7512134146 | F[9,3,40]= | 223

I'ssaB | 2.68182F+13 | 2% | 3| 1.11B6SE-13 | 3.00171E-26 | F[9, 3,40]= | 2.23
ssE 1.49068E+14 13% | 40| 3.72669E+12

All three of our effects pass the F test. However, the effect we are most interested in, the type of
runtime used, only accounts for 9% of the total variation in the model. We also see that the errors
make up a larger amount of the explained variation. To determine if our locality runtime is any
better than the vanilla runtime for this indicator, we perform a contrast between the two in Table
4.

Table 4
al-a2 2879015.875

| stdev 567276.9369
t 2457
|90 % confidence interval 1509786441 | 4248245309

The confidence interval shows that this contrast is indeed significant at the 90% confidence
level. So, the locality runtime does account for some reduction in the L3 misses serviced by
remote cache. However, due to the low amount of variation explained by these effects the
performance improvement is unimportant. We then perform visual tests on our model to validate
assumptions in Figure 3 and Figure 4.

Residuals vs Estimated Value

Figure 3

QQ-Plot of Residuals

Figure 4

Figure 3 and Figure 4 clearly show trends in the residuals of our analysis. This means our model
and our results are not accurate. In order to alleviate this issue, we performed a transformation
using the natural log on our data and performed our analysis again. This is shown below starting
with Table 5.

http://www.cse.wustl.edu/~jain/cse567-17/ftp/numaeval/index.html 7

http://www.cse.wustl.edu/%7Ejain/cse567-17/ftp/numaeval/index.html

Table 5

Remote Cache sum mean effect
Vanilla Locality | |
Cilksort 6.36645965 | 6156226021 | 12.52268567 | 6261342835 -
] | | | 0.088858107
Heat 5568336781 | 5401211302 | 12.96954817 | 6484774086 | 0.134573144
Mat 5759014111 | 5.532216181 | 11.29123029 | 5645615146 -
Transpose | | | | 0.704585796
Matmul 7187644142 | 56.820480262 14.0181434 | 7.009071702 | 0.65887076
sum | 25.89145468 | 24.91015286 | 50.80160754 | |
mean 6.472863671 | 6.227538214 6.350200942
effect [0.122662728 | -0.122662728 | I |

Luckily, the negative effect remains the same in our transformed analysis. Again, in Table 6 we
perform an ANOVA analysis to determine how much variation is explained by our runtime.

Table 6 i i
ANOVA % DoF | Mean Square | F-Com F-Table

explained
SSY 1947.943452 48
§50 1935.602496 [
' ssT 12.34095536 | 100% | 47 |
SSA 0.722214958 6% | 1| 0.722214958 | 226.5469544 | F[9,1,40] = | 2.84
'ssB 11.4786902 | 93% | 3| 3.826230066 | 1200.225443 | F[9,3,40] = | 223 |
| SSAB 0.012533158 | 0% | 3| 239.3650447 | 7508487779 | F[9, 3, 40]= | 223 |
SSE 0.127517046 1% | 40 | 0.003187926

Once again, our effects pass the F test. Through applying our transformation, we have reduced
the variation explained by the error from 13% to 1%. But, our runtime explains even less of the
variation at 6%, down from 9%. We perform our contrast again in Table 10.

Table 10
al-a2 0.800708478
stdev | 0.066981869 |
t | 2.457 |
90 % confidence interval 0636135026 | 0.96528393

The locality runtime is significantly different than the vanilla runtime. This does not mean much
because the runtime as a whole is unimportant to our model. Figure 5 and Figure 6 confirm that
our transformations have indeed improved our model.

Residuals vs Expected Values

0 L]
. L
L] L]
. U .
ol—s ' 3 i
8 9se ::- a 1 '\
0.1 L] s ®
L]
L
G e . s
03
Figure 7

QQ-Plot of Residuals

03 y=0.1188x- 2611 .
e %l
02 g
L
01 we
0.1 oo8®
. [..f] X
01
‘-.-
e
. ¥® 0.2
. .
0.3

Figure 8

http://www.cse.wustl.edu/~jain/cse567-17/ftp/numaeval/index.html 8

http://www.cse.wustl.edu/%7Ejain/cse567-17/ftp/numaeval/index.html

There does not seem to be any trend in the residuals and the residuals are normally distributed.
Our new model is sound and the results are representative. For our other locality indicators, we
found the same trends in the data. For brevity, we will apply the natural log transformation at the
beginning of our analysis.

L3 Misses Serviced by Remote DRAM

Our next indicator is the L3 cache misses serviced by remote DRAM. We begin again with the

calculation of effect, this time applying a natural log transformation. This calculation is done in
Table 8.

Table 8 i) i
Remote Cache sum mean effect
Vanilla Locality
Cilksort 179.858397855 | 9.311702674 | 19.17010053 | 9.585050264 | -
0.591799987
Heat 1021018591 | 9.701615859 | 19.91180177 | 9.955900886 -
0.220949365
Mat 9523446982 | 8066745849 | 17.58019283 | 8.795096416 -
Transpose | | | | 1.381753835
Matmul 12.71678921 | 12.02591767 | 24.74270688 | 12.37135344 | 2.194503187
sum 42.30881996 | 39.10598205 | 81.41480201
mean 1057720499 | 9776495512 10.17685025
effect [0.400354739 | -0.400354739 | | |

The locality runtime does result in fewer L3 cache misses serviced by remote DRAM. The
ANOVA analysis in Table 9 will tell us if the runtime is important to this model.

Table 8
ANOVA %o DoF | Mean F-Com F-Table
| explained | Square
§8Y 5066.910408 48
ss0 497127749 | 1]
8ST 95.63291601 100% 47
SSA 7.69362802 | 8% 1| 769362802 | 142.901049 F[.9,1,40] = | 284
SsSB 85.48960496 89% 3 | 28.49653499 | 529.293167 | F[.9, 3, 40] =
1 .2
SSAB 0.296129065 0% 31013071785 | 188.167429 | F[.9, 3,40] =
| | 4 1223
SSE 2.153553967 2% 40 | 0.053838849

The effects pass the F tests. Unfortunately, our runtime is not important in this model, only
explaining 8% of the total variation. The contrast test in Table 10 shows that the two runtimes
are significantly different than each other.

Table 10

al-az 0.800709478
|'stdev | 0.066981869 |
[t | 2.457 |

90 % confidence interval 0636135026 | 0.96528393

The visual tests in Figure 7 and Figure 8 show no trends in the residuals and the residuals are
normally distributed, so we may be confident in this model.

http://www.cse.wustl.edu/~jain/cse567-17/ftp/numaeval/index.html 9

http://www.cse.wustl.edu/%7Ejain/cse567-17/ftp/numaeval/index.html

Residuals vs Expected Values

L
® L]
a1 .] °
o []] |
[
’ -‘: al 11 12 '1"
0.1 .] .
L3
5|l —a E o
03
Figure 7
QQ-Plot of Residuals
1 L]
L] ._
s8'®
) ‘.“ob'
2 1 1 3
- 0.1
oa®
o:n 82 0.2
L]
0.3
0.4
Figure 8

L3 Misses Serviced by Local DRAM

The final locality indicator is the L3 misses serviced by local DRAM. Table 11 shows the
calculation of the effects for this indicator after the natural log transformation is applied.

Table 11

Local DRAM sum mean effect
[Vanilla | Locality | I
Cilksort 8618953135 | 8.488858016 | 17.10781115 | 8.553905575 .
| | | | | 0.722561108
Heat 0.005493747 | 8.722220303 | 17.72771414 | 886385707 .
0.412609613
Mat 8.42176003 | 8.618006166 | 17.0397662 | 8.519883096 -
Transpose | | | I | 0.756583585
Matmul 11.3353425 | 11.00109948 | 22.33644198 | 11.16822099 | 1.891754305
sum | 37.38154941 | 36.83018405 | 74.21173346 | [
mean 9.345387353 | 9.207546013 9.276466683
effect | 0.08892067 | -0.06892067 | | I

The effect of the locality runtime is still negative. This is the opposite of what we would expect
if the locality metric was increasing, as stated earlier. The ANOVA analysis in Table 12 shows
that, like the others, this indicator is unimportant to the model.

Table 12))

ANOVA % DoF | Mean Square | F-Com F-Table

explained

SsY 4180.490713 48

880 4130.536038 | 1

SST 59.95467508 100% | 47

SSA 0.22800282 0% 1 0.22800282 | 6.003861582 | F[.9, 1, 40] = 284
SSB 58.12193184 97% | 3| 1937307728 | 510.1633289 | F[.9.3,40] = | 223
SSAB 0.085699269 0% 3| 35.00613301 | 921.7955142 | F[.9,3,40]= | 5 53
SSE 1.519041153 3% 40 | 0.037976029

All of our effects pass the F test. This indicator fairs far worse than the other two. The ANOVA
analysis shows that the runtime explains effectively 0% of the variation in the model. The
contrast test in Table 13 shows that the two runtimes are indistinguishable from each other.

http://www.cse.wustl.edu/~jain/cse567-17/ftp/numaeval/index.html 10

http://www.cse.wustl.edu/%7Ejain/cse567-17/ftp/numaeval/index.html

Table 13

al-a2

013784134

stdev
t

0.056255391

2457 |

90 % confidence interval

The visual test for this model in Figure 9 and Figure 10 show that there are no trends in the
residuals and the residuals are normally distributed. We can trust this model is representative.

.

* oo VEE oo
omen oo

-0.4

Figure 9

Figure 10

Two out of the three indicators for our locality metric moved in the direction that we expected
them to, albeit that they are not important to the models. It is possible that the third indicator is

-0.000378157 | 0.276060837

Residuals vs Expected Value

QQ-Plot of Resisduals

showing an increase in locality as well. If the pre-fetchers are aggressively pulling in cache lines
from the local memory, there might be an overall reduction in cache misses, explaining the trend
we see. However, we do not have enough information to know if this effect is occurring. Ergo, it

is inconclusive if we are increasing locality using our modified runtime.

Speed Up

Our second indicator, speed up, shows whether or not our runtime has any effect on the overall

performance of the computation. If this metric turns out to be important and significant, it means
that our runtime does actually contribute to a performance increase. The calculation of the effects
is shown in Table 14.

Table 14
Local DRAM sum mean effect
[Vanilla Locality | I
Cilksort 3.936000226 | 7.769784173 | 11.7058744 | 5.852937199 -
3.753195613
Heat 7716981132 | 10.11007463 | 17.82705576 | 8.913527879 -
| | | | | 0.692604832
Mat 4206293706 | 4914285714 | 9.120579421 4 56028971 -
Transpose 5.045843002
Matmul 17.88661673 | 20.30803538 | 3819555212 | 19.09777606 | 9.491643347
sum [337459818 | 43.1030799 | 76.8490617 | I
mean | 8.436495449 | 10.77576897 | | 9.606132712 |
effect -1.169637263 | 1.169637263

http://www.cse.wustl.edu/~jain/cse567-17/ftp/numaeval/index.html

11

http://www.cse.wustl.edu/%7Ejain/cse567-17/ftp/numaeval/index.html

Here we see a positive increase in speed up in the locality runtime over the vanilla runtime. So,
there is some sort of performance improvement between the two. The ANOVA analysis in Table
15 however shows that performance increase is unimportant to the model.

Table 15

ANOVA % DoF | Mean Square | F-Com F-Table
| explained |
SSY 1011.854785 8
550 738.2222854 1
SST 2736324991 100% | 7
SSA 10.94441061 | 4% | 1| 1084441061 | 1338983803 | F(8,1,3]= | 55
SSB 260.2360061 95% 3| 86.74533536 | 106.1285716 | F[9,3,3]= | 5 a9
SSE 2.452082434 | 1% | 3| 0.817360811 | | |

The contrast between the two runtimes in Table 16 shows that they are significantly different
than each other, but again the effect is unimportant to the overall model.

Table 16

atl-a2 | -2.339274525
stdev 0.260985442
't | 2,353

90 % confidence interval | -2.953373271 | -1.72517578

The visual tests in Figure 11 and Figure 12 show that this model does not have any trends in its
residuals and that the residuals are normally distributed.

Residuals vs Predicted Response

Figure 11
QQ- Plot of Residuals
-‘ ¥=1.3676x + 1E-1 -y
i Ri=0,95
4 L] 12
0.5 .
1 0 *f-’ £
I L] 1
. £
2.5
Figure 12
Conclusions

Overall, we cannot conclude that our runtime has any important effect on the performance. The
locality metric not does not yield any important effects on the execution of the computation and
does not move in the expected direction. The speed up metric is also mostly unaffected by our
runtime. We hope to improve upon our current runtime by refactoring the changes into a
simplified version of the vanilla runtime. Hopefully, this will result in better speed up and more
locality.

http://www.cse.wustl.edu/~jain/cse567-17/ftp/numaeval/index.html 12

http://www.cse.wustl.edu/%7Ejain/cse567-17/ftp/numaeval/index.html

4. Summary

NUMA architectures introduce a new level of difficulty for programmers. They must be aware
the that latency of memory accesses is not uniform across the system. Our solution was to
modify the Cilk runtime and programs to utilize the underlying architecture. The system we
studied consisted of a machine of four Intel CPUs arranged in a NUMA architecture and our
parallel runtime. To determine if our runtime had any effect on performance, we selected two
metrics. The locality metric consisted of the number of L3 cache misses serviced by remote
cache, remote DRAM, and local DRAM respectively. The speed up metric was a ratio of the
single core execution to the 32-core execution of a program. We measured these metrics using
four benchmarks, cilksort, heat, matrix transpose, and matrix multiplication. Our analysis
showed that the locality runtime did not have any effect. It is possible that the modification of the
runtimes to distribute the memory across the system contributed far more to the increased
locality for the computation than the runtime being locality aware.

References

1. [Drebes16] A. Drebes, A. Pop, K. Heydemann, A. Cohen and N. Drach, "Scalable Task
Parallelism for NUMA", Proceedings of the 2016 International Conference on Parallel
Architectures and Compilation - PACT '16, 2016.
http://ieeexplore.ieee.org/document/7756747/

2. [Lameter13] C. Lameter, "NUMA (Non-Uniform Memory Access): An Overview",
Queue, vol. 11, no. 7, p. 40, 2013. http://queue.acm.org/detail.cfm?id=2513149

3. [Frigo98] M. Frigo, C. Leiserson and K. Randall, "The implementation of the Cilk-5

multithreaded language”, Proceedings of the ACM SIGPLAN 1998 conference on

Programming language design and implementation - PLDI 98, 1998.

https://dl.acm.org/citation.cfm?id=277725

[Intel09] Intel, "An Introduction to the Intel QuickPath Interconnect™, 2009

[Intel17] Intel, "Intel 64 and 1A-32 Architectures Software Developer's Manual”, 2017.

[Intel1702] Intel, "IntelTM XeonTM Processor E5 Product Family Specification

Update", 2017

7. [Majol3] Z. Majo and T. Gross, "(Mis)understanding the NUMA memory system
performance of multithreaded workloads", 2013 IEEE International Symposium on
Workload Characterization (IISWC), 2013. http://ieeexplore.ieee.org/document/6704666/

8. [Treibigl0] J. Treibig, G. Hager and G. Wellein, "LIKWID: A Lightweight Performance-
Oriented Tool Suite for x86 Multicore Environments”, 2010 39th International
Conference on Parallel Processing Workshops, 2010.
https://dl.acm.org/citation.cfm?id=1905129

SRR

List of Acronyms

NUMA - Non-Uniform Memory Access
CPU - Central Processing Unit
L1-Levell

L2 - Level 2

http://www.cse.wustl.edu/~jain/cse567-17/ftp/numaeval/index.html 13

http://www.cse.wustl.edu/%7Ejain/cse567-17/ftp/numaeval/index.html
http://ieeexplore.ieee.org/document/7756747/
http://queue.acm.org/detail.cfm?id=2513149
https://dl.acm.org/citation.cfm?id=277725
http://ieeexplore.ieee.org/document/6704666/
https://dl.acm.org/citation.cfm?id=1905129

e L3-Level3
e« DRAM - Dynamic Random-Access Memory
e ANOVA - Analysis of Variation

Last modified: December 15, 2017

This and other papers on performance analysis of computer systems are available online at
http://www.cse.wustl.edu/~jain/cse567-17/index.html

Back to Raj Jain's Home Page

http://www.cse.wustl.edu/~jain/cse567-17/ftp/numaeval/index.html

14

http://www.cse.wustl.edu/%7Ejain/cse567-17/ftp/numaeval/index.html

	Performance Benchmarking Locality Aware Runtime for NUMA Architecture
	Abstract
	Table of Contents
	1. Introduction
	2. Experimental Design
	2.1 System and Goals
	2.2 Services and Outcomes
	2.3 Metrics
	2.4 Parameters and Factors
	2.5 Statistical Methodology
	3. Experiment and Analysis
	3.1 Experiment
	Likwid
	Intel Performance Counters

	3.2 Analysis
	L3 Misses Serviced by Remote Cache
	L3 Misses Serviced by Remote DRAM
	L3 Misses Serviced by Local DRAM
	Speed Up
	Conclusions

	4. Summary
	References
	List of Acronyms

